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Abstract

We focus on association rule mining. It is well-known that naive miners end up often
providing far too large amounts of mined associations to result actually useful in practice.
Many proposals exist for selecting appropriate association rules, trying to measure their
interest in various ways; most of these approaches are statistical in nature, or share their
main traits with statistical notions.

Alternatively, some existing notions of redundancy among association rules allow for a
logical-style characterization and lead to irredundant bases (axiomatizations) of absolutely
minimum size. Here we follow up on a study of closure-based redundancy, which, in practice,
leads to smaller bases than simpler alternative forms of redundancy, with the proviso that,
in principle, they need to be complemented with an implicational basis.

One can push the intuition of redundancy further and gain a perspective of the interest of
association rules in terms of their “novelty” with respect to other rules. An irredundant rule
is so because its confidence is higher than what the rest of the rules would suggest; then,
one can ask: how much higher? Among several variants, a recently proposed parameter,
the confidence boost, succeeds in measuring a notion of novelty along these lines so that
it fits better the needs of practical applications. However, that notion is based on plain
redundancy, of relatively limited practical usefulness. Here we extend the confidence boost
to closure-based redundancy, paying a small theoretical price to obtain several advantages
in practical applications. We describe a rule-mining system implementing this contribution.

1. Introduction

Compared to more traditional Statistics, a Data Mining application is expected to find
out semi-autonomously facts validated by the data, rather than validate on the data some
specific hypotheses proposed externally. In the case of Association Rules, in essence, this
amounts to enumerating all the rules that are not disproved by the data; in the presence of
a support constraint, we even require that data “strongly disproves” an association before
ruling it out. As there are exponentially growing quantities of potential associations, even
relatively large datasets are unable to disprove most of them. Therefore, even somewhat
demanding thresholds for the standard support and confidence parameters generate large
numbers of rules with strong similarities among them, leading to intuitive redundancies.

We can see the problem of reducing the redundancy in an association miner’s output as
a study of “novelty”. Indeed, novelty is, in an intuitive sense, a relative notion: it refers to
facts that are, somehow, unexpected; hence, some expectation, lower than actually found,
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must exist, and must be due to alternative facts or prediction mechanisms. Here we follow
up a series of proposals to the effect that, as a minimum, each rule should be evaluated
for novelty according to the rest of the rules mined, treated as “alternative” mechanism
(see (Balcázar, 2010a) and the references there). Essentially, that approach proposes to
measure novelty through the extent to which the confidence value is “robust”, relative to
those of related rules, as opposed to the absolute consideration of the single rule at hand.

As a preliminary filter, there are several essentially logical definitions of redundancy,
patterned after similar intuitions in Propositional or First-Order Logic. This leads to
minimum-size bases, like the Representative (or Essential) Rules (Aggarwal and Yu, 2001;
Kryszkiewicz, 1998) for plain redundancy or the basis B? for closure-based redundancy,
that works better in practice (as it works just on closed sets and spares the computation
of minimal generators needed by the Representative Rules) but needs to be complemented
with a basis for full implications. All these questions are surveyed in (Balcázar, 2010b).

In general, this still leaves too many rules as output. One can push the intuition of
redundancy further. Intuitively, an irredundant rule is so because its confidence is higher
than what the rest of the rules would suggest; then, one can ask: “how much higher?”. If
other rules suggest, say, a confidence of 0.8 (or 80%) for a rule, and the rule has actually a
confidence of 0.81, the rule is indeed irredundant and brings in additional information, but
its novelty, with respect to the rest of the rules, is not high; whereas, in case its confidence
is actually 0.95, quite higher than the 0.8 expected, the fact can be considered novel, in
that it states something really different from the rest of the information mined.

