
N-GCN: Multi-scale Graph Convolution
for Semi-supervised Node Classification

Sami Abu-El-Haija∗
Univ. of Southern California

Los Angeles, CA, USA
sami@haija.org

Amol Kapoor
Google Research

New York, NY, USA
ajkapoor@google.com

Bryan Perozzi
Google Research

New York, NY, USA
hubris@google.com

Joonseok Lee
Google Research

Mountain View, CA, USA
joonseok@google.com

Abstract

Graph Convolutional Networks (GCNs) have
shown significant improvements in semi-
supervised learning on graph-structured data.
Concurrently, unsupervised learning of graph
embeddings has benefited from the informa-
tion contained in random walks. In this paper,
we propose a model: Network of GCNs (N-
GCN), which marries these two lines of work.
At its core, N-GCN trains multiple instances
of GCNs over node pairs discovered at differ-
ent distances in random walks, and learns a
combination of the instance outputs which op-
timizes the classification objective. Our exper-
iments show that our proposed N-GCN model
improves state-of-the-art baselines on all of
the challenging node classification tasks we
consider: Cora, Citeseer, Pubmed, and PPI.
In addition, our proposed method has other
desirable properties, including generalization
to recently proposed semi-supervised learning
methods such as GraphSAGE, allowing us to
propose N-SAGE, and resilience to adversarial
input perturbations.1

1 INTRODUCTION

Semi-supervised learning on graphs is important in many
real-world applications, where the goal is to recover
labels for all nodes given only a fraction of labeled
ones. Some applications include social networks, where
one wishes to predict user interests, or in health care,
where one wishes to predict whether a patient should be
screened for cancer. In many such cases, collecting node
labels can be prohibitive. However, edges between nodes

∗This work was done at Google Research.
1Source code: https://github.com/samihaija/mixhop

can be easier to obtain, either using an explicit graph
(e.g., social network) or implicitly by calculating pair-
wise similarities (e.g., using a patient-patient similarity
kernel, Merdan et al., 2017).

Convolutional Neural Networks (LeCun et al., 1998)
learn location-invariant hierarchical filters, enabling
significant improvements on Computer Vision tasks
(Krizhevsky et al., 2012; Szegedy et al., 2015; He et al.,
2016). This success has motivated researchers (Bruna
et al., 2014) to extend convolutions from spatial (i.e., reg-
ular lattice) domains to graph-structured (i.e., irregular)
domains, yielding a class of algorithms known as Graph
Convolutional Networks (GCNs).

Formally, we are interested in semi-supervised learning
where we are given a graph G = (V, E) with N = |V|
nodes; adjacency matrix A; and matrix X ∈ RN×F of
node features, where F is the feature dimensionality. La-
bels for only a subset of nodes VL ⊂ V are observed. In
general, |VL| � |V|. Our goal is to recover labels for all
unlabeled nodes VU = V − VL, using the feature matrix
X, the known labels for nodes in VL, and the graph G.
In this setting, one treats the graph as the “unsupervised”
and labels of VL as the “supervised” portions of the data.

Depicted in Fig. 1, our model for semi-supervised
node classification builds on the GCN module pro-
posed by Kipf and Welling (2017), which operates on
the normalized adjacency matrix Â, as in GCN(Â),
where Â = D−

1
2 AD−

1
2 , and D is diagonal ma-

trix of node degrees. Our proposed extension of
GCNs is inspired by the recent advancements in ran-
dom walk based graph embeddings (e.g. Perozzi et al.,
2014; Grover and Leskovec, 2016; Abu-El-Haija et al.,
2018). We make a Network of GCN modules (N-
GCN), feeding each module a different power of Â,
as in {GCN(Â0),GCN(Â1),GCN(Â2), . . . }. The k-
th power contains statistics from the k-th step of a ran-
dom walk on the graph. Therefore, our N-GCN model
is able to combine information from various step-sizes

(i.e. graph scales). We then combine the output of all
GCN modules into a classification sub-network, and we
jointly train all GCN modules and the classification sub-
network on the upstream objective for semi-supervised
node classification. Weights of the classification sub-
network give us insight on how the N-GCN model works.
For instance, in the presence of input perturbations, we
observe that the classification sub-network weights shift
towards GCN modules utilizing higher powers of the
adjacency matrix, effectively widening the “receptive
field” of the (spectral) convolutional filters. We achieve
state-of-the-art on several semi-supervised graph learn-
ing tasks, showing that explicit random walks enhance
the representational power of vanilla GCN’s.

The rest of this paper is organized as follows. Section
2 reviews background work that provides the founda-
tion for this paper. In Section 3, we describe our pro-
posed method, followed by experimental evaluation in
Section 4. We compare our work with recent closely-
related methods in Section 5. Finally, we conclude with
our contributions and future work in Section 6.

2 BACKGROUND

2.1 Semi-Supervised Node Classification

Traditional label propagation algorithms (Weston et al.,
2012; Belkin et al., 2006) learn a model that transforms
node features into node labels and uses the graph to add
a regularizer term:

Llabel.prop = Lcls (f(X),VL) + λf(X)>∆f(X). (1)

The first term Lcls (classification loss) trains the model
f : RN×F → RN×C to predict the known labels VL,
where F is the feature dimensionality and C is the num-
ber of classes. The second term is the graph-based reg-
ularizer, ensuring that connected nodes have a similar
model output, with ∆ being the graph Laplacian and
λ ∈ R is the regularization coefficient hyperparameter.

