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The guarantees of BatchBH and BatchSt-BH presented thus far relied on independence between p-values. In this
section we generalize BatchBH to one natural form of dependence, namely positive dependence (Benjamini and
Yekutieli, 2001). We call this modification BatchPRDS

BH , and it controls FDR when the p-values in one batch are
positively dependent, and independent across batches. Such a setting might occur in multi-armed clinical trials
where different treatments are tested against a common control arm (Robertson and Wason, 2018).

First we establish the definition of positive dependence we consider.

Definition 3. Let D ⊆ [0, 1]n be any non-decreasing set, meaning that x ∈ D implies y ∈ D, for all y such that
yi ≥ xi, for all i ∈ [n]. We say that a vector of p-values P = (P1, . . . , Pn) satisfies positive regression dependency
on a subset (PRDS), or positive dependence for short, if for any null index i ∈ H0 and arbitrary non-decreasing
set D ⊆ [0, 1]n, the function t 7→ P{P ∈ D | Pi ≤ t} is non-decreasing over t ∈ (0, 1].

This definition has been a common formulation of positive dependence in prior FDR works, e.g. (Benjamini and
Yekutieli, 2001; Blanchard and Roquain, 2008; Ramdas et al., 2019). Clearly, independent p-values satisfy PRDS.
A non-trivial example is given for Gaussian observations. Suppose P = (Φ(Z1), . . . ,Φ(Zn)), where (Z1, . . . , Zn)
is a multivariate Gaussian vector with covariance matrix Σ. Then, P satisfies PRDS if and only if Σi,j ≥ 0 for
all i ∈ H0 and j ∈ [n].

Now we are ready to define the FDP estimate of BatchPRDS
BH .

Definition 4. The BatchPRDS
BH procedure is any rule for assigning test levels αt such that

F̂DPBatchPRDS
BH

(t) =
∑
s≤t

αs
ns

ns +
∑
r<sRr

is controlled under α for all t ∈ N.

Below is an example update rule that satisfies Definition 4.

Algorithm 3 The BatchPRDS
BH algorithm

Input: FDR level α, non-negative sequence {γs}∞s=1 such that
∑∞
s=1 γs = 1.

Set α1 = γ1α;
for t = 1, 2, . . . do

Run the BH procedure under level αt on batch Pt;
Set αt+1 = α γt+1

nt+1
(nt+1 +

∑t
s=1Rs);

end

We state our main FDR guarantees for BatchPRDS
BH below. Our proof relies on a “super-uniformity lemma”,

similar to several lemmas in prior work that consider PRDS p-values (Blanchard and Roquain, 2008; Benjamini
and Yekutieli, 2001; Ramdas et al., 2019). We prove both this lemma and Theorem 3 later in the Appendix.
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Theorem 3. Suppose that every batch of p-values Pt satisfies PRDS, and additionally that Pt,i and {Ps : s ∈ I}
are independent whenever t 6∈ I, for all i ∈ H0

t . Then, the BatchPRDS
BH procedure provides anytime FDR control:

for every t ∈ N, FDR(t) ≤ α.

In other words, BatchPRDS
BH ensures FDR control when p-values are independent across different batches, and

positively dependent within each batch. Theorem 3 is a generalization of an earlier result which states that the
BH algorithm controls FDR under PRDS Benjamini and Yekutieli (2001).

In online FDR control, handling dependence has generally proved challenging. Javanmard and Montanari (2018)
have proposed procedures which control the FDR under arbitrary dependence, however their updates imply an
essentially alpha-spending (online Bonferroni) type correction which controls a more stringent criterion called
the family-wise error rate (Gordon Lan and DeMets, 1983). Their earlier algorithm called LOND Javanmard
and Montanari (2015) was recently proved to control the FDR under PRDS Zrnic et al. (2018), and is a more
powerful alternative for the fully online setting than the arbitrary depenence procedure. Indeed, BatchPRDS

BH is
a minibatch generalization of the LOND algorithm. Finally, it is worth pointing out that the notion of positive
dependence we consider in this paper resembles local dependence proposed by Zrnic et al. (2018), although their
solutions only control modified FDR (mFDR).

2 EMPIRICAL FDP ESTIMATES IN PRIOR WORK

We give a brief overview of BH and Storey-BH, and we do so in the FDP estimation spirit of Section 2. These
derivations were first stated by Storey (2002). Let P = {P1, . . . , Pn} be a set of tested p-values, and α be the
target FDR level. For any threshold c, Storey defined

F̂DPBH : =
nc∑n

i=1 1 {Pi ≤ c}
.

Picking the maximum c such that F̂DPBH ≤ α, and rejecting all p-values less than such c, is a succinct statement
of the BH procedure. This is a rederivation of the equivalent rule given by Benjamini and Hochberg, who
suggested finding

k∗ = max
{
i ∈ [n] : P(i) ≤

α

n
i
}
,

where P(i) denotes the i-th order statistic of P in non-decreasing order, and rejecting P(1), . . . , P(k∗). This
interpretation inspired Storey to improve upon the BH procedure by defining

F̂DPSt-BH : =
nsπ̂0∑n

i=1 1 {Pi ≤ c}
,

where π̂0 =
1+

∑n
i=1 1{Pi>λ}
n(1−λ) , for a user-chosen parameter λ ∈ (0, 1). Storey-BH finds the maximum c such that

F̂DPSt-BH ≤ α, and rejects all p-values less than such c. The motivation for using Storey-BH is the observation
that BH might be overly conservative when there are many non-nulls with a strong signal, because it essentially
assumes that π̂0 ≈ 1, where π̂0 acts as an estimate of the proportion of nulls in the p-value set.

The FDP estimate approach was also taken in more recent, online FDR work (Ramdas et al., 2017, 2018; Zrnic
et al., 2018; Tian and Ramdas, 2019). It started with Ramdas et al. (2017) who rederived and improved upon
the LORD algorithm (Javanmard and Montanari, 2018) by noticing that it implicitly controls

F̂DPLORD(t) =

∑t
j=1 αj∑t

i=1 1 {Pi ≤ αi}
,

where Pi is a single p-value observed at time i, and αi is its corresponding test level. Inspired by Storey’s idea of
making the BH procedure less conservative, the SAFFRON algorithm was derived as a rule for controlling the
estimate

F̂DPSAFFRON(t) =

∑t
j=1

αj

1−λj
1 {Pj > λj}∑t

i=1 1 {Pi ≤ αi}
,

for some sequence of user-chosen parameters {λt}. Several different update rules for αt have been proposed for
LORD and SAFFRON, all of which control the respective FDP estimates under the target FDR level α; for
more details, see the respective papers (Javanmard and Montanari, 2018; Ramdas et al., 2018).



