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Abstract

Scientific models describe natural phenomena
at different levels of abstraction. Abstract de-
scriptions can provide the basis for interven-
tions on the system and explanation of ob-
served phenomena at a level of granularity that
is coarser than the most fundamental account
of the system. Beckers and Halpern (2019),
building on work of Rubenstein et al. (2017),
developed an account of abstraction for causal
models that is exact. Here we extend this
account to the more realistic case where an
abstract causal model offers only an approx-
imation of the underlying system. We show
how the resulting account handles the discrep-
ancy that can arise between low- and high-
level causal models of the same system, and
in the process provide an account of how one
causal model approximates another, a topic of
independent interest. Finally, we extend the
account of approximate abstractions to prob-
abilistic causal models, indicating how and
where uncertainty can enter into an approxi-
mate abstraction.

1 INTRODUCTION

Scientific models aim to provide a description of real-
ity that offers both an explanation of observed phenom-
ena and a basis for intervening on and manipulating the
system to bring about desired outcomes. Both of these
aims lead to a consideration of models that represent the
causal relations governing the system. They also imply
the need for scientific models that describe the system
at a granularity or level of description appropriate for
the user and suitable for interventions that are feasible.
Such more abstract causal models do not capture all the

Figure 1: Climate example adapted from Chalupka et
al. (2016), in which a high-level causal model for the
phenomenon of El Niño is constructed from low-level
(high-dimensional) wind ~W and sea surface temperature
~T measurements. ~U is an unmeasured confounder and τ
is the mapping between the models. See text for details.

detailed interactions that occur at the most fundamental
level of the system, nor do they, in general, represent out-
comes of the system completely accurately at the abstract
level. Nevertheless, such abstract causal models can (at
least) approximately explain the phenomena, and can be
informative about how the system will respond to inter-
ventions that are specified only at the abstract level.

This paper provides a formal account of such approxi-
mate abstractions for causal models that builds on the
definition of an abstraction provided by Beckers and
Halpern (2019) (see Section 2), which in turn built on
the work of Rubenstein et al. (2017). That notion of ab-
straction implicitly assumed an underlying causal system
that permitted an exact description of the system at the
abstract level. Here we weaken that assumption to han-
dle what we take to be the more realistic case, namely,
that abstract causal models will capture the underlying
system in only an approximate way.

As a simplified working example to illustrate our points
we use the case of the wind and sea surface temper-
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ature patterns over the equatorial Pacific that give rise
to the high-level climate phenomena of El Niño and La
Niña, as described by Chalupka et al. (2016). They con-
sidered the question of how the El Niño climate phe-
nomenon related to the underlying wind and sea surface
temperature patterns that constitute it (see Fig. 1). At the
low level they considered two high-dimensional vector-
valued variables representing the wind speeds ~W and
the sea surface temperatures ~T , respectively, on a grid
of geographical locations in the equatorial Pacific. They
assumed (with some justification from climate science)
that wind speed ~W is a cause of sea surface temperature
~T , that is, ~T = fL( ~W, ~U) for some high-dimensional
function fL(.) and exogenous causes ~U . They allowed
the possibility that ~U may be a confounder of ~W and
~T , so that there might be an additional causal relation
~W = gL(~U). Leaving details about feedback and tem-
poral delay aside, they were interested in whether the
same system could be described at a higher level, using
a low-dimensional structural equation E = fH(C, ~U),
where there is a surjective mapping τ from R(~T , ~W ),
the set of possible values of ~T and ~W , to R(E,C). In
the language of this paper, they were searching for an
abstract causal description of the system. They required
that the high-level model retain a causal interpretation,
in the sense that if one intervened on C, there would still
be a well-defined causal effect on E, no matter how the
intervention on C was interpreted as an intervention on
the underlying set of variables ~W .