2.2 Graph Convolutional Networks

Graph Convolution (Bruna et al., 2014) generalizes con-
volution from Euclidean domains to graph-structured
data. Convolving a “filter” over a signal on graph nodes
can be calculated by transforming both the filter and the
signal to the Fourier domain, multiplying them, and then
transforming the result back into the discrete domain.
The signal transform is achieved by multiplying with the
eigenvectors of the graph Laplacian. The transforma-
tion requires a quadratic eigendecomposition of the sym-
metric Laplacian; however, the low-rank approximation

of the eigendecomposition can be calculated using trun-
cated Chebyshev polynomials (Hammond et al., 2011).
For instance, Kipf and Welling (2017) calculates a rank-
1 approximation of the decomposition. They propose a
multi-layer Graph Convolutional Networks (GCNs) for
semi-supervised graph learning. Every layer computes
the transformation:

H(l+1) = σ
(
ÂH(l)W(l)

)
, (2)

where H(l) ∈ RN×dl is the input activation matrix to
the l-th hidden layer with row H

(l)
i containing a dl-

dimensional feature vector for vertex i ∈ V , and W(l) ∈
Rdl×dl+1 is the layer’s trainable weights. The first hidden
layer H(0) is set to the input features X. A softmax on
the last layer is used to classify labels. All layers use the
same “normalized adjacency” Â, obtained by the “renor-
malization trick” utilized by Kipf and Welling (2017), as
Â = D−

1
2 AD−

1
2 .2

Eq. (2) is a first order approximation of convolving filter
W(l) over signal H(l) (Hammond et al., 2011; Kipf and
Welling, 2017). The left-multiplication with Â averages
node features with their direct neighbors; this signal is
then passed through a non-linearity function σ(·) (e.g.,
ReLU(z) = max(0, z)). Successive layers effectively
diffuse signals from nodes to neighbors.

Two-layer GCN model can be defined in terms of vertex
features X and normalized adjacency Â as:

GCN2-layer(Â,X; θ) = softmax
(
Âσ(ÂXW(0))W(1)

)
,

where the GCN parameters θ =
{
W(0),W(1)

}
are

trained to minimize the cross-entropy error over labeled
examples. The output of the GCN model is a matrix
RN×C , where N is the number of nodes and C is the
number of labels. Each row contains the label scores for
one node, assuming there are C classes.

2.3 Node Embeddings

Node Embedding methods represent graph nodes in a
continuous vector space. They learn a dictionary Z ∈
RN×d, with one d-dimensional embedding per node.
Traditional methods use the adjacency matrix to learn
embeddings. Skipgram models on text corpora (Mikolov
et al., 2013) inspired modern graph embedding methods,
which simulate random walks to learn node embeddings
(Perozzi et al., 2014; Grover and Leskovec, 2016). Each
random walk generates a sequence of nodes. Sequences
are converted to textual paragraphs, and are passed to a
word2vec-style embedding learning algorithm (Mikolov

2Self-connections added as Aii = 1, similarly to Kipf and
Welling (2017).

I

X

Â

GCN

•

GCN

×

•

GCN

×

•

N

C0 C1 C2

Classification Network

N

C

(a) N-GCN Architecture. (b) t-SNE visualization of fully-connected (fc) hidden layer
of NGCN when trained over Cora graph.

Figure 1: (a) Model architecture, where Â is the normalized normalized adjacency matrix, I is the identity matrix,
X is node features matrix, and × is matrix-matrix multiplication. In this example, we calculate K = 3 powers of
the Â, feeding each power into r = 1 GCNs, along with X. The output of all K × r GCNs can be concatenated
along the column dimension, then fed into fully-connected layers, outputting C channels per node, where C is size
of label space. We calculate cross entropy error between rows prediction N × C with known labels, and use them
to update parameters of classification sub-network and all GCNs. The classification networks for N-GCNfc and N-
GCNa, respectively, are described in Sections 3.3.1 and 3.3.2. (b) Demonstration of a pre-RELU activations after the
first fully-connected layer of a 2-layer classification sub-network trained on Cora. Activations are PCA-ed to 50-D
then visualized using t-SNE.

et al., 2013). As shown in Abu-El-Haija et al. (2018),
this learning-by-simulation is equivalent, in expectation,
to the decomposition of a random walk co-occurrence
statistics matrix D. Expectation on D can be written as:

E[D] ∝ Eq∼Q [(T)
q
] = Eq∼Q

[(
D−1A

)q]
, (3)

where T = D−1A is the row-normalized transition ma-
trix (a.k.a right-stochastic adjacency matrix), and Q is a
“context distribution” that is determined by random walk
hyperparameters, such as the length of the random walk.
The expectation therefore weights the importance of one
node on another as a function of how well-connected
they are, and the distance between them.