Tijana Zrnic, Daniel L. Jiang, Aaditya Ramdas, Michael I. Jordan

Since the original SAFFRON FDP estimate, as stated above, is written in a slightly different, albeit equivalent
form to that of Section 4, we point out a subtle difference in the meaning of “αs” for Storey-BH and SAFFRON.
For SAFFRON, αs denotes the decision threshold for Ps,1, while in the batch setting, αs is the Storey-BH level.
If Storey-BH is applied to a single p-value under level αs, then it is rejected if and only if Ps,1 ≤ (1 − λs)αs.
This difference should be kept in mind when comparing F̂DPBatchSt-BH

(t) to the usual form of F̂DPSAFFRON(t).

3 PROOF OF Theorem 1

First we introduce some additional notation necessary to state the proof. Let P
(−i)
s,1 , . . . , P

(−i)
s,ns be a sequence of

p-values that is identical to Ps,1, . . . , Ps,ns
, except for P

(−i)
s,i , which is set to 0. Let also R

(−i)
s denote the number

of rejections had BH under level αs been run on P
(−i)
s,1 , . . . , P

(−i)
s,ns .

Fix the number of tested batches t, and suppose F̂DPBatchBH
(t) ≤ α. We prove that this implies FDR(t) ≤ α.

Starting by definition,

FDR(t) = E

[∑
r≤t |Rr ∩H0

r |
1 ∨

∑
s≤tRs

]

=
∑
r≤t

∑
i∈H0

r

E

1
{
Pr,i ≤ αr

nr
Rr

}
1 ∨

∑
s≤tRs


=
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nr
Rr

}
R

(−i)
r +

∑
s≤t,s6=r Rs

 ,
where the second equality follows by definition of the BH procedure and the third equality follows by observing

that, on the event {Pr,i ≤ αr

nr
Rr}, Rr = R

(−i)
r .

Now we focus on a fixed index i ∈ H0
r , for a fixed batch r. Imagine a sequence of batches of p-values identical

to the original one, only with Pr,i deterministically set to 0. Denote the set of rejections in batch s ∈ N in this

slightly modified sequence by R̃
(−r,i)
s . Notice that Rs = R̃

(−r,i)
s for all s < r, and for s ≥ r we have Rs = R̃

(−r,i)
s

if Pr,i from the original sequence is rejected. Therefore, on the event {Pr,i ≤ αr

nr
Rr}, R̃(−r,i)

s = Rs for all s ∈ N.
This implies

FDR(t) =
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nr
Rr

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s


≤
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nr
R

(−i)
r

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

 ,
where the final inequality uses the fact that R

(−i)
r ≥ Rr. Conditional on Fr−1, Pr,i is independent of all other

random variables in the final term, namely αr, R
(−i)
r and R̃

(−r,i)
s , s ∈ [t], s 6= r. This allows us to exploit the

super-uniformity of Pr,i to obtain

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

E
 1

{
Pr,i ≤ αr

nr
R

(−i)
r

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

∣∣∣∣∣∣ Fr−1, R(−i)
r


=
∑
r≤t

∑
i∈H0

r

E

[
E
[
1

{
Pr,i ≤

αr
nr
R(−i)
r

} ∣∣∣∣ Fr−1, R(−i)
r

]
E

[
1

R
(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

∣∣∣∣∣ Fr−1, R(−i)
r

]]

=
∑
r≤t

∑
i∈H0

r

E

[
αr
nr

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

]
.
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Since the update rule for αr is monotone by assumption, we have

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

[
αr
nr

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r Rs

]
.

Finally, we use the fact that the function f(x) = x
x+a is a non-decreasing function for a ≥ 0 to conclude

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

[
αr
nr

R+
r

R+
r +

∑
s≤t,s6=r Rs

]

≤
∑
r≤t

E

[
αr

R+
r

R+
r +

∑
s≤t,s6=r Rs

]

= E
[
F̂DPBatchBH

]
≤ α,

where the last inequality is deterministic, by design of the algorithm. This concludes the proof.

4 PROOF OF Theorem 2

As in the proof of Theorem 1, we introduce some additional notation necessary to state the proof. Recall that
the Storey-BH procedure uses a null proportion estimate of the form

π̂0,s =
1 +

∑ns

j=1 Ps,j

ns(1− λs)
.

Let P
(−i)
s,1 , . . . , P

(−i)
s,ns be a sequence of p-values that is identical to Ps,1, . . . , Ps,ns

, except for P
(−i)
s,i , which is set

to 0. Let also R
(−i)
s denote the number of rejections had Storey-BH under level αs been run on P

(−i)
s,1 , . . . , P

(−i)
s,ns .

With this, define the “hallucinated” null proportion as

π̂
(−i)
0,s =

1 +
∑ns

j=1 P
(−i)
s,j

ns(1− λs)
.

Fix the number of tested batches t, and suppose F̂DPBatchSt-BH
(t) ≤ α. We prove that this condition implies

FDR(t) ≤ α. Starting by definition,

FDR(t) = E

[∑
r≤t |Rr ∩H0

r |
1 ∨

∑
s≤tRs

]

=
∑
r≤t

∑
i∈H0

r

E

1
{
Pr,i ≤ αr

π̂0,rnr
Rr

}
1 ∨

∑
s≤tRs


=
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

π̂0,rnr
Rr

}
R

(−i)
r +

∑
s≤t,s6=r Rs

 ,
where the second equality follows by definition of the Storey-BH procedure and the third equality follows by

observing that, on the event {Pr,i ≤ αr

nrπ̂0,r
Rr}, Rr = R

(−i)
r .

Now we focus on a fixed i ∈ H0
r , for a fixed batch r. Imagine a sequence of batches of p-values identical to the

original one, only with Pr,i deterministically set to 0. Denote the set of rejections in batch s ∈ N in this slightly

modified sequence by R̃
(−r,i)
s . Notice that Rs = R̃

(−r,i)
s for all s < r, and for s ≥ r we have Rs = R̃

(−r,i)
s if Pr,i
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from the original sequence in rejected. Therefore, on the event {Pr,i ≤ αr

nrπ̂0,r
Rr}, R̃(−r,i)

s = Rs for all s ∈ N.