Chalupka et al. (2016) were able to learn such a high-
level model, and one of the states of E (the high-level
description of the sea surface temperatures) indeed cor-
responded to what would commonly be described as an
El Niño occurring, conventionally defined by an average
temperature deviation in a rectangular region of the Pa-
cific. However, the high-level description was not per-
fect: it provided an informative causal description of the
underlying systems and allowed for predictions that ap-
proximated the actual outcomes. Here we make precise
the nature of such an approximation between a high-level
and low-level causal model of the same system. In the
process, we define what it means for one causal model to
approximate another.

Although our running example is a vastly simplified cli-
mate model, the challenge of approximately modeling
phenomena at a more abstract level is part of almost ev-
ery scientific model. For example, it was Robert Boyle’s
great insight that, despite its inaccuracies for real gases in
practice, the ideal gas law still provides an approximate
abstract description of the behavior of the molecules of a
gas in a container that is extraordinarily useful for un-
derstanding and manipulating real systems. Approxi-

mate abstractions can take a variety of forms in scientific
practice, ranging from idealizations and discretizations
to other forms of simplification and dimension reduction
(as in the climate example). Our account captures these
in a unified formal framework.

The main contribution of this paper is to present a frame-
work that offers a foundation for analyzing abstraction
and approximation in causal models. We provide what
we believe are sensible definitions of approximation and
approximate abstraction, and a conceptual discussion of
these notions. In addition, we provide some technical re-
sults regarding the difficulty of determining whether an
approximate abstraction can be viewed as the composi-
tion of an approximation and an exact abstraction.

2 PRELIMINARIES

Since we are interested in scientific models that support
explanations of phenomena and can inform interventions
on a system, we start by defining a deterministic causal
model with a set of possible interventions. We use ex-
ogenous and endogenous variables to distinguish those
influences that are external to the system and those that
are internal. The definitions follow the framework devel-
oped by Halpern (2016).

Definition 2.1: A signature S is a tuple (U ,V,R), where
U is a set of exogenous variables, V is a set of endoge-
nous variables, andR, a function that associates with ev-
ery variable Y ∈ U∪V a nonempty setR(Y ) of possible
values for Y (i.e., the set of values over which Y ranges).
If ~X = (X1, . . . , Xn), R( ~X) denotes the crossproduct
R(X1)× · · · × R(Xn).

For simplicity in this paper, we assume that signatures
are finite, that is, U and V are finite, and the range of
each variable Y ∈ U ∪ V is finite.

Definition 2.2: A basic causal modelM is a pair (S,F),
where S is a signature and F defines a function that as-
sociates with each endogenous variable X a structural
equation FX giving the value ofX in terms of the values
of other endogenous and exogenous variables. Formally,
the equation FX maps R(U ∪ V − {X}) to R(X), so
FX determines the value ofX , given the values of all the
other variables in U ∪ V .

Note that there are no functions associated with exoge-
nous variables, since their values are determined outside
the model. We call a setting ~u of values of exogenous
variables a context.1

1We remark that the notion of context used here, which goes
back to (Halpern and Pearl 2005), is similar to that of Boutilier



The value ofX may not depend on the values of all other
variables. Y depends on X in context ~u if there is some
setting of the endogenous variables other than X and Y
such that if the exogenous variables have value ~u, then
varying the value of X in that context results in a varia-
tion in the value of Y ; that is, there is a setting ~z of the
endogenous variables other than X and Y and values x
and x′ of X such that FY (x, ~z, ~u) 6= FY (x

′, ~z, ~u).

In this paper, we restrict attention to recursive (or
acyclic) models, that is, models where there is a partial
order � on variables such that if Y depends on X , then
X ≺ Y .2 In a recursive model, given a context ~u, the
values of all the remaining variables are determined (we
can just solve for the value of the endogenous variables
in the order given by ≺) We often write the equation for
an endogenous variable as X = f(~Y ); this denotes that
the value of X depends only on the values of the vari-
ables in ~Y , and the connection is given by f . Our climate
example is recursive, since ~T = fL( ~W, ~U).