3 OUR METHOD

3.1 Motivation

Graph Convolutional Networks and random walk graph
embeddings are individually powerful. Kipf and Welling
(2017) uses GCNs for semi-supervised node classifica-
tion. Instead of following traditional methods that use the
graph for regularization (Belkin and Niyogi, 2003), Kipf
and Welling (2017) use the adjacency matrix for training
and inference, effectively diffusing information across
edges at all GCN layers (see Eq. (3)). Separately, re-
cent work has showed that random walk statistics can be

very powerful for learning an unsupervised representa-
tion of nodes that can preserve the structure of the graph
(Perozzi et al., 2014; Grover and Leskovec, 2016; Abu-
El-Haija et al., 2018).

Under special conditions, it is possible for the GCN
model to learn random walks. In particular, consider
a two-layer GCN defined in Eq. (3) with the assump-
tion that first-layer activation is identity as σ(z) = z and
weight W(0) is an identity matrix (either explicitly set or
learned to satisfy the upstream objective). Under these
two identity conditions, the model reduces to:

GCN2-layer-special(Â,X) = softmax
(
Â2XW(1)

)
(4)

where Â2 can be expanded as

Â2 =
(
D−

1
2 AD−

1
2

)(
D−

1
2 AD−

1
2

)
= D−

1
2 A
[
D−1A

]
D−

1
2 = D−

1
2 ATD−

1
2 . (5)

By multiplying the adjacency A with the transition ma-
trix T before, the GCN2-layer-special is effectively doing a
one-step random walk, diffusing signals from nodes to
neighbors without non-linearities, then applying a non-
linear graph convolution layer.

3.2 Explicit Random Walks

The special conditions described above are not true in
practice. Although stacking hidden GCN layers allows
information to flow through graph edges, this flow is
indirect as the information goes through feature reduc-
tion (matrix multiplication) and a non-linearity (activa-
tion function σ(·)). Therefore, the vanilla GCN cannot
directly learn high powers of Â, and could struggle with
modeling information across distant nodes. We hypoth-
esize that making the GCN directly operate on random
walk statistics will allow the network to better utilize
information across distant nodes, in the same way that
node embedding methods (e.g., DeepWalk, Perozzi et al.
(2014)) operating on D are superior to traditional em-
bedding methods operating on the adjacency matrix (e.g.,
Eigenmaps, Belkin and Niyogi (2003)). Therefore, in ad-
dition to feeding only Â to the GCN model as proposed
by Kipf and Welling (2017) (see Eq. (3)), we propose to
feed a K-degree polynomial of Â to K instantiations of
GCN. Generalizing Eq. (5) to arbitrary power k gives:

Âk = D−
1
2 AT k−1D− 1

2 . (6)

We also define Â0 to be the identity matrix. Similar
to Kipf and Welling (2017), we add self-connections
and convert directed graphs to undirected ones, mak-
ing Â and hence Âk symmetric matrices. The eigen-
decomposition of symmetric matrices is real. Therefore,
the low-rank approximation of the eigendecomposition
Hammond et al. (2011) is still valid, and a one layer of
Kipf and Welling (2017) utilizing Âk should still approx-
imate multiplication in the Fourier domain.

3.3 Network of GCNs

Consider K instantiations of {GCN(Â0,X),
GCN(Â1,X), . . . , GCN(ÂK−1,X)}. Each GCN
outputs a matrix RN×Ck , where the v-th row describes
a latent representation of that particular GCN for node
v ∈ V , and Ck is the latent dimensionality. Though
Ck can be different for each GCN, we set all Ck to be
the same for simplicity. We then combine the outputs
of all K GCNs and feed them into a classification
sub-network, allowing us to jointly train all GCNs and
the classification sub-network via backpropagation. This
should allow the classification sub-network to choose
features from the various GCNs, effectively allowing
the overall model to learn a combination of features
using the raw (normalized) adjacency, different steps of
random walks (i.e. graph scales), and the input features
X (as they are multiplied by identity Â0).

3.3.1 Fully-Connected Classification Network

From a deep learning prospective, it is intuitive to repre-
sent the classification network as a fully-connected layer.
We can concatenate the output of the K GCNs along the
column dimension, i.e. concatenating all GCN(X, Âk),
each ∈ RN×Ck into matrix ∈ RN×CK where CK =∑
k Ck. We add a fully-connected layer ffc : RN×CK →

RN×C , with trainable parameter matrix Wfc ∈ RCK×C ,
written as:

N-GCNfc(Â,A; Wfc, θ) = softmax
(

(7)

[
GCN(Â0,X; θ(0)) GCN(Â1,X; θ(1)) . . .

]
Wfc

)
.

The classifier parameters Wfc are jointly trained with
GCN parameters θ = {θ(0), θ(1), . . . }. We use subscript
fc on N-GCN to indicate the classification network is a
fully-connected layer.

3.3.2 Attention Classification Network

We also propose a classification network based on “soft-
max attention”, which learns a convex combination of
the GCN instantiations. Our attention model (N-GCNa)
is parametrized by vector m ∈ RK , one scalar for each
GCN. It can be written as:

N-GCNa(Â,X; m, θ) =
∑
k

mkGCN(Âk,X; θ(k))

where the vector m is the output of a softmax, m =
softmax(m̃), and m̃ is a vector of weights that are up-
dated as parameters in the model.