This implies

FDR(t) =
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nrπ̂0,r
Rr

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s



≤
∑
r≤t

∑
i∈H0

r

E

 1

{
Pr,i ≤ αr

nrπ̂
(−i)
0,r

R
(−i)
r

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

 ,
where the final inequality uses the fact that R

(−i)
r ≥ Rr and π̂0,r ≥ π̂

(−i)
0,r . Note that Pr,i is independent of all

other random variables in the final term, namely αr, R
(−i)
r , π̂

(−i)
0,r and R̃s, s ∈ [t], s 6= r. This allows us to exploit

the super-uniformity of Pr,i to obtain

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

E
 1

{
Pr,i ≤ αr

nrπ̂
(−i)
0,r

R
(−i)
r

}
R

(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

∣∣∣∣∣∣∣∣ F
r−1, R(i)

r , π̂
(−i)
0,r




=
∑
r≤t

∑
i∈H0

r

E

[
E

[
1

{
Pr,i ≤

αr

nrπ̂
(−i)
0,r

R(−i)
r

} ∣∣∣∣∣ Fr−1, R(i)
r , π̂

(−i)
0,r

]
E

[
1

R
(i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

∣∣∣∣∣ Fr−1, R(−i)
r , π̂

(−i)
0,r

]]

=
∑
r≤t

∑
i∈H0

r

E

[
αr

nrπ̂
(−i)
0,r

R
(i)
r

R
(−i)
r +

∑
s≤t,s6=r R̃

(−r,i)
s

]
.

Since the update for αr is monotone, and since setting a p-value to 0 can only increase the number of rejections
in a given batch, we have

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

[
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r Rs

]
.

Now we use a similar trick of ignoring one p-value as given above. Imagine a sequence of p-values identical to
the original one, however with Pr,i deterministically set to 1. Denote the set of rejections in batch s ∈ N in

this modified sequence by R̃
(+r,i)
s . We have Rs = R

(+r,i)
s for s < r, and the same holds for s ≥ r on the event

{Pr,i > λr}. From this, we can conclude the following

E

[
1 {Pr,i > λr}

(1− λr)
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=lRs

]
= E

[
1 {Pr,i > λr}

(1− λr)
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r R̃

(+r,i)
s

]

= E
[

1 {Pr,i > λr}
(1− λr)

]
E

[
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r R̃

(+r,i)
s

]

≥ E

[
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r R̃

(+r,i)
s

]

≥ E

[
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r Rs

]
,

where the first inequality uses super-uniformity of null p-values, and the second inequality uses monotonicity of
the test level update rule. Therefore, we can write

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

[
1 {Pr,i > λr}

(1− λr)
αr

nrπ̂
(−i)
0,r

R
(−i)
r

R
(−i)
r +

∑
s≤t,s6=r Rs

]
.
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Finally, we use the fact that the function f(x) = x
x+a is a non-decreasing function for a ≥ 0 to conclude

FDR(t) ≤
∑
r≤t

∑
i∈H0

r

E

[
1 {Pr,i > λr}

(1− λr)
αr

nr minj π̂
(−j)
0,r

R+
r

R+
r +

∑
s≤t,s6=r Rs

]

≤
∑
r≤t

E

[
αrkrR

+
r

R+
r +

∑
s≤t,s6=r Rs

]

= E
[
F̂DPBatchSt-BH

]
≤ α,

where once again the last inequality is deterministic by design of the algorithm, thus completing the proof of the
theorem.

5 BatchPRDS
BH PROOFS

To facilitate the proof of FDR control, we prove a a “super-uniformity lemma”, similar to several lemmas in
prior work that consider PRDS p-values (Blanchard and Roquain, 2008; Benjamini and Yekutieli, 2001; Ramdas
et al., 2019).

Lemma 1. Let U ∈ [0, 1] and V ∈ N ∪ {0} be random variables that satisfy the following:

• U is super-uniform, i.e. P{U ≤ u} ≤ u for u ∈ [0, 1].

• P{V ≤ r | U ≤ u} is non-decreasing in u, for every fixed r > 0.

• V ≤ n almost surely.

Then, for every a ≥ 0, c > 0, E
[
1{U≤cV }
V+a

]
≤ cn

n+a .

Proof. The proof when a = 0 is given by Blanchard and Roquain (2008) (Lemma 3.2), so in what follows we
assume a > 0.

We expand the expectation as follows:

E
[

1 {U ≤ cV }
V + a

]
=

n∑
i=0

1

i+ a
P{U ≤ ci, V = i}

=

n∑
i=0

P{U ≤ ci}
i+ a

P{U ≤ ci, V = i}
P{U ≤ ci}

≤
n∑
i=0

ci

i+ a
P{V = i | U ≤ ci}

=

n∑
i=0

ci

i+ a
(P{V ≤ i | U ≤ ci} − P{V ≤ i− 1 | U ≤ ci})

=
cn

n+ a

n∑
i=0

(P{V ≤ i | U ≤ ci} − P{V ≤ i− 1 | U ≤ ci}) ,

where the inequality follows by the super-uniformity assumption on U . By the second assumption of the lemma,
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P{V ≤ i− 1 | U ≤ ci} ≥ P{V ≤ i− 1 | U ≤ c(i− 1)}, hence

cn

n+ a

n∑
i=0

(P{V ≤ i | U ≤ ci} − P{V ≤ i− 1 | U ≤ ci})

≤ cn

n+ a

n∑
i=0

(P{V ≤ i | U ≤ ci} − P{V ≤ i− 1 | U ≤ c(i− 1)})

≤ cn

n+ a
,

which follows by a telescoping sum argument.

5.1 Proof of Theorem 3

Fix the number of tested batches t, and suppose F̂DPBatchPRDS
BH

(t) ≤ α. We prove that this implies FDR(t) ≤ α.
Starting by definition,

FDR(t) = E

[∑
r≤t |Rr ∩H0

r |
1 ∨

∑
s≤tRs

]

=
∑
r≤t

∑
i∈H0

r

E

1
{
Pr,i ≤ αr

nr
Rr

}
1 ∨

∑
s≤tRs


≤
∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nr
Rr

}
1 ∨ (Rr +

∑
s<r Rs)

 ,
where the second equality follows by definition of the BH procedure and the inequality follows by ignoring all
rejections in the denominator after the r-th batch.