Several notions exist that attempt at measuring to what extent the confidence of the rule
is substantially higher than that of related rules that would, intuitively, explain the same
facts. If we are to require that related rules logically imply the rule at hand, the parameter
obtained (confidence width) is not that bad, but still falls a bit short of working in practice.
The choice is, then, to remain in a clean logical framework, or to attempt at finding better
practical results by allowing a less logical, and more intuitive, notion of redundancy. We
have started to explore this path for the Representative Rules in (Balcázar, 2010a), where
the notion of confidence boost, related to plain redundancy and Representative Rules, is
proposed and studied, with promising results.

Our contribution here is a new variant, the closure-based confidence boost, a somewhat
sophisticated technical refinement of confidence boost that can be used to filter the rules in
the B? basis, of better applicability than Representative Rules. We describe an open-source
system that implements this notion and present an evaluation of the advantages of this
system, both in a quantitative form and in a qualitative form by discussing the data mining
process and its results on a dataset related to research in Machine Learning.

2. Closure-Based Confidence Boost

We will denote itemsets by capital letters from the end of the alphabet, and use juxtaposition
to denote union, as in XY . The inclusion sign as in X ⊂ Y denotes proper subset, whereas
improper inclusion is denoted X ⊆ Y . For a given dataset D, consisting of n transactions,
support s(X) and confidence c(X → Y ) are defined as usual. We denote as X the closure
of set X with respect to the given dataset D: X is the largest set that includes X and has
the same support as X in D.
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Clearly, if only confidence and support are considered, then rules X → Y and X → XY
are equivalent, as are rules where some part of the left-hand side X is repeated in the right-
hand side. We chose the convention that, in all our association rules X → Y , X ∩ Y = ∅.

Definition 1 The closure-based confidence boost of a rule X → Y is β(X → Y ) =

=
c(X → Y )

max{c(X ′ → Y ′)
∣∣ (X 6= X ′ ∨XY 6= X ′Y ′), X ′ ⊆ X, Y ⊆ X ′Y ′}

The original notion of confidence boost in (Balcázar, 2010a) corresponds to the particular
case where the closure operator is the identity function. Connections with lift and other
similar notions are discussed there. This is the natural definition paralleling the confidence
boost when the notion of reduncancy is closure-based: on one hand, the rules in the de-
nominator may resort to the use of closures to make the rule at hand redundant, widening
the options of redundancy; on the other hand, rules that are syntactically different from the
rule at hand, but equivalent to it in closure-based redundancy, must be discarded, as they
trivially entail it.

We give next an algorithm to filter rules according to their closure-based confidence boost.

Input: dataset D; thresholds for support τ , for confidence c, and for confidence boost
b > 1; rule X → Y , with c(X → Y ) ≥ c, and s(XY ) ≥ τ

Output: boolean value indicating whether β(X → Y ) > b
mine D for the basis B? at threshold c/b;

for each rule X ′ → Y ′ ∈ B?c/b, with X ′ ⊆ X and Y ⊆ X ′Y ′ do

if ∃Z ⊂ X −X ′ such that X ′Z ⊂ X (with inequality) and
c(X → Y ) ≤ b× c(X ′Z → Y ) then

return False

end

if ∃A ∈ X ′Y ′ −XY such that c(X → Y ) ≤ b× c(X → AY ) then
return False

end

end
otherwise: return True

A simple alternative algorithm that explores by brute force is better when we compute
the boost of a single rule, but this algorithm is preferable when we are to filter the whole
of B?c , as happens in most applications, provided that the intermediate basis B?c/b is cached
and not recomputed from scratch each time.

Theorem 2 Let X → Y be a rule of confidence at least c. Then, this algorithm accepts it
if and only if β(X → Y ) > b.

A main disadvantage often argued against confidence relates its unability to detect neg-
ative correlations. For instance, for a threshold of, say, 2/3, consider a representative rule
A → B of confidence slightly beyond the threshold. If the actual frequency of B is say,
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Conf. 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

70% 948 824 689 554 417 331 247 175 142 112 85
75% 639 541 444 356 266 212 161 112 97 76 56
80% 367 298 231 182 132 101 78 54 43 36 26

Table 1: Number of rules passing closure-based confidence boost bounds

4/5, then the correlation is, in fact, negative. This is one of the major criticisms that have
been made for confidence as a measure of “degree of implication”, and has motivated a large
number of alternatives; the literature about these notions is quite large; a good survey with
many references is (Geng and Hamilton, 2006). But we have now an alternative: it is easy
to prove that “negatively correlated” rules have always closure-based confidence boost of 1
or lower. The proof follows similar arguments as those used in (Balcázar, 2010a) to prove
the analogous fact for plain confidence boost.