This softmax attention is similar to “Mixture of Experts”
model, especially if we set the number of output chan-
nels for all GCNs equal to the number of classes, as in
C0 = C1 = · · · = C. This allows us to add cross en-
tropy loss terms on all GCN outputs in addition to the
loss applied at the output N-GCN, forcing all GCN’s to
be independently useful. It is possible to set the m ∈ RK
parameter vector “by hand” using the validation split, es-
pecially for reasonable K such as K ≤ 6. One possi-
ble choice might be setting m0 to some small value and
remaining m1, . . . ,mK−1 to the harmonic series 1

k ; an-
other choice may be linear decay K−k

K−1 . These are respec-
tively similar to the context distributions of GloVe (Pen-
nington et al., 2014) and word2vec (Mikolov et al., 2013;
Levy et al., 2015). We note that if on average a node’s
information is captured by its direct or nearby neighbors,
then the output of GCNs consuming lower powers of Â
should be weighted highly.

Algorithm 1 General Implementation: Network of Graph Models

Require: Â is a normalization of A
1: function NETWORK(GRAPHMODELFN, Â, X, L, r = 4, K = 6, CLASSIFIERFN=FCLAYER)
2: P← I
3: GraphModels← []
4: for k = 1 to K do
5: for i = 1 to r do
6: GraphModels.append(GRAPHMODELFN(P,X, L))
7: P← ÂP
8: return CLASSIFIERFN(GraphModels)

Algorithm 2 GCN Model (Kipf and Welling, 2017)

Require: Â is a normalization of A
1: function GCNMODEL(Â, X, L)
2: Z← X
3: for i = 1 to L do
4: Z← σ(ÂZW(i))

5: return Z

Algorithm 3 SAGE Model (Hamilton et al., 2017)

Require: Â is a normalization of A
1: function SAGEMODEL(Â, X, L)
2: Z← X
3: for i = 1 to L do
4: Z← σ(

[
Z ÂZ

]
W(i))

5: Z← L2NORMALIZEROWS(Z)

6: return Z

Algorithm 4 N-GCN

1: function NGCN(A, X, L = 2)
2: D ← diag(A1) . Sum rows
3: Â← D−1/2AD−1/2

4: return NETWORK(GCNMODEL, Â,X, L)

Algorithm 5 N-SAGE

1: function NSAGE(A, X)
2: D← diag(A1) . Sum rows
3: Â← D−1A
4: return NETWORK(SAGEMODEL, Â,X, 2)

3.4 Training

We minimize the cross entropy between our model out-
put and the known training labels Y as:

min
Θ

diag(VL)
[
Y ◦ log N-GCN(X, Â; Θ)

]
, (8)

where ◦ is Hadamard product, and diag(VL) denotes a
diagonal matrix with entry at (i, i) set to 1 if i ∈ VL and
0 otherwise. Θ is the set of parameters to optimize. For
fully-connected classification network, Θ = {Wfc, θ}.
For attnetion classification network, we apply interme-
diate supervision for the N-GCNa to attempt make all
GCNs become independently useful, yielding minimiza-
tion objective:

min
m,θ

diag(VL)

[
Y ◦ log N-GCNa(Â,X; m, θ)

+
∑
k

Y ◦ log GCN(Âk,X; θ(k))

]
.

3.5 GCN Replication Factor r

To simplify notation, our N-GCN derivations (e.g., Eq.
(7)) assume that there is one GCN per Â power. How-
ever, our implementation feeds every Â to r GCN mod-
ules, as shown in Fig. 1.

3.6 Relation to other Graph Models

In addition to vanilla GCNs (e.g., Kipf and Welling,
2017), our derivation also applies to other graph mod-
els including GraphSAGE (Hamilton et al., 2017). Algo-
rithm 1 shows a generalization that allows us to make a
network of arbitrary graph models (e.g., GCN, SAGE, or
others). Algorithms 2 and 3, respectively, show pseudo-
code for the vanilla GCN (Kipf and Welling, 2017) and
GraphSAGE3 (Hamilton et al., 2017). Finally, Algorithm
4 defines our full Network of GCN model (N-GCN) by
plugging Algorithm 2 into Algorithm 1. Similarly, Algo-

3Our implementation assumes mean-pool aggregation by
Hamilton et al. (2017), which performs on-par to their top
performer max-pool aggregation. In addition, our Algorithm
3 lists a full-batch implementation whereas (Hamilton et al.,
2017) offer a mini-batch implementation.

Dataset Type Nodes Edges Classes Features Labeled nodes
|V| |E| C F |VL|

Citeseer citaction 3,327 4,732 6 (single class) 3,703 120
Cora citaction 2,708 5,429 7 (single class) 1,433 140
Pubmed citaction 19,717 44,338 3 (single class) 500 60
PPI biological 56,944 818,716 121 (multi-class) 50 44,906

Table 1: Datasets for experiments. For citation datasets, 20 training nodes per class are observed (|VL| = 20× C).