We now condition on Fr−1 to obtain

∑
r≤t

∑
i∈H0

r

E

 1
{
Pr,i ≤ αr

nr
Rr

}
1 ∨ (Rr +

∑
s<r Rs)

 =
∑
r≤t

∑
i∈H0

r

E

E
 1

{
Pr,i ≤ αr

nr
Rr

}
1 ∨ (Rr +

∑
s<r Rs)

∣∣∣∣∣∣ Fr−1


≤
∑
r≤t

∑
i∈H0

r

E
[ αr

nr
nr

1 ∨ (nr +
∑
s<r Rs)

]

=
∑
r≤t

E
[

nrαr
1 ∨ (nr +

∑
s<r Rs)

]
,

where the inequality applies Lemma 1 and the fact that αr and {Rs, s < r} are measurable with respect to the
conditioning, and the final equality uses the fact that |H0

r | ≤ nr.

Since the final expression is equal to E
[
F̂DPBatchPRDS

BH

]
, we can conclude that

FDR(t) ≤ E
[
F̂DPBatchPRDS

BH

]
≤ α,

as desired.
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6 PROOF OF Fact 1

The control of the estimate follows by observing

F̂DPBatchBH(t+ 1) ≤
∑
s≤t

αs
R+
s

R+
s +

∑
r≤t+1,r 6=sRr

+ αt+1
nt+1

nt+1 +
∑
r≤tRr

=
∑
s≤t

γsα−
∑
s≤t

αs
R+
s

R+
s +

∑
r≤t,r 6=sRr

+
∑
s≤t

αs
R+
s

R+
s +

∑
r≤t+1,r 6=sRr

≤ α,

where the second step follows by replacing αt+1 with the update rule from Algorithm 1, and the final inequality
follows by the assumption that

∑∞
j=1 γj = 1.

7 DETECTING CREDIT CARD FRAUD

We apply our algorithms to real credit card transaction data. Credit card companies test for whether transactions
are fraudulent; if the transactions are deemed to be fraudulent, they are denied. However, it is important to
control the proportion of transactions that are falsely identified as fraudulent, as these false identifications
inconvenience users by declining legitimate transactions. Note that major credit card companies generally have
thousands of transactions per second, so testing for fraud in batches would incur no delay in their processing.

We use a dataset released by the Machine Learning Group of Université Libre de Bruxelles for a Kaggle com-
petition1(Dal Pozzolo et al., 2015). The dataset comprises 492 fraudulent transactions and 284,315 legitimate
transactions. For each transaction, the null hypothesis is that the transaction is not fraudulent, which means
that the proportion of non-nulls π1 is approximately 0.173%. Such asymmetry between the proportion of nulls
and non-nulls is typical in applications of FDR methods.

Each transaction in the dataset has 28 principal component analysis (PCA) features, the monetary value of the
transaction, and a binary label indicating whether the transaction is fraudulent. The PCA features are provided
instead of the original features for confidentiality. For each transaction i, let yi ∈ {0, 1} denote whether the
transaction is fraudulent (yi = 1 denotes a fraudulent transaction) and let xi ∈ R29 denote the vector of the
transaction’s PCA features and monetary value.

In a similar fashion to Javanmard and Montanari (2018), we randomly partition the transactions into the subsets
Train1 (60% of the transactions), Train2 (20% of the transactions), and Test (20% of the transactions). We use
the training set to learn the null distribution for the purpose of generating p-values, and compare different
hypothesis testing procedures on the p-values of the test subset. We fit a logistic regression model to Train1. In
particular, for i in Train1, we model the probability that transaction i is fraudulent as

P{Yi = 1|Xi = xi} = σ(θTxi),

where σ(x) = 1
1+e−x .

For each i in Train2 and each j in Test, we compute qi = σ(θTxi) and qTestj = σ(θTxj). Let T0 denote the subset
of Train2 that are non-fraudulent transactions. We construct the p-value Pj as

Pj =
1

n0
|{i ∈ T0 : qi > qTestj }|.

We set α = 0.1 and we set all other hyperparameters the same way as in previous experiments. We use 100
random splits of the transactions into Train1, Train2, and Test in order to compute the average and one standard
deviation around the average of power and FDR.

For both the non-adaptive and the adaptive methods, we observe higher power for online batch procedures than
for standard online procedures, across several batch sizes of different orders of magnitude. Our findings are
summarized in Table 1 and Table 2. However, as observed in experiments on synthetic data as well, we do not
observe a monotone relationship between batch size and power.

1https://www.kaggle.com/mlg-ulb/creditcardfraud
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Table 1: Non-Adaptive Algorithms on Real Data

Power FDR

BatchBH (101-size) 0.242 ± 0.053 0.126 ± 0.075
BatchBH (102-size) 0.299 ± 0.100 0.102 ± 0.067
BatchBH (103-size) 0.260 ± 0.086 0.082 ± 0.064
LORD 0.231 ± 0.051 0.082 ± 0.067

Table 2: Adaptive Algorithms on Real Data

Power FDR

BatchSt-BH (101-size) 0.240 ± 0.052 0.125 ± 0.081
BatchSt-BH (102-size) 0.291 ± 0.098 0.096 ± 0.065
BatchSt-BH (103-size) 0.246 ± 0.075 0.074 ± 0.063
SAFFRON 0.211 ± 0.041 0.137 ± 0.086

8 ADDITIONAL MONOTONE UPDATE RULES

In this section we provide several monotone updates for BatchBH and BatchSt-BH, which control the FDR for
arbitrary, possibly adversarially chosen p-value distributions.

8.1 BatchBH Rules

Algorithm 4 One version of the BatchBH algorithm

input: FDR level α, non-increasing sequence {γt}∞t=1 summing to 1, initial wealth W0 ≤ α
Set α1 = γ1

W0

n1

for t = 1, 2, . . . do
Run the BH procedure under level αt on batch Pt

Set αt+1 = γt+1
W0

nt+1
+ α

nt+1

∑t
s=1 γt+1−sRs − W0

nt+1

∑t
s=1 γt+1−s1 {s = τ1},

where τ1 = min{s ≥ 1 : Rs > 0}
end

Fact 2. The algorithm given in Algorithm 4 is monotone and guarantees F̂DPBatchBH
(t) ≤ α.

Proof. First we prove that the algorithm guarantees F̂DPBatchBH(t) ≤ α. Starting by definition, we have

F̂DPBatchBH
(t) =

t∑
j=1

αj
R+
j

R+
j +

∑
k≤t,k 6=j Rk

≤
t∑

j=1

αj
nj

nj +
∑
k≤t,k 6=j Rk

≤
∑t
j=1 αjnj

1 ∨
∑t
k=1Rk

=
W0

∑t
j=1 γj + α

∑t
j=1

∑j−1
l=1 γj−lRl −W0

∑t
j=1

∑j−1
l=1 γj−l1 {l = τ1}

1 ∨
∑t
k=1Rk

=
W0

∑t
j=1 γj + α

∑t
j=1

∑j−1
l=1 γj−lRl −W0

∑t
j=τ1+1 γj−τ1

1 ∨
∑t
k=1Rk

,
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where the first inequality follows because R+
j ≤ nj , the second inequality follows because nj ≥ Rj ∨1, the second

equality follows by the definition of αj , as given in Algorithm 4, and the third equality is obtained by removing
the summation terms where l 6= τ1.