An intervention has the form ~X ← ~x, where ~X is a set
of endogenous variables. Intuitively, this means that the
values of the variables in ~X are set to ~x. The structural
equations define what happens in the presence of inter-
ventions. Setting the value of some variables ~X to ~x
in a causal model M = (S,F) results in a new causal
model, denoted M ~X←~x, which is identical to M , except
that F is replaced by F ~X←~x: for each variable Y /∈ ~X ,
F
~X←~x
Y = FY (i.e., the equation for Y is unchanged),

while for each X ′ in ~X , the equation FX′ for is replaced
by X ′ = x′ (where x′ is the value in ~x corresponding to
~x).

Halpern and Pearl (2005) and Halpern (2016) implic-
itly assumed that all interventions can be performed in
a model. For reasons that will become clear when defin-
ing abstraction, we follow Rubenstein et al. (2017) and
Beckers and Halpern (2019) in adding the notion of “al-
lowed interventions” to a causal model. This allows us to
capture situations where not all interventions are of inter-
est to the modeler and/or some interventions may not be
feasible. We can then define a causal modelM as a tuple
(S,F , I), where (S,F) is a basic causal model and I
is a set of allowed interventions. We sometimes write a
causal model M = (S,F , I) as (M ′, I), where M ′ is
the basic causal model (S,F), if we want to emphasize
the role of the allowed interventions.

Given a signature S = (U ,V,R), a primitive event

et al. (1996), in that both are assignments of values to variables.
However, here it is used in particular to denote an assignment
of values to all the exogenous variables.

2Halpern (2016) calls this strongly recursive, in order to dis-
tinguish it from models in which the partial order depends on
the context. This distinction has no impact on our results.

is a formula of the form X = x, for X ∈ V and
x ∈ R(X). A causal formula (over S) is one of the
form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean
combination of primitive events, Y1, . . . , Yk are distinct
variables in V , and yi ∈ R(Yi). Such a formula is ab-
breviated as [~Y ← ~y]ϕ. The special case where k = 0
is abbreviated as ϕ. Intuitively, [Y1 ← y1, . . . , Yk ←
yk]ϕ says that ϕ would hold if Yi were set to yi, for
i = 1, . . . , k.

A causal formula ψ is true or false in a causal model,
given a context. As usual, we write (M,~u) |= ψ if the
causal formula ψ is true in causal modelM given context
~u. The |= relation is defined inductively. (M,~u) |= X =
x if the variable X has value x in the unique (since we
are dealing with recursive models) solution to the equa-
tions in M in context ~u (i.e., the unique vector of val-
ues that simultaneously satisfies all equations in M with
the variables in U set to ~u). The truth of conjunctions
and negations is defined in the standard way. Finally,
(M,~u) |= [~Y ← ~y]ϕ if (M~Y=~y, ~u) |= ϕ.

To simplify notation, we sometimes write M(~u) to de-
note the unique element of R(V) such that (M,~u) |=
V = ~v. Similarly, given an intervention ~Y ← ~y,
M(~u, ~Y ← ~y) denotes the unique element ofR(V) such
that (M,~u) |= [~Y ← ~y](V = ~v).

These definitions allow us to describe the climate system
both in terms of a low-level causal modelML and a high-
level model MH :

ML = ((UL,VL,RL),FL, IL)

= (({~U}, { ~W, ~T},RL), {gL, fL}, IL) and
MH = ((UH ,VH ,RH),FH , IH)

= (({~U}, {C,E},RH), {gH , fH}, IH).

Chalupka et al. (2016) treated ~U as not only exogenous,
but also unobserved, and therefore made no claim about
its dimensionality in the high-level model. We do not ex-
plicitly spell outRL andRH here; the description of the
climate model indicates that RL(C) × RL(E) is much
smaller thanRL( ~W )×RL(~T ): many different low-level
(vector-valued) states may correspond to one high-level
low-dimensional state. Finally, for our climate example
we have not yet said anything about interventions, so IL
and IH are currently placeholders.

