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The Role of Parameter Uncertainty in the
Proposed Hyperparameter Optimization

Bayesian inference and the idea of measuring uncertainty
are somewhat uncommon in the literature for knowledge
graph embeddings. To clarify why uncertainty is important
in the proposed hyperparameter optimization (Section 3.1
of the main text), we compare the method here to a more
naive approach that will turn out to fail because it ignores
uncertainty. We discuss the failure of the naive approach
and the benefit of estimating parameter uncertainty first in-
tuitively and then more formally.

Intuitive picture. The variational EM algorithm maxi-
mizes (a lower bound on) the marginal likelihood p(S′|λ),
Eq. 14 of the main text. In a more naive attempt to hy-
perparameter tuning without cross validation, one might be
tempted to skip the marginalization over model parameters
E and R. Instead, one might try to directly maximize the
log joint probability log p(E,R,S′|λ), i.e., minimize the
loss L = − log p(E,R,S′|λ), over E, R, and hyperparam-
eters λ. This approach, however, would lead to divergent
solutions because the log joint probability is unbounded.

The log joint probability contains the log priors (first two
terms on the right-hand side of Eq. 10 of the main text).
Figure S1 shows the prior p(Eek|λE

e), Eq. 8 of the main
text, of a single component Eek of an entity embedding
assuming, for simplicity, a real embedding space. With
growing regularizer strength (increasing λE

e), the prior be-
comes narrower and narrower. As the peak narrows, it also
grows higher due to the normalization constraint. In the
limit λE

e → ∞, the prior collapses to an infinitely narrow
and high δ-peak at zero.

A hyperparameter tuning method that ignores posterior un-
certainty can exploit the unbounded growth of the maxi-
mum of the prior to send the log joint distribution to in-
finity (i.e., the loss L → −∞). Without any posterior un-
certainty, one can set the model parameter Eek precisely to
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Figure S1: Prior (Eq. 8 of the main text with p = 3) for
a single model parameter Eek. As the prior gets more
peaked for growing regularizer strength λE

e , the height of
the peak grows unboundedly. An (incorrect) hyperparame-
ter optimization method that ignores parameter uncertainty
could end up exploiting this unboundedness and diverge
to λE

e →∞.

zero and then make the value of p(Eek|λE
e) arbitrarily large

by sending λE
ek →∞.

We prevent this collapse of the prior to a δ-peak by keep-
ing track of parameter uncertainty. Admitting a nonzero
uncertainty for Eek no longer allows us to set Eek precisely
and deterministically to zero. Any slightly nonzero value
of Eek would have no support under a δ-peaked prior.

Formal derivation. We now formalize the above intu-
itive picture and show that the specific variational approxi-
mation chosen in Eqs. 12-13 indeed suffices to prevent any
divergent solutions.

Assuming again a real embedding space, the log prior of a
single model parameter Eek is given by (cf., Eq. 16 of the
main text)

log p(Ee|λE
e) =

1

p

[
log λE

e − λE
e |Eek|

p
]
+ const. (S1)

As discussed above, setting Eek = 0 and sending λE
e →∞

sends the right-hand side of Eq. S1 to infinity. This can



even be relaxed: the log prior diverges for λE
e → ∞

as long as we keep Eek small enough, i.e., as long as
Eek = O((λE

e)
−1/p). This is why maximizing the log joint

distribution over λ leads to divergend solutions.

Instead of maximizing the log joint distribution, the varia-
tional EM algorithm maximizes the ELBO, Eq. 14 of the
main text. Note first that the ELBO itself is bounded from
above by zero: the ELBO is a lower bound on the marginal
log likelihood log p(S′|λ), where p(S′|λ) ≤ 1 since it is a
discrete probability distribution.

Further, the ELBO has a maximum at finite values for the
variational parameters and hyperparameters. Maximizing
the ELBO ensures that each model parameter is associated
with a nonzero uncertainty σE/R

e/r > 0 since the entropy term

H[qµ,σ] =
∑
e∈[Ne]

log σE
e +

∑
r∈[Nr]

log σR
r + const. (S2)

imposes an infinite penalty if any σE/R
e/r → 0. The entropy

term in the ELBO thus has an additional regularizing effect.
Combined with the other regularizing term in the ELBO,
the expected log prior, we obtain for a given model param-
eter Eek using Eq. S1, up to an additive constant,

Eqµ,σ

[
log p(Eek|λE

e)− log
(
qσE

ek,µ
E
ek
(Eek)

)]
=

1

p
log λE

e −
λE
e

p
Eqσ,µ

[
|Eek|p

]
+ log σE

ek (S3)

=
1

p

[
log
(
λE
e

(
σE
ek

)p)− λE
e Eε∼N (0,1)

[∣∣µE
ek + σE

ekε
∣∣p]]

where, in the last equality, we made the dependency on σE
ek

explict by reparameterizing the normal distributed random
variable Eek = µE

ek + σE
ekε in terms of a standard-normal

distributed variable ε.

Maximizing the right-hand side of Eq. S3 over µE
ek yields

µE
ek = 0 by symmetry, thus simplifying the objective to

1

p

[
log
(
λE
e

(
σE
ek

)p)− λE
e

(
σE
ek

)p Eε∼N (0,1)

[
|ε|p
]]

=
1

p

[
log
(
λE
e

(
σE
ek

)p)− λE
e

(
σE
ek

)p
cp

]
(S4)

with some numerical constant cp > 0. The right-hand side
of Eq. S4 is structurally similar to the right-hand side of
Eq. S1, which had divergent solutions: both are a difference
between a logarithmic and a linear term in λE

e . However,
while in Eq. S1, we were able to send the logarithmic term
to infinity and still keep the linear term bounded, this is not
possible in Eq. S4, which has the same argument (up to a
constant cp) for the logarithmic and the linear term. The
right-hand side of Eq. S4 has a maximum at a finite value
for λE

e

(
σE
ek

)p
. Thus, the variational EM algorithm avoids

divergent solutions.