Method (Transductive) Citeseer Cora Pubmed
ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston et al., 2012) 59.6 59.0 71.1
LP (Zhu et al., 2003) 45.3 68.0 63.0
DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3
ICA (Lu and Getoor, 2003) 69.1 75.1 73.9
Planetoid (Yang et al., 2016) 64.7 75.7 77.2
GCN (Kipf and Welling, 2017) 70.3 81.5 79.0
DCNN (our implementation) 71.1 81.3 79.3
GCN (our implementation) 71.2 81.0 78.8
SAGE (our implementation) 63.5 77.4 77.6
N-GCN (ours) 72.2 83.0 79.5
N-SAGE (ours) 71.0 81.8 79.4

Method (Inductive) PPI
SAGE-LSTM (Hamilton et al., 2017) 61.2
SAGE (Hamilton et al., 2017) 60.0
DCNN (our implementation) 44.0
GCN (our implementation) 46.2
SAGE (our implementation) 59.8
N-GCN (ours) 46.8
N-SAGE (ours) 65.0

Table 2: Node classification performance (% accuracy for the first three citation datasets and F1 micro-averaged for
multiclass PPI), using data splits of Yang et al. (2016); Kipf and Welling (2017) and Hamilton et al. (2017). We report
the test accuracy corresponding to the run with the highest validation accuracy. Results above the horizontal line are
copied from Kipf and Welling (2017) and from Hamilton et al. (2017) for the transductive and inductive case respec-
tively. Because our code can recover other algorithms (as explained in Section 3.6) we show our implementations of
these baselines. Finally, our proposed models are at the end of each table.

rithm 5 defines our N-SAGE model by plugging Algo-
rithm 3 in Algorithm 1.

We can recover the original algorithms GCN (Kipf and
Welling, 2017) and SAGE (Hamilton et al., 2017), re-
spectively, by using Algorithms 4 (N-GCN) and 5 (N-
SAGE) with r = 1,K = 1, identity CLASSIFIERFN, and
modifying line 2 in Algorithm 1 to P ← Â. Moreover,
we can recover original DCNN (Atwood and Towsley,
2016) by calling Algorithm 4 with L = 1, r = 1, modi-
fying line 3 to Â← D−1A, and keeping K > 1 as their
proposed model operates on the power series of the tran-
sition matrix i.e. unmodified random walks, like ours.

4 EXPERIMENTS

4.1 Datasets

We experiment on three citation graph datasets: Pubmed,
Citeseer, Cora, and a biological graph: Protein-
Protein Interactions (PPI). We choose the aforemen-
tioned datasets because they are available online and are
used by our baselines. The citation datasets are prepared

by Yang et al. (2016), and the PPI dataset is prepared
by Hamilton et al. (2017). Table 1 summarizes dataset
statistics.

Each node in the citation datasets represents an article
published in the corresponding journal. An edge between
two nodes represents a citation from one article to an-
other, and a label represents the subject of the article.
Each dataset contains a binary Bag-of-Words (BoW) fea-
ture vector for each node. The BoW are extracted from
the article abstract. Therefore, the task is to predict the
subject of articles, given the BoW of their abstract and
the citations to other (possibly labeled) articles. Follow-
ing Yang et al. (2016) and Kipf and Welling (2017), we
use 20 nodes per class for training, 500 (overall) nodes
for validation, and 1000 nodes for evaluation. We note
that the validation set is larger than training |VL| for these
datasets.

The PPI graph, as processed and described by Hamil-
ton et al. (2017), consists of 24 disjoint subgraphs, each
corresponding to a different human tissue. 20 of those
subgraphs are used for training, 2 for validation, and 2
for testing, as partitioned by Hamilton et al. (2017).

Node per Class
Method 5 10 20 100
DCNN 63.0± 1.0 72.3± 0.4 79.2± 0.2 82.6± 0.3
GCN 64.6± 0.3 70.0± 3.7 79.1± 0.3 81.8± 0.3
SAGE 69.0± 1.4 72.0± 1.3 77.2± 0.5 80.7± 0.7
N-GCNa 65.1± 0.7 71.2± 1.1 79.7± 0.3 83.0± 0.4
N-GCNfc 65.0± 2.1 71.7± 0.7 79.7± 0.4 82.9± 0.3
N-SAGEa 66.9± 0.4 73.4± 0.7 79.0± 0.3 82.5± 0.2
N-SAGEfc 70.7± 0.4 74.1± 0.8 78.5± 1.0 81.8± 0.3

Table 3: Node classification accuracy (in %) with
different number of labeled nodes per class |V|

C ∈
{5, 10, 20, 100}.

4.2 Baseline Methods

For the citation datasets, we copy baseline numbers from
Kipf and Welling (2017). These include label propa-
gation (LP, Zhu et al. (2003)); semi-supervised embed-
ding (SemiEmb, Weston et al. (2012)); manifold reg-
ularization (ManiReg, Belkin et al. (2006)); skip-gram
graph embeddings (DeepWalk Perozzi et al., 2014); It-
erative Classification Algorithm (ICA, Lu and Getoor,
2003); Planetoid (Yang et al., 2016); vanilla GCN (Kipf
and Welling, 2017). For PPI, we copy baseline numbers
from Hamilton et al. (2017), which include GraphSAGE
with LSTM aggregation (SAGE-LSTM) and Graph-
SAGE with pooling aggregation (SAGE). Further, for
all datasets, we use our implementation to run baselines
DCNN (Atwood and Towsley, 2016), GCN (Kipf and
Welling, 2017), and SAGE (with pooling aggregation,
Hamilton et al., 2017), as these baselines can be recov-
ered as special cases of our algorithm, as explained in
Section 3.6.