We are now in a position to specify a relation between
the high and low-level models MH and ML.

2.1 Abstraction

Beckers and Halpern (2019) gave a sequence of suc-
cessively more restrictive definitions of abstraction for



causal model. The first and least restrictive definition
is the notion of exact transformation due to Rubenstein
et al. (2017). Examples given by Beckers and Halpern
show that the notion of exact transformation is arguably
too flexible. Thus, in this paper the notion of abstrac-
tion we consider is that of τ -abstractions, introduced by
Beckers and Halpern, which can be viewed as a restric-
tion of exact transformations3 and avoids some of their
problems. However, nothing hinges on this choice: all
definitions can just as well be interpreted using the less
restrictive notions of abstractions.

The key to defining all the notions of abstraction
from a low-level to a high-level causal model consid-
ered by Beckers and Halpern is the abstraction func-
tion τ : RL(VL)→ RH(VH) that maps endogenous
states of ML to endogenous states of MH . This
is a generalization of the surjective mapping τ from
R(~T , ~W ) to R(E,C) discussed in the introduction.
In the formal definition, we need two additional func-
tions: τU : RL(UL)→ RH(UH), which maps exoge-
nous states of ML to exogenous states of MH , and
ωτ : IL → IH , which maps low-level interventions to
high-level interventions. Beckers and Halpern (2019)
show that, given their definition of abstraction, τU and
ωτ can be derived from τ . We briefly review the rele-
vant definitions here; we refer the reader to their paper
for more details and motivation.

Definition 2.3: Given a set V of endogenous variables,
~X ⊆ V , and ~x ∈ R( ~X), let

Rst(V, ~x) = {~v ∈ R(V) : ~x is the restriction of ~v to ~X}.

Given τ : RL(VL) → RH(VH), define ωτ ( ~X ← ~x) =
~Y ← ~y if ~Y ⊆ VH , ~y ∈ RH(~Y ), and τ(Rst(VL, ~x)) =
Rst(VH , ~y) (where, as usual, given T ⊆ RL(VL), define
τ(T ) = {τ(~vL) : ~vL ∈ T}). It is easy to see that, given
~X and ~x, there can be at most one such ~Y and ~y. If
such a ~Y and ~y do not exist, we take ωτ ( ~X ← ~x) to be
undefined. Let IτL be the set of interventions for which
ωτ is defined, and let IτH = ωτ (IτL).

Note that if τ is surjective, then it easily follows that
ωτ (∅) = ∅, and for all ~vL ∈ RL(VL), ωτ (VL ← ~vL) =
VH ← τ(~vL).

With this definition, the need for the intervention sets
IL and IH becomes clear: in general, not all low-level

3Exact τ -transformations relate probabilistic causal mod-
els, while τ -abstractions relate (deterministic) causal models.
Beckers and Halpern (2019) show that we can compare the
two by proving that every τ -abstraction is what they call a uni-
form τ -transformation: specifically, if MH is a τ -abstraction
of ML, then for every probability PrL, there exists a probabil-
ity PrH such that (ML,PrL) is an exact τ -transformation of
(MH ,PrH).

interventions will neatly map to a high-level interven-
tion, since the abstraction function τ may aggregate vari-
ables together; some low-level interventions will consti-
tute only a partial intervention on a high-level variable.
The “allowed intervention” sets ensure that the set of in-
terventions can be suitably restricted to retain only those
that can actually be abstracted. Similarly, there may be
cases where the high-level model does not support all
interventions because they may not be well-defined. For
example, what does it mean in the ideal gas law to change
temperature, while keeping pressure and volume con-
stant? It is not even clear that such an intervention is
meaningful.