If t < τ1, then R1 = R2 = · · · = Rt = 0 by the definition of τ1, so the bound above evaluates to W0

∑t
j=1 γj ≤

W0 ≤ α, which is the desired conclusion. Thus, for the remainder of the proof, we assume that t ≥ τ1.

Since Ri = 0 for i < τ1, we can remove such terms from consideration, leaving us with

F̂DPBatchBH
(t) ≤

W0

∑t
j=1 γj + α

∑t
j=τ1+1

∑j−1
l=τ1

γj−lRl −W0

∑t
j=τ1+1 γj−τ1∑t

k=τ1
Rk

=
W0

∑t
j=1 γj + α

∑t
j=τ1+2

∑j−1
l=τ1+1 γj−lRl + (αRτ1 −W0)

∑t
j=τ1+1 γj−τ1∑t

k=τ1
Rk

.

Since {γt}∞t=1 is defined to be a non-negative sequence summing to 1, then W0

∑t
j=1 γj ≤ W0 and (αRτ1 −

W0)
∑t
j=τ1+1 γj−τ1 ≤ αRτ1 −W0. We apply this observation to obtain

F̂DPBatchBH
(t) ≤ α

Rτ1 +
∑t
j=τ1+2

∑j−1
l=τ1+1 γj−lRl∑t

k=τ1
Rk

≤ α
Rτ1 +

∑t−1
l=τ1+1Rl∑t

k=τ1
Rk

≤ α,

where we again use the fact that the sequence {γt}∞t=1 sums to one. The final inequality concludes the proof that

F̂DPBatchBH(t) is controlled.

We now prove that the update rule is monotone. We restate the test level update rule in a more convenient
form:

αt+1 = γt+1
W0

nt+1
+

1

nt+1

t∑
j=1

γt+1−j(αRj −W01 {j = τ1}). (1)

Suppose we have two sequences of p-values (P1,1, P1,2, . . . , Pt,nt
) and (P̃1,1, P̃1,2, . . . , P̃t,nt

) such that

(P1,1, P1,2, . . . , Pt,nt) ≤ (P̃1,1, P̃1,2, . . . , P̃t,nt) coordinate-wise. Denote all relevant BatchBH quantities on these
two sequences using a similar notation.

If αt ≥ α̃t, then Rt ≥ R̃t by the definition of the BH procedure. The final observation is that the above update
is monotonically increasing in (R1, R2, . . . , Rt), which concludes the proof.

If we know that all batches are of size at least M , we can also derive the following rule which is expected to be
more powerful than the one above, when the batch sizes do not vary too much. Moreover, when all batches are
of the same size nj ≡M , the rule is strictly more powerful.

Algorithm 5 One version of the BatchBH algorithm when ns ≥M for all s

input: FDR level α, non-increasing sequence {γt}∞t=1 summing to 1, initial wealth W0 ≤ α
Set α1 = γ1

M
n1
α

for t = 1, 2, . . . do
Run the BH procedure under level αt on batch Pt

Set αt+1 = γt+1
M
nt+1

α+ α
nt+1

∑t
s=1 γt+1−sR

add
s , where Radd

s = min{Rs,max{Rr : r < s}}
end

Fact 3. If ns ≥M for all s ∈ N, the algorithm given in Algorithm 5 is monotone and guarantees F̂DPBatchBH(t) ≤
α.
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Proof. We first prove that the algorithm guarantees F̂DPBatchBH(t) ≤ α. Starting by definition, we have

F̂DPBatchBH
(t) =

t∑
j=1

αj
R+
j

R+
j +

∑
k≤t,k 6=j Rk

≤
t∑

j=1

αj
nj

nj +
∑
k≤t,k 6=j Rk

≤
t∑

j=1

αj
nj

M +
∑
k≤t,k 6=j Rk

≤
∑t
j=1 αjnj

M + mini
∑
k≤t,k 6=iRk

,

where the first inequality follows because R+
j ≤ nj and second inequality follows by the assumption that nj ≥M

for all j. Substituting in the update rule from Algorithm 5, we obtain

F̂DPBatchBH(t) ≤ α
M
∑t
j=1 γj +

∑t
j=1

∑j−1
l=1 γj−lR

add
l

M + mini
∑
k≤t,k 6=iRk

≤ α
M +

∑t−1
l=1 R

add
l

M + mini
∑
k≤t,k 6=iRk

,

where we use the fact that the sequence {γt}∞t=1 is defined to be non-negative and summing to one. Since∑t−1
l=1 R

add
l = mini

∑
k<t,k 6=iRk by the definition of Radd

l , we can conclude F̂DPBatchBH(t) ≤ α, as desired.

Monotonicity follows by the same steps as in the proof of Fact 2, thus completing the proof.

Below we give one more monotone BatchBH update, based on a different idea.

Algorithm 6 One version of the BatchBH algorithm

input: FDR level α, sequence {γt}∞t=1 summing to 1 such that γ2 ≥ γ1
Set α1 = γ1α
Run the BH procedure under level α1 on batch P1

Set α2 = (γ2α− α1)R1+n2

n2

for t = 2, 3, . . . do
Run the BH procedure under level αt on batch Pt

Set αt+1 =

(
Rt(

∑t−1
i=1 αini)

(
∑t−1

j=1 nj)(
∑t−1

k=1 nk+Rt)
+ γt+1α

) ∑t
l=1 Rl+nt+1

nt+1

end

Fact 4. The update given in Algorithm 6 controls F̂DPBatchBH and is monotone.

Proof. First we use induction to prove that for every t ∈ N the update controls
∑t
i=1 αi

ni

ni+
∑

j<t,j 6=i Rj
under∑t

i=1 γiα. Then, since
∑t
i=1 αi

ni

ni+
∑

j<t,j 6=i Rj
≥
∑t
i=1 αi

R+
i

R+
i +

∑
j<t,j 6=i Rj

≥ F̂DPBatchBH
(t), the first claim in the

fact immediately follows.