4.3 Implementation

We use TensorFlow(Abadi et al., 2016) to implement
our methods, which we use to also measure the perfor-
mance of baselines GCN, SAGE, and DCNN. For our
methods and baselines, all GCN and SAGE modules that
we train are 2 layers4, where the first outputs 16 di-
mensions per node and the second outputs the number
of classes (dataset-dependent). DCNN baseline has one
layer and outputs 16 dimensions per node, and its chan-
nels (one per transition matrix power) are concatenated
into a fully-connected layer that outputs the number of
classes. We use 50% dropout and L2 regularization of
10−5 for all of the aforementioned models.

4except as clearly indicated in Table 5

4.4 Node Classification Accuracy

Table 2 shows node classification accuracy results. We
run 20 different random initializations for every model
(baselines and ours), train using Adam optimizer (Ba and
Kingma, 2015) with learning rate of 0.01 for 600 steps,
capturing the model parameters at peak validation accu-
racy to avoid overfitting. For our models, we sweep our
hyperparameters r, K, and choice of classification sub-
network ∈ {fc, a}. For baselines and our models, we
choose the model with the highest accuracy on valida-
tion set, and use it to record metrics on the test set in
Table 2.

Table 2 shows that N-GCN outperforms GCN (Kipf and
Welling, 2017) and N-SAGE improves on SAGE for all
datasets, showing that unmodified random walks indeed
help in semi-supervised node classification. Finally, our
proposed models acheive state-of-the-art on all datasets.

4.5 Analysis on Graph Sparsity

We run evaluations with various sparsity level of the
graph by taking different number of labeled nodes per
class. In Table 3, we report node classification accuracy
(in %) with various number of labeled nodes per class,
|V|
C ∈ {5, 10, 20, 100}, of our models as well as several

baselines. We use our largest dataset (Pubmed) for this
experiment, and report mean and standard deviations on
10 runs. We use a different random seed for every run
(i.e., sampling different labeled nodes), but the same 10
random seeds across models.

We see that convolution-based methods (e.g. SAGE)
tend to work well with fewer training examples, while
unmodified random walk methods (e.g. DCNN) work
well with more training data. Our methods combine con-
volution and random walks, making them work well in
both conditions.

4.6 Sensitivity Analysis

We analyze the impact of random walk length K and
replication factor r on classification accuracy in Table 4.
In general, model performance improves when increas-
ing K and r. We note utilizing random walks by setting
K > 1 improves model accuracy due to the additional in-
formation, not due to increased model capacity: Contrast
K = 1, r > 1 (i.e. mixture of GCNs, no random walks)
with K > 1, r = 1 (i.e. N-GCN on random walks) –
in both scenarios, the model has more capacity, but the
latter shows better performance. The same conclusion
holds for SAGE.

10 30 50 70 90
% Features Removed

50

60

70

80
Ac

cu
ra

cy
 m

ea
n

±
st

d N-GCNfc N-GCNa N-SAGEfc DCNN GCN SAGE

Figure 2: Classification accuracy for the Cora dataset with 20 labeled nodes per class (|V| = 20 × C), but features
removed at random, averaging 10 runs. We use a different random seed for every run (i.e. removing different features
per node), but the same 10 random seeds across models.

10 30 50 70 90
0.10

0.15

0.20

0.25

0.30

N-
GC

N a

m0 m1 m2 m3 m4 m5

Figure 3: Attention weights (m) for N-GCNa when trained with feature removal perturbation on the Cora dataset.
Removing features shifts the attention weights to the right, suggesting the model is relying more on long range depen-
dencies.

4.7 Tolerance to Feature Noise

We test our method under feature noise perturbations
by removing node features at random. This is prac-
tical, as article authors might forget including relevant
terms in the article abstract, and more generally not all
nodes will have the same amount of detailed information.
Fig. 2 shows that when features are removed, methods
utilizing unmodified random walks (N-GCN, N-SAGE,
and DCNN) outperform convolutional methods includ-
ing GCN and SAGE. Moreover, the performance gap
widens as we remove more features. This suggests that
our methods can somewhat recover removed features
by directly pulling-in features from nearby and distant
neighbors. We visualize in Fig. 3 the attention weights
as a function of features removed. With little feature re-
moval, there is some weight on Â0, and the attention
weights for Â1, Â2, . . . decay. Maliciously dropping
features causes our model to shift its attention weights
towards higher powers of Â.

4.8 Random Walk Steps vs. GCN Depth

K-step random walk will allow every node to accumu-
late information from its neighbors, up to distance K.
Similarly, a K-layer GCN (Kipf and Welling, 2017) will
do the same. The difference between the two was mathe-
matically explained in Section 3.1. To summarize, the

former averages node feature vectors according to the
random walk co-visit statistics, whereas the latter creates
non-linearities and matrix multiplies at every step. So far,
we display experiments where our models (N-GCN and
N-SAGE) are able to use information from distant nodes
(e.g. K = 5), but for all GCN and SAGE modules, we
use 2 GCN layer for baselines and our models.