Of course, a minimal requirement for any causal model
to be a τ -abstraction of some other model is that the sig-
natures of both models need to be compatible with τ .
Beckers and Halpern (2019) add two further minimal re-
quirements. We capture all of them by requiring the two
causal models to be τ -consistent:

Definition 2.4 : If τ : RL(VL) → RH(VH), then
(MH , IH) and (ML, IL) are τ -consistent if τ is surjec-
tive, IH = ωτ (IL), and |RL(UL)| ≥ |RH(UH)|.

Definition 2.5 : (MH , IH) is a τ -abstraction of
(ML, IL) if (MH , IH) and (ML, IL) are τ -consistent
and there exists a surjective τU such that for all ~uL ∈
RL(UL) and ~X ← ~x ∈ IL, τ(ML(~uL, ~X ← ~x)) =

MH(τU (~uL), ωτ ( ~X ← ~x)).

Abstraction means that for each possible low-level
context-intervention pair, the two ways of moving up “di-
agonally” to a high-level endogenous state always lead to
the same result. The first way is to start by applying ML

to get a low-level state, and then moving up to a high-
level state by applying τ , whereas the second way is to
first move to a high-level context and intervention (by ap-
plying τU and ωτ ), and then to obtain a high-level state
by applying MH .

A common and useful form of abstraction occurs when
the low-level variables are clustered, so that the clusters
form the high-level variables. Roughly speaking, the in-
tuition is that in the high-level model, one variable cap-
tures the effect of a number of variables in the low-level
model. This makes sense only if the low-level variables
that are being clustered together “work the same way” as
far as the allowed interventions go. The following defi-
nition makes this special case of abstraction precise.

Definition 2.6 : If VH = {Y1, . . . , Yn}, then τ :
RL(VL) → RH(VH) is constructive if there exists a
partition P = {~Z1, . . . , ~Zn+1} of VL, where ~Z1, . . . , ~Zn
are nonempty, and mappings τi : R(~Zi) → R(Yi)
for i = 1, . . . , n such that τ = (τ1, . . . , τn); that is,



Figure 2: The climate model exemplifies constructive ab-
straction. Left: τ and τU map low-level variables to their
high-level counterparts. Right: ωτ maps low-level in-
terventions to the high-level intervention. Several differ-
ent low-level interventions on ~W may correspond to the
same intervention on C.

τ(~vL) = τ1(~z1) · . . . · τn(~zn), where ~zi is the projection
of ~vL onto the variables in ~Zi, and · is the concatena-
tion operator on sequences. If MH is a τ -abstraction of
ML then we say it is constructive if τ is constructive and
IL = IτL.

In this definition, we can think of each ~Zi as describ-
ing a set of microvariables that are mapped to a single
macrovariable Yi. The variables in ~Zn+1 (which might
be empty) are ones that are marginalized away.

The climate example almost exactly fits the notion of
constructive abstraction: the variables in the high-level
model,C andE, each correspond to a vector-valued low-
level variable, ~W and ~T , but ~W and ~T could have been
replaced by disjoint sets of variables. Consequently, τ
maps states from the same low-level variable to the same
high-level variable (see Fig. 2, left). Although interven-
tions are practically not feasible in the climate case, hy-
pothetically they are perfectly well-defined: an interven-
tion on C can be instantiated at the low level by several
different interventions on ~W (see Fig. 2, right). Finally,
given an intervention on ~W , we have that

ML(~u, ~W ← ~w) |= (~T = ~t) iff

MH(τU (~u), ωτ ( ~W ← ~w)) |= (E = τ(~t)).

The correspondence between ML and MH is exact. In
fact, the high-level model MH constructed by Chalupka
et al. (2016) did not satisfy this biconditional precisely,
but had to approximate it. We maintain that, in general,
high-level models in science are only approximate ab-
stractions.