This statement is clearly true for the two special cases when t ∈ {1, 2}, and now assume
∑t
i=1 αi

ni

ni+
∑

j<t,j 6=i Rj
≤∑t

i=1 γiα.

We can write

Rt

(∑t−1
i=1 αini

)
(
∑t−1
j=1 nj)(

∑t−1
k=1 nk +Rt)

=

t−1∑
i=1

αi

(
ni∑t−1
j=1 nj

− ni∑t−1
k=1 nk +Rt

)
. (2)

We use this to rewrite
∑t+1
i=1 αi

ni

ni+
∑

j<t+1,j 6=i Rj
as

t+1∑
i=1

αi
ni

ni +
∑
j<t+1,j 6=iRj

=

t∑
i=1

αi
ni

ni +
∑
j≤t,j 6=iRj

+

t−1∑
i=1

αi

(
ni∑t−1
j=1 nj

− ni∑t−1
k=1 nk +Rt

)
+ γt+1α,
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where we apply the test level update given in Algorithm 6. Further, we have

t+1∑
i=1

αi
ni

ni +
∑
j<t+1,j 6=iRj

≤
t∑
i=1

αi
ni

ni +
∑
j≤t,j 6=iRj

+

t−1∑
i=1

αi

(
ni

ni +
∑
j≤t−1,j 6=iRj

− ni
ni +

∑
k≤t,k 6=iRk

)
+ γt+1α

=

t∑
i=1

αi
ni

ni +
∑
j<t,j 6=iRj

+ γt+1α

≤
t+1∑
i=1

γiα,

where the last step follows by the induction hypothesis. This completes the proof that F̂DPBatchBH
is controlled.

Monotonicity now follows by observing that the test levels updates are increasing in the rejection counts Ri,
as well as previous test levels. The only exception is α2 which is decreasing in α1, however because α1 is
non-random, this does not hurt monotonicity.

8.2 BatchSt-BH Rules

Algorithm 7 One version of the BatchSt-BH algorithm

input: FDR level α, sequence of constants {λt}∞t=1, non-increasing sequences {γt}∞t=1 and {γ′t}∞t=1 summing to
1, initial wealth W0 ≤ α

Set α1 = γ1
W0

n1

for t = 1, 2, . . . do
Run the Storey-BH procedure under level αt with parameter λt on batch Pt

Set αt+1 = 1
nt+1

(
γt+1W0 + α

∑t
s=1 γt+1−sRs −W0

∑t
s=1 γt+1−s1 {s = τ1}+

∑t
s=1 γ

′
t+1−s(1− ks)nsαs

)
,

where τ1 = min{s ≥ 1 : Rs > 0}
end

Below we prove that the update rule of Algorithm 7 is monotone and satisfies Definition 2.

Fact 5. The algorithm given in Algorithm 7 is monotone and guarantees F̂DPBatchSt-BH(t) ≤ α.

Proof. First we prove that the algorithm guarantees F̂DPBatchSt-BH
(t) ≤ α.

It is not hard to see that F̂DPBatchSt-BH
(t) ≤

∑t
j=1 njαjkj

1∨
∑t

j=1 Rj
. Therefore, it suffices to prove

∑t
j=1 njαjkj ≤ α(1 ∨∑t

j=1Rj) for all t.

For all t, define s(t) : = γtW0 +α
∑t−1
j=1 γt−jRj −W0

∑t−1
j=1 γt−j1 {j = τ1}. With this, the test levels are equal to

ntαt = s(t) +
∑t−1
j=1 γ

′
t−j(1− kj)njαj . In Fact 2 we have proved that

∑t
j=1 s(j) ≤ α(1 ∨

∑t
j=1Rj), so it suffices

to prove
∑t
j=1 njαjkj ≤

∑t
j=1 s(j). We do so by peeling terms off one by one:

t∑
j=1

njαjkj ≤
t−1∑
j=1

njαjkj + ntαt

=

t−1∑
j=1

njαjkj + s(t) +

t−1∑
j=1

γ′t−j(1− kj)njαj

≤
t−2∑
j=1

njαjkj + s(t) +

t−2∑
j=1

γ′t−j(1− kj)njαj + nt−1αt−1.
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By repeating a similar argument recursively we obtain

t∑
j=1

njαjkj ≤
t∑

j=1

s(j).

Invoking Fact 2 now completes the proof that F̂DPBatchSt-BH
(t) ≤ α for all t ∈ N.

Now we prove that the update rule is additionally monotone. Take two sequences of p-values such that
(P1,1, P1,2, . . . , Pt,nt

) ≥ (P̃1,1, P̃1,2, . . . , P̃t,nt
) coordinate-wise. Denote all relevant BatchSt-BH quantities on these

two sequences using a similar notation, for example we distinguish between ki on (P1,1, P1,2, . . . , Pt,nt
) and k̃i on

(P̃1,1, P̃1,2, . . . , P̃t,nt
).

The first observation is that k̃i ≤ ki, for all i ∈ [t]. This follows because 1
{
P̃i,j > λi

}
≤ 1 {Pi,j > λi} and

1
{
P̃i,m̃axi > λi

}
≤ 1 {Pi,maxi > λi}, so

k̃i =

∑ni

j=1 1
{
P̃i,j > λi

}
1 +

∑ni

j=1 1
{
P̃i,j > λi

}
− 1

{
P̃i,m̃axi

> λi

} ≤ ∑ni

j=1 1 {Pi,j > λi}
1 +

∑ni

j=1 1 {Pi,j > λi} − 1 {Pi,maxi
> λi}

= ki.

The rest of the proof follows by combining the monotonicity proof in Fact 2 and the fact that the update for αt
is non-increasing in (k1, . . . , kt−1).

As for the BatchBH family of algorithms, we also propose a rule with provable guarantees when nj ≥M for all j,
which is expected to be more powerful when the batch sizes are roughly of the same order; moreover, if nj ≡M ,
the rule is strictly more powerful than the one above.

Algorithm 8 One version of the BatchSt-BH algorithm when ns ≥M for all s

input: FDR level α, non-increasing sequences {γt}∞t=1 and {γ′t}∞t=1 summing to one
Set α1 = γ1

M
n1
α

for t = 1, 2, . . . do
Run the Storey-BH procedure under level αt with parameter λt on batch Pt

Set αt+1 = M
nt+1

γt+1α+ α
nt+1

∑t
s=1 γt+1−sR

add
s + 1

nt+1

∑t
s=1 γ

′
t+1−s(1− ks)nsαs,

where Radd
s = min{Rs,max{Rr : r < s}}

end

Fact 6. The algorithm given in Algorithm 8 is monotone and guarantees F̂DPBatchSt-BH(t) ≤ α.