3. Preliminary Empirical Validation

The algorithm just described has been implemented in version 0.2.2 of the open source sys-
tem slatt (available from slatt.googlecode.com); this system employs the free apriori

implementation by Borgelt (Borgelt, 2003) to compute the closures, constructs the closure
lattice, and offers algorithms to compute the GD basis of implications, the representative
rules, and the B? basis; furthermore, as of version 0.2.1, the representative rules can be
filtered through plain confidence boost (Balcázar, 2010a), and, as of version 0.2.2, the B?
basis can be filtered at a closure-based confidence boost threshold. We have employed this
system on real world datasets, with good results. Quantitatively, the figures that we obtain
imply that large fractions of representative rules are somewhat uninteresting in that they
fully lack any novelty, measured according to confidence boost.

However, all these quantitative arguments have a weakness: Are the actual rules passing
the thresholds “the right ones”? An option is to involve “end-users” in the evaluation of the
obtained association rules: persons that are extremely well-versed on the dataset at hand
(see our discussion below). Here, instead, we go the other way around, and use a dataset for
which the readers of this paper are expected to be reasonably knowledgeable: in the same
vein as the evaluations in (Gallo et al., 2007), we employ the titles, topics, and abstracts of
the reports submitted to the e-prints repository of the Pascal Network of Excellence along
its early years of existence. This dataset, extracted from the repository by Professor Steve
Gunn, was the object of a visualization challenge of the Pascal Network in 2006. Professor
Gunn has also kindly furnished this author with a similar but much larger dataset, to which
we plan to apply the same scheme in the near future.

The (mild) preprocessing consisted in removing punctuation and nonprintable charac-
ters, mapping all letters into lowercase, stripping off stop words as per the list from www.

textfixer.com, and removing duplicate words from each of the transactions so obtained.
This left 45185 total word occurrences chosen from a vocabulary of 8233 items. We checked
the size of the closure space at supports of 10% (135 closures) and 5% (830 closures, still
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somewhat small), and then at 1% (too large, as after a few minutes the program was still
computing the closure lattice’s edges—in fact, a later run showed that it consists of over
59713 closures). We settled for the far from trivial but manageable closure space consist-
ing of 9620 closed itemsets obtained at 2% support. Then, we computed the B? basis at
confidences 70% (1070 rules) and 80% (412 rules), and cut them down by filtering them at
closure-based confidence boosts of 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45 and 1.5.
All the runs were almost instantaneous. After looking at the resulting figures, the basis at
confidence 75% (729 rules) was also computed and filtered at the same confidence boost
thresholds. The figures obtained, given in Table 1, make it indeed possible to proceed to
manual inspection of many of these options.

As a particular case, we chose to perform a manual examination of the 26 rules found at
2% support, 80% confidence, and 1.5 closure-based confidence boost, which revealed rules
with little or no redundancy among themselves indeed, all of them semantically sensible, and
a handful of them actually quite interesting (for this author). The whole process leading to
these“nuggets” lasted less than two hours, including all the preprocessing, for a single person
(the author) and quite limited computing power (an old Centrino Solo laptop). These rules
are given in Table 3; let us insist here that the contents of this table is not a purportedly
representative “selection” of the outcome of the mining process but the whole of it, at the
indicated thresholds, which can be iteratively relaxed in order to obtain further information
and, at the same time, avoiding a deluge of output rules. The predefined subjects of the
e-prints Pascal server appearing in the table have been given in abbreviated form; Table 2
reports the abbreviations used for them.