3 APPROXIMATE ABSTRACTION

In order to define what it means for one causal model to
be an approximation of another, we need a way of mea-
suring the “distance” between causal models. We take a

distance function to simply be a function that associates
with a pair (M1,M2) a distance, that is, a non-negative
real number. We show how various distance functions on
causal models can be defined, starting from a metric dV
on the state spaceR(V) of a causal model. (Recall that a
metric on a spaceX is a function d : X×X → IR+ such
that (a) d(x, x′) = 0 iff x = x′, (b) d(x, y) = d(y, x),
and (c) d(x, y) + d(y, z) ≥ d(x, z).) Such a metric dV
is typically straightforward to define. Given two states
s1 and s2, we can compare the value of each endogenous
variable X in s1 and s2. The difference in the values
determines the distance between s1 and s2.

The choice of distance function is application-dependent.
Different researchers looking at the same data may be
interested in different aspects of the data. For ex-
ample, suppose that the model is defined in terms
of 5 variables, X1, . . . , X5. X3 might be gen-
der and X4 might be height. Suppose that we
restrict to distance functions that takes the dis-
tance between (x1, . . . , x5) and (x′1, ..., x

′
5) to be of

the form
√
w1(x1 − x′1)2 + · · ·+ w5(x5 − x′5)2, where

w1, . . . , w5 are weights that represent the importance (to
the researcher) of each of these five features. One re-
searcher might not be interested in gender (so doesn’t
care if her predictions about gender are incorrect), and
thus might take w3 = 0; another researcher might care
about gender and not about height, so she might take
w3 = 1 and w4 = 0. While, as we shall see, the choice
of distance function makes a crucial difference in eval-
uating the “goodness” of an approximate abstraction, in
light of the above, we leave the choice of distance func-
tion unspecified.

In the remainder of the paper, we assume that the state
space R(V) of endogenous variables for each causal
model comes with a metric dV . We provide a number of
ways of lifting the metric dV on states to a distance func-
tion d on models, and then use the distance function to
define both approximation and approximate abstraction.

Our intuition for the distance function is based on how
causal models are typically used. Specifically, we are in-
terested in how two models compare with regard to the
predictions they make about the effects of an interven-
tion. Our intuition is similar in spirit to that behind the
notion of structural intervention distance considered by
Peters and Bühlmann (2015), although the technical defi-
nitions are quite different. (We discuss the exact relation-
ship between our approach and theirs in the next section,
in the context of probabilistic models.)

We start with the simplest setting where this intuition can
be made precise, one where the modelsM1 andM2 differ
only with regards to their equations. We say that two
models are similar in this case. If two models are similar,



then, among other things, we can assume that they have
the same metric dV . In this setting, we can compare the
effect of each allowed intervention ~X ← ~x in the two
models. That is, for each context ~u, we can compare the
statesM1(~u, ~X ← ~x) andM2(~u, ~X ← ~x) that arise after
performing the intervention ~X ← ~x in context ~u in each
model. We get the desired distance function by taking
the worst-case distance between all such states.

Definition 3.1: Define a distance function dmax on pairs
of similar models by taking

dmax(M1,M2) =

max ~X←~x∈I, ~u∈R(U){dV(M1(~u, ~X ← ~x),M2(~u, ~X ← ~x))}.

The causal model M1 is a dmax-α approximation of M2

if dmax(M1,M2) ≤ α.

Thus, M1 is a dmax-α approximation of M2 if the pre-
dictions of M1 are always within α of the predictions of
M2.

We apply similar ideas to defining approximate abstrac-
tion. But now we no longer have a distance function de-
fined on causal models with the same signature. Rather,
the distance function dτ is defined on pairs (ML,MH)
consisting of a low-level and high-level causal model
(which, in general, have different signatures), related by
a a surjective mapping τ . The idea behind dτ is that we
start with a low-level intervention ~X ← ~x, consider its
effects in ML, lift this up to MH using τ , and compare
this to the effects of ωτ ( ~X ← ~x) in MH .