Proof. First we prove that it guarantees F̂DPBatchSt-BH(t) ≤ α.

It is not hard to see that F̂DPBatchSt-BH
(t) ≤

∑t
j=1 njαjkj

M+
∑t

j=1 R
add
j

(recall that Radd
1 = 0 by definition). Therefore, it

suffices to prove
∑t
j=1 njαjkj ≤ α(M +

∑t
j=1R

add
j ).

If we denote s(t) : = Mγtα+ α
∑t−1
j=1 γt−jR

add
j , by the same argument as in Fact 5 we can conclude that

t∑
j=1

njαjkj ≤
t∑

j=1

s(j).

Following the steps of Fact 3, we can also show that
∑t
j=1 s(j) ≤ α(M +

∑t
j=1R

add
j ), which completes the proof

that F̂DPBatchSt-BH
(t) ≤ α for all t ∈ N.

The proof that the update rule is additionally monotone combines the monotonicity proofs of Fact 3 and Fact 5.



Tijana Zrnic, Daniel L. Jiang, Aaditya Ramdas, Michael I. Jordan

9 POWER AND FDR IN NUMERICAL EXPERIMENTS AGAINST TIME

For the experiments presented in Section 5, we plot the power and FDR as functions of time, for π1 ∈ {0.1, 0.5}.
We observe both power and FDR to be stable across time for our default algorithms.

Figure 10: Statistical power and FDR versus number of hypotheses seen t for BatchBH (at batch sizes 10, 100,
and 1000) and LORD. We choose the probability of a non-null hypothesis to be π1 = 0.1 (left) and π1 = 0.5
(right). The observations under the null are N(0, 1), and the observations under the alternative are N(3, 1).

Figure 11: Statistical power and FDR versus number of hypotheses seen t for BatchSt-BH (at batch sizes 10, 100,
and 1000) and SAFFRON. We choose the probability of a non-null hypothesis to be π1 = 0.1 (left) and π1 = 0.5
(right). The observations under the null are N(0, 1), and the observations under the alternative are N(3, 1).

Figure 12: Statistical power and FDR versus number of hypotheses seen t for BatchBH (at batch sizes 10, 100,
and 1000) and LORD. We choose the probability of a non-null hypothesis to be π1 = 0.1 (left) and π1 = 0.5
(right). The observations under the null are N(0, 1), and the observations under the alternative are N(µ1, 1)
where µ1 ∼ N(0, 2 log T ).

Additionally, in Figure 14 we plot R+
t − Rt for a single trial of BatchBH and the first experimental setting of

constant Gaussian means, at π1 = 0.1. We observe similar behavior for BatchSt-BH and other problem parameters



Tijana Zrnic, Daniel L. Jiang, Aaditya Ramdas, Michael I. Jordan

Figure 13: Statistical power and FDR versus number of hypotheses seen t for BatchSt-BH (at batch sizes 10, 100,
and 1000) and SAFFRON. We choose the probability of a non-null hypothesis to be π1 = 0.1 (left) and π1 = 0.5
(right). The observations under the null are N(0, 1), and the observations under the alternative are N(µ1, 1)
where µ1 ∼ N(0, 2 log T ).

as well. This experiment shows that R+
t − Rt highly concentrates around the value 1, and in our experiments

is no larger than 4. Hence, when designing new practical algorithms, it is a reasonable heuristic to assume
R+
t = Rt + 1.

Figure 14: R+
t − Rt versus batch index t for BatchBH, at batch sizes 10 (left), 100 (middle) and 1000 (right).

We choose the probability of a non-null hypothesis to be π1 = 0.1. The observations under the null are N(0, 1),
and the observations under the alternative are N(3, 1).

10 MONOTONICITY IN NUMERICAL EXPERIMENTS

We verify numerically that BatchBH and BatchSt-BH are monotone with high probability, as required by Theo-
rem 1 and Theorem 2. Although this is a heuristic way to justify the FDR control of our procedures, we found
that both BatchBH and BatchSt-BH exhibit monotonicity with high probability, as well as FDR control, across
various problem settings.

For a given p-value sequence, we first run either BatchBH (or BatchSt-BH) as usual. We then randomly pick a
batch i and set a random p-value in that batch to 0. Finally, we run BatchBH (or BatchSt-BH) again on the
modified p-value sequence and check whether the condition

∑t
j=i+1Rj ≤

∑t
j=i+1 R̃j holds, where R̃j is the

number of rejections in the j-th batch of the sequence in which the fixed p-value is set to 0. If we find that the
condition holds, then we deem BatchBH (or BatchSt-BH) to be monotone on the given p-value sequence.

We do this for every p-value sequence created in Section 5.1 and Section 5.2. This means that for each
of the experimental settings, we perform this monotonicity check on 500 p-value sequences for each π1 in
{0.01, 0.02, . . . , 0.09} ∪ {0.1, 0.2, . . . , 0.5}. For the experimental setting in Section 5.1, Figure 15 shows that
BatchBH is monotone on at least 97.4% of the sequences, and that BatchSt-BH is monotone on at least 96.6%
of the sequences. For the experimental setting in Section 5.2, Figure 16 shows that BatchBH is monotone on at
least 99.0% of the sequences, and that BatchSt-BH is monotone on at least 98.2% of the sequences.
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Figure 15: For BatchBH, the minimum is 97.4%. For BatchSt-BH, the minimum is 96.6%.

Figure 16: For BatchBH, the minimum is 99.0%. For BatchSt-BH, the minimum is 98.2%.

11 mFDR CONTROL OF THE BH PROCEDURE

Recall the definition of modified, or marginal, false discovery rate up to time t:

mFDR(t) =
E
[∑t

i=1 |H0
i ∩Ri|

]
E
[∑t

i=1 |Ri|
] .

As discussed in Section 6, mFDR is a desirable false discovery metric due to its composition properties; ensuring
mFDR control under level α in two disjoint batches of hypotheses guarantees mFDR at most α when the two
batches of results are merged. It is thus natural to analyze mFDR control of the BH procedure. Unfortunately,
it is not difficult to see that the BH algorithm does not imply mFDR control, although it does provide control
asymptotically (Genovese and Wasserman, 2002). Below we present a result of possibly independent interest,
which shows that mFDR can be upper bounded in terms of the stability of the number of rejections. Our result
implies favorable properties as the batch size tends to infinity, however it has been noted that the rejection set
might be highly unstable for finite batch sizes (Gordon et al., 2007).