Even though the authors of GCN (Kipf and Welling,
2017) and SAGE (Hamilton et al., 2017) suggest using
two GCN layers, according by holdout validation, for
a fair comparison with our models, we run experiments
utilizing deeper GCN and SAGE are models so that its
“receptive field” is comparable to ours.

Table 5 shows test accuracies when training deeper GCN
and SAGE models, using our implementation. We notice
that, unlike our method which benefits from a wider “re-
ceptive field”, there is no direct correspondence between
depth and improved performance.

5 RELATED WORK

We divide the rapidly-growing field of graph learning
into two kinds of algorithms. The first kind is unsuper-
vised, and the second kind is supervised.

We refer to the first kind as embedding learning al-
gorithms. They input a graph and output one embed-

Dataset N-GCN N-SAGE

Citeseer

5

1 2 4
r

1

2

3

4

5

K

65

66

67

68

69

70

4
K 3

2
1

1 2 4
r

5

1 2 4
r

1

2

3

4

5

K

60

62

64

66

68

4
K 3

2
1

1 2 4
r

Cora

5

1 2 4
r

1

2

3

4

5

K

76

77

78

79

80

81

82

4
K 3

2
1

1 2 4
r

5

1 2 4
r

1

2

3

4

5

K
66

68

70

72

74

76

78

4
K 3

2
1

1 2 4
r

Pubmed

5

1 2 4
r

1

2

3

4

5

K

76.5

77.0

77.5

78.0

78.5

79.0

4
K 3

2
1

1 2 4
r

5

1 2 4
r

1

2

3

4

5

K

75.0

75.5

76.0

76.5

77.0

77.5

4
K 3

2
1

1 2 4
r

Table 4: Sensitivity Analysis: Color-coded model
performance with varying random walk steps K =
{1, 2, 3, 4, 5} and replication factor r = {1, 2, 4}.
Darker color means better performance, and color-scale
is comparable only within the same matrix. Overall,
model performance increases with largerK and r. In ad-
dition, having random walk steps (larger K) boosts per-
formance more than increasing model capacity (larger r).

64× 64 64× 64
Dataset Model 64×C ×C ×64×C
Citeseer GCN 0.699 0.632 0.659
Citeseer SAGE 0.668 0.660 0.674

Cora GCN 0.803 0.800 0.780
Cora SAGE 0.761 0.763 0.757

Pubmed GCN 0.762 0.771 0.781
Pubmed SAGE 0.770 0.776 0.775

PPI GCN 0.460 0.461 0.466
PPI SAGE 0.658 0.672 0.650

Table 5: Performance of deeper GCN and SAGE mod-
els, both using our implementation. Deeper GCN (or
SAGE) does not consistently improve classification ac-
curacy, suggesting that N-GCN and N-SAGE are more
performant and are easier to train. They use shallower
convolution models that operate on multiple scales of the
graph.

ding vector per node, with an objective of recovering the
graph structure e.g. predicting every node’s neighbor-
hood (Perozzi et al., 2014). Like ours, some of these
embedding algorithms also operate on multiple scales
e.g. (Cao et al., 2015; Perozzi et al., 2017; Abu-El-Haija
et al., 2018). Refer to (Chen et al., 2018) for a review.

Nonetheless, our work falls under the second kind of al-
gorithms, which directly learn a target task in a single-
shot. We review methods that are most related to ours.
Specifically, ones based on Graph Convolution. Deffer-
rard et al. (2016) defines graph convolutions as a K-
degree polynomial of the Laplacian, where the poly-
nomial coefficients are learned. We differ in the or-
der of random walk versus non-linearity. In particu-
lar, their model learns a linear combination of K-degree
polynomial and pass through classifier function g, as in
g(
∑
k qkÃ

k), while our (e.g. N-GCN) model calculates∑
k qkg(Ãk), where Ã is Â in our model and I − Â

in theirs, and our g can be a GCN module e.g. of (Kipf
and Welling, 2017). Atwood and Towsley (2016) pro-
poses DCNN, which calculates powers of the transition
matrix and keeps each power in a separate channel until
the classification sub-network at the end. Their model
is therefore similar to our work in that it also falls un-
der

∑
k qkg(Ãk). Specifically, it is a special-case of

ours, when GCN module is restricted to a single layer,
as explained in Section 3.6. Finally, we published a
variant of this work (Abu-El-Haija et al., 2019), which
inter-mixes the scales (i.e. adjacency-powers) at every
graph convolutional layer: it enjoys theoretical guar-
antees, but its empirical performance is slightly below
this version. Our open-source code implements both:
https://github.com/samihaija/mixhop

6 CONCLUSION

We proposed a meta-model that can run arbitrary Graph
Convolution models, such as GCN (Kipf and Welling,
2017) and SAGE (Hamilton et al., 2017), on the output
of random walks. Traditional Graph Convolution models
operate on the normalized adjacency matrix. We make
multiple instantiations of such models, feeding each dif-
ferent graph scale i.e. a different power of the adjacency
matrix, then feed the output of all instances into a clas-
sification sub-network. Our model, Network of GCNs
(and similarly, Network of SAGE), is end-to-end train-
able, and is able to directly learn information across near
or distant neighbors. Inspecting the distribution of pa-
rameter weights in our classification sub-network, re-
veals that our model effectively circumvents adversarial
perturbations on the input by shifting weights towards
model instances operating on courser graph scales.