Definition 3.2: Fix a surjective map τ : R(VL) →
R(VH). Define the distance function dτ on pairs of τ -
consistent models (ML,MH) by taking

dτ (ML,MH) = minτU surjective max ~X←~x∈IL, ~uL∈RL(UL)
(dVH (τ(ML(~uL, ~X ← ~x)),MH(τU (~uL), ωτ ( ~X ← ~x)))).

MH is a τ -α approximate abstraction of ML if
dτ (ML,MH) ≤ α.

We take the minimum over all functions τU because the
function that lifts the low-level contexts up to the high-
level contexts does not play a major role. We thus simply
focus on the best choice of τU .

To get an intuition for an approximate abstraction, con-
sider the climate example again. For a low-level inter-
vention ~W ← ~w and a low-level context ~u, there are two
ways of lifting their effect toMH (see Fig. 3). The first is
to start by applying ML to the context-intervention pair
to determine a low-level state ~t, and then apply τ to ob-
tain the high-level state E = e = τ(~t). (Recall that ML

can be viewed as a function from context-intervention

Figure 3: Approximate abstraction in the climate exam-
ple. We measure (for the worst-case choice of low-level
intervention ~W ← ~w and context ~u) the distance be-
tween the values of the variable E obtained by (a) first
applying ML to ~u and ~W ← ~w and then abstracting by
applying τ vs. (b) abstracting the intervention and con-
text (by applying ωτ and τU , respectively) and then ap-
plying MH .

pairs to states in RL(VL).) The second is to first lift
the intervention ~W ← ~w to IH , that is, an intervention
on C, and the context to UH by applying ωτ and τU .
Then we apply MH(~uH , C ← c), which again gives a
high-level endogenous state e′. We are identifying the
degree to which MH approximates ML with the worst-
case distance between the two ways of lifting the context-
intervention pairs, for an optimal choice of τU .

The following straightforward results show that our no-
tion of approximate abstraction is a sensible generaliza-
tion of both the notion of an exact abstraction and the
notion of approximation between similar models.

Proposition 3.3: MH is a τ -0-approximate abstraction
of ML iff MH is a τ -abstraction of ML.

Proposition 3.4: If M1 and M2 are similar, then M2

is a Id -α-approximate abstraction of M1 (where Id is
the identity function on R(V)) iff M2 is a dmax-α-
approximation of M1.

4 APPROXIMATE ABSTRACTION FOR
PROBABILISTIC CAUSAL MODELS

A probabilistic causal modelM = (S,F , I,Pr) is just a
causal model together with a probability Pr on contexts
~u. In this section, we assume that all causal models are
probabilistic, and extend the notion of approximation to
probabilistic causal models. We again start by consid-
ering the simplest setting, where we have probabilistic
models that differ only in their equations. We again call
such models similar. Now we have several reasonable
distance functions.

Definition 4.1: Define a distance function dmax on pairs



of similar probabilistic causal models by taking

dmax(M1,M2) = max ~X←~x∈I(∑
~u∈R(U) Pr(~u)dV(M1(~u, ~X ← ~x),M2(~u, ~X ← ~x))

)
.

The probabilistic causal model M1 is a dmax-α approxi-
mation of M2 if dmax(M1,M2) ≤ α.

Here we have just replaced the max over contexts in Def-
inition 3.1 by an expectation over contexts.

But we may not always just be interested in the expected
distance. We may, for example, be more concerned with
the likelihood of serious prediction differences, and not
be too concerned about small differences. This leads to
the following definition.

Definition 4.2: Define a distance function dβ on pairs of
similar probabilistic causal models by taking

dβ(M1,M2) = max ~X←~x∈I
Pr({~u : dV(M1(~u, ~X ← ~x),M2(~u, ~X ← ~x)) ≥ β}.

The probabilistic causal model M1 is a dβ-α approxima-
tion of M2 if dβ(M1,M2) ≤ α.

We can now extend these ideas to approximate abstrac-
tion. We first extend the definition of τ -abstraction to the
probabilistic setting.