At the same level of support, we have tested higher-confidence bases or other schemes
with very good results. These comparisons will be reported in a larger version of this paper.

4. Discussion

Many sophisticated interestingness measures exist. We refer to (Geng and Hamilton, 2006)
for an excellent survey of many options to relate supports of left-hand and right-hand sides
of association rules to construct indicators of interestingness. Many of these only work on a
single rule, with no reference to alternative rules with, say, smaller but otherwise arbitrary
left-hand sides. Compared to this family of measures, confidence boost is finer as it can
distinguish among many alternative antecedents to compare, at the price of being potentially
more expensive to evaluate due to the search for smaller, arbitrary right-hand sides. A larger
paper including the results here, currently in preparation (although a preliminary version is
available from the author), will include a deeper discussion of related work, and will report

subject:B Brain-Computer Interfaces
subject:I Information Retrieval and Textual Information Access
subject:L Learning/Statistics and Optimisation
subject:M Machine Vision
subject:T Theory and Algorithms

Table 2: Abbreviations of subjects for Table 3 below
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conf. supp %
0.889 3.329 presents ⇒ paper
0.833 2.080 solve ⇒ problem
0.850 2.358 features selection ⇒ feature
0.818 2.497 graphs ⇒ subject:T
0.833 2.080 data second ⇒ subject:L
0.895 4.716 bound ⇒ subject:T
0.826 2.635 web ⇒ subject:I
0.941 2.219 art ⇒ state
0.907 5.409 documents ⇒ subject:I
0.882 2.080 approach method show ⇒ data
0.842 2.219 principal ⇒ component
0.914 4.438 document ⇒ subject:I
0.842 2.219 linear problem ⇒ subject:L
0.850 2.358 features subject:T ⇒ subject:L
0.842 2.219 methods subject:M ⇒ images
0.800 2.219 brain ⇒ subject:B
0.889 5.548 bounds ⇒ subject:T
0.818 2.497 data subject:M ⇒ subject:L
0.813 10.264 support ⇒ vector
0.818 2.497 more use ⇒ subject:L
0.919 4.716 object ⇒ subject:M
0.833 2.080 nonlinear subject:L ⇒ learning
0.813 3.606 variables ⇒ subject:T
0.810 2.358 kernel used ⇒ method
0.900 2.497 feature learning ⇒ subject:L
0.842 2.219 unlabeled ⇒ data

Table 3: The 26 rules at 2% support, 80% confidence, 1.5 boost

on further comparisons with several other approaches that we plan to perform in the near
future (see (Jaroszewicz and Simovici, 2002), (Gallo et al., 2007), and their references).

As further work, we point out a couple of drawbacks of using closure-based confidence
boost bounds, on which we are actively working at present. One is the need to choose yet
another parameter for the mining process, besides confidence and support. In experiments,
however, this problem does not seem to be that big; we tend to use a few “standard” values
for confidence boost, like at 1.05 to prune really low novelty rules, at 1.2 to prune a bit
more aggressively, and at (or near) 1.5 to reduce heavily redundancy at the potential price
of killing all the output. These options tend to work well, and also make less critical the
choice of the confidence threshold, that can be safely left at a somewhat low value (say,
around 0.6 to 0.7), leaving to the boost parameter the task of reducing the output size.

Another shortcoming of this approach is that, sometimes, some of the full-confidence
implications would be desirable indeed for inclusion in the output, given that working
on the basis B? leaves them fully out. Partial progress is reported in (Balcázar et al.,
2010a). We are also validating further our approach on the basis of end user advice; we are
experimenting with e-learning datasets (Balcázar et al., 2010b), for which the teachers of
the courses where the datasets originated are available for consultation.
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José L. Balcázar, Cristina T̂ırnăucă, and Marta E. Zorrilla. Filtering association rules with
negations on the basis of their confidence boost. To appear in KDIR 2010. Available at:
[http://personales.unican.es/balcazarjl], 2010a.
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