References
Abadi, M. et al.

2016. TensorFlow: Large-scale machine learning on
heterogeneous systems. In Proc. of the USENIX Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI), Pp. 265–283.

Abu-El-Haija, S., B. Perozzi, R. Al-Rfou, and A. Alemi
2018. Watch your step: Learning graph embeddings
through attention. In Proc. of the Advances in Neural
Information Processing Systems (NIPS).

Abu-El-Haija, S., B. Perozzi, A. Kapoor, H. Harutyun-
yan, N. Alipourfard, K. Lerman, G. V. Steeg, and
A. Galstyan
2019. Mixhop: Higher-order graph convolution archi-
tectures via sparsified neighborhood mixing. In Inter-
national Conference on Machine Learning.

Atwood, J. and D. Towsley
2016. Diffusion-convolutional neural networks. In
Proc. of the Advances in Neural Information Process-
ing Systems (NIPS).

Ba, J. and D. Kingma
2015. Adam: A method for stochastic optimization.
In Proc. of the International Conference on Learning
Representations (ICLR).

Belkin, M. and P. Niyogi
2003. Laplacian eigenmaps for dimensionality re-
duction and data representation. Neural computation,
15(6):1373–1396.

Belkin, M., P. Niyogi, and V. Sindhwani
2006. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled ex-
amples. Journal of machine learning research,
7(11):2399–2434.

Bruna, J., W. Zaremba, A. Szlam, and Y. LeCun
2014. Spectral networks and locally connected net-
works on graphs. In Proc. of the International Confer-
ence on Learning Representations (ICLR).

Cao, S., W. Lu, and Q. Xu
2015. Grarep: Learning graph representations with
global structural information. In International on Con-
ference on Information and Knowledge Management.

Chen, H., B. Perozzi, R. Al-Rfou, and S. Skiena
2018. A tutorial on network embeddings.

Defferrard, M., X. Bresson, and P. Vandergheynst
2016. Convolutional neural networks on graphs with
fast localized spectral filtering. In Proc. of the
Advances in Neural Information Processing Systems
(NIPS).

Grover, A. and J. Leskovec
2016. node2vec: Scalable feature learning for net-
works. In Proc. of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Min-
ing.

Hamilton, W., R. Ying, and J. Leskovec
2017. Inductive representation learning on large
graphs. In Proc. of the Advances in Neural Informa-
tion Processing Systems (NIPS).

Hammond, D. K., P. Vandergheynst, and R. Gribonval
2011. Wavelets on graphs via spectral graph the-
ory. Applied and Computational Harmonic Analysis,
30(2):129–150.

He, K., X. Zhang, S. Ren, and J. Sun
2016. Deep residual learning for image recognition.
In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Kipf, T. and M. Welling
2017. Semi-supervised classification with graph con-
volutional networks. In Proc. of the International Con-
ference on Learning Representations (ICLR).

Krizhevsky, A., I. Sutskever, and G. E. Hinton
2012. ImageNet classification with deep convolutional
neural networks. In Proc. of the Advances in Neural
Information Processing Systems (NIPS).

LeCun, Y., L. Bottou, Y. Bengio, P. Haffner, et al.
1998. Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11):2278–2324.

Levy, O., Y. Goldberg, and I. Dagan
2015. Improving distributional similarity with lessons
learned from word embeddings. Transactions of the
Association for Computational Linguistics, 3:211–
225.

Lu, Q. and L. Getoor
2003. Link-based classification. In Proc. of the Inter-
national Conference on Machine Learning (ICML).

Merdan, S., C. L. Barnett, and B. T. Denton
2017. Data analytics for optimal detection of
metastatic prostate cancer. Technical report, Univer-
sity of Michigan.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and
J. Dean
2013. Distributed representations of words and
phrases and their compositionality. In Proc. of the
Advances in Neural Information Processing Systems
(NIPS).

Pennington, J., R. Socher, and C. D. Manning
2014. Glove: Global vectors for word representation.
In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Perozzi, B., R. Al-Rfou, and S. Skiena
2014. DeepWalk: Online learning of social represen-
tations. In Proc. of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Min-
ing.

Perozzi, B., V. Kulkarni, H. Chen, and S. Skiena
2017. Don’t walk, skip!: Online learning of multi-
scale network embeddings. In International Confer-
ence on Advances in Social Networks Analysis and
Mining.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich
2015. Going deeper with convolutions. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Weston, J., F. Ratle, H. Mobahi, and R. Collobert
2012. Deep learning via semi-supervised embedding.
In Neural Networks: Tricks of the Trade, Pp. 639–655.
Springer.

Yang, Z., W. Cohen, and R. Salakhutdinov
2016. Revisiting semi-supervised learning with graph
embeddings. In Proc. of the International Conference
on Machine Learning (ICML).

Zhu, X., Z. Ghahramani, and J. Lafferty
2003. Semi-supervised learning using gaussian fields
and harmonic functions. In Proc. of the International
Conference on Machine Learning (ICML).