Note that we can view Pr as a probability measure on
R(V), by taking Pr(~v) = {~u : M(~u) = ~v}. An inter-
vention ~X ← ~x also induces a probability Pr

~X←~x on
R(V) in the obvious way:

Pr
~X←~x(~v) = Pr({~u :M(~u, ~X ← ~x) = ~v}).

In the deterministic notion of abstraction, we require that
the two high-level states obtained by the two different
ways of lifting the effects of a low-level intervention to
the high level be equal. In the probabilistic notion, we
require that the two different probability distributions ob-
tained by the two ways of lifting an intervention be equal.

Definition 4.3: MH is a τ -abstraction of ML if MH and
ML are τ -consistent and for all interventions ~X ← ~x ∈
IL, we have that τ(Pr

~X←~x
L ) = Pr

ωτ ( ~X←~x)
H .

We can now extend our definitions to the approximate
scenario just as we did for deterministic causal models.

Definition 4.4: Fix a surjective map τ : R(VL) →
R(VH). Define the distance function dτ on pairs of τ -
consistent probabilistic causal models by taking

dτ (ML,MH) = min{τU :τU (PrL)=PrH}max ~X←~x∈IL
(
∑
~uL∈RL(UL) PrL(~uL)

dVH (τ(ML(~uL, ~X ← ~x)),MH(τU (~uL), ωτ ( ~X ← ~x)))).

MH is a τ -α approximate abstraction of ML if
dτ (ML,MH) ≤ α.

For the climate example this definition implies the fol-
lowing: Suppose we introduce probabilities by specify-
ing distributions over the contexts ~uL and ~uH . The re-
sulting probabilistic causal model (MH , P rH) is a τ -α
approximate abstraction of (ML, P rL) if the expectation
(in terms of PrL) of the difference between the states e
and e′ of the high-level temperature variable E is less or
equal to α, where e and e′ are determined exactly in ac-
cordance with the two pathways in Fig. 3, selecting the
worst-case intervention ~W ← ~w and the best case τU .

Analogously to the deterministic case, we have the fol-
lowing straightforward results.

Proposition 4.5: MH is a τ -0-approximate abstraction
of ML iff MH is a τ -abstraction of ML.

Proposition 4.6: If M1 and M2 are similar, then M2 is
a Id-α-approximate abstraction of M1 iff M2 is a dmax-
α-approximation of M1.

In Definition 4.4 we consider the worst-case low-level
intervention to define the distance. In many cases, how-
ever, the whole point of an abstraction is to be able to
exclude rare low-level boundary cases (e.g., when the
ideal gas law is taken to refer only to equilibrium states).
Moreover, often the actual manipulations that we can
perform are known to us only at the high-level, because
the low-level implementation of the intervention is unob-
servable to us. For example, in setting the room temper-
ature to 70◦F we do not generally consider the instantia-
tion of that intervention which superheats one corner of
the room and freezes the rest such that the mean kinetic
energy works out just right. As Spirtes and Scheines
(2004) show, in the absence of any further information,
such ambiguous manipulations can be quite problematic.
Fortunately, often our knowledge of the mechanism of
how a high-level intervention is implemented does give
us significant probabilistic information. For example, we
might know that the heater has a fan that circulates the
air, most likely resulting in relatively uniform distribu-
tions of the kinetic energies of the particles.

We capture this information using what we call an inter-
vention distribution.

Definition 4.7 : Given a surjective map
τ : R(VL)→ R(VH), an intervention distribu-
tion PrI is a distribution on IL × IH such that
PrI( ~X ← ~x | ~Y ← ~y) > 0 iff ωτ ( ~X ← ~x) = ~Y ← ~y.

We think of PrI( ~X ← ~x | ~Y ← ~y) as telling us how
likely the high-level intervention ~Y ← ~y is to have been



Figure 4: Probabilistic approximate abstraction for the
climate example: An intervention on the high-level wind
variable C results, given the