Proposition 1. Let the p-values P1, . . . , Pn be independent. Denote by R the set of indices corresponding to
the discoveries in the batch, and let R = |R|. Then, the Benjamini-Hochberg procedure at level α satisfies

mFDR ≤ max{1, δ}α,

where δ : = supi∈H0
E[R | Pi∈R]
E[R | Pi 6∈R] .

Proof. LetH0 denote the nulls in [n]. Let the order statistic corresponding to P := {P1, . . . , Pn} be P(1), . . . , P(n).

Denote by P(−i) the set P \Pi, and let P
(−i)
(j) be the j-th order statistic in P(−i). Define R(−i) to be the number

of rejections when running modified BH on P(−i), which rejects the smallest R(−i) p-values in P(−i), where



Tijana Zrnic, Daniel L. Jiang, Aaditya Ramdas, Michael I. Jordan

R(−i) = max{1 ≤ j ≤ n− 1 : P
(−i)
(j) ≤

α
n (j + 1)}. For any i, r ∈ [n], we have:

1
{
Pi ≤

α

n
r,R = r

}
= 1

{
Pi ≤

α

n
r, P(r) ≤

α

n
r, P(r+1) >

α

n
(r + 1), . . . , P(n) >

α

n
n
}

= 1
{
Pi ≤

α

n
r, P

(−i)
(r−1) ≤

α

n
r, P

(−i)
(r) >

α

n
(r + 1), . . . , P

(−i)
(n−1) >

α

n
n
}

= 1
{
Pi ≤

α

n
r,R(−i) = r − 1

}
.

In words, if BH makes r discoveries and a p-value Pi is in the rejected set, then the modified BH ran on the set
that drops Pi will make exactly r − 1 discoveries. Denote by V the number of of false discoveries in R. We can
express it as:

V =
∑
i∈H0

1
{
Pi ≤

α

n
R,R > 0

}
=
∑
i∈H0

n∑
r=1

1
{
Pi ≤

α

n
r,R = r

}
=
∑
i∈H0

n∑
r=1

1
{
Pi ≤

α

n
r,R = r, Pi ∈ R

}
=
∑
i∈H0

n∑
r=1

1
{
Pi ≤

α

n
r,R(−i) = r − 1, Pi ∈ R

}
.

The third equality follows because the event {Pi ∈ R} is implied by the event {Pi ≤ α
nr,R = r}, and the last

equality just uses the first derivation in this proof. By the super-uniformity of null p-values, we have

P
{
Pi ≤

α

n
r,R(−i) = r − 1, Pi ∈ R

}
≤ α

n
rP
{
R(−i) = r − 1

∣∣∣ Pi ≤ α

n
r, Pi ∈ R

}
,

where we use the trivial bound P
{
Pi ∈ R

∣∣ Pi ≤ α
nr
}
≤ 1. If the p-values are independent, then

P
{
R(−i) = r − 1

∣∣∣ Pi ≤ α

n
r, Pi ∈ R

}
= P

{
R(−i) = r − 1

∣∣∣ Pi ∈ R} .
Combining the previous steps, we conclude

E [V ] =
∑
i∈H0

n∑
r=1

P
{
Pi ≤

α

n
r,R(−i) = r − 1, Pi ∈ R

}
≤
∑
i∈H0

n∑
r=1

α

n
rP
{
R(−i) = r − 1

∣∣∣ Pi ∈ R}
=
α

n

∑
i∈H0

n∑
r=1

(r − 1 + 1)P
{
R(−i) = r − 1

∣∣∣ Pi ∈ R}
=
α

n

∑
i∈H0

(
E
[
R(−i)

∣∣∣ Pi ∈ R]+

n∑
r=1

P
{
R(−i) = r − 1

∣∣∣ Pi ∈ R}) .
By the tower property and the first derivation in this proof,

E
[
R(−i)

∣∣∣ Pi ∈ R] = E
[
E
[
R(−i)

∣∣∣ R,Pi ∈ R]] = E [R− 1 | Pi ∈ R] .

Also, due to
∑n
r=1 P

{
R(−i) = r − 1

∣∣ Pi ∈ R} = 1:

E [V ] ≤ α

n

∑
i∈H0

E [R | Pi ∈ R] .
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Denote by εi : = max{E [R | Pi ∈ R]− E [R | Pi 6∈ R] , 0}. Then

E [R] = P{Pi ∈ R}E [R | Pi ∈ R] + P{Pi 6∈ R}E [R | Pi 6∈ R]

≥ E [R | Pi ∈ R]− εiP{Pi 6∈ R}
≥ E [R | Pi ∈ R]− εi.

Therefore, E [R | Pi ∈ R] ≤ E [R] + εi, and with this we can conclude

E [V ] ≤ α

n

∑
i∈H0

(E [R] + εi) ≤ α(E [R] + max
i
εi).

Define i∗ := arg maxi εi. Rearranging the terms in the previous expression, we have

E [V ]

E [R] + εi∗
=

E [V ]

E [R]

(
1

1 + εi∗
E[R]

)
≤ α. (3)

Now consider the term εi∗
E[R] . It is strictly positive if and only if E [R | Pi∗ ∈ R] > E [R | Pi∗ 6∈ R], and so the

maximizer in εi∗ = max{E [R | Pi∗ ∈ R] − E [R | Pi∗ 6∈ R] , 0} is the first term if and only if E [R | Pi∗ ∈ R] >
E [R | Pi∗ 6∈ R]. Now suppose this indeed holds; then, since E [R] is a convex combination of E [R | Pi∗ ∈ R] and
E [R | Pi∗ 6∈ R], we have

εi∗

E [R]
≤ E [R | Pi∗ ∈ R]− E [R | Pi∗ 6∈ R]

E [R | Pi∗ 6∈ R]
=

E [R | Pi∗ ∈ R]

E [R | Pi∗ 6∈ R]
− 1.

All previous observations combined, we can conclude that

1 +
εi∗

E [R]
≤ 1 + max

{
0,

E [R | Pi∗ ∈ R]

E [R | Pi∗ 6∈ R]
− 1

}
= max

{
1,

E [R | Pi∗ ∈ R]

E [R | Pi∗ 6∈ R]

}
:= max{1, δ},

where we define δ : = supi∈H0
E[R | Pi∈R]
E[R | Pi 6∈R] . Going back to equation (3), this implies

E [V ]

E [R]
≤ max{1, δ}α,

as desired.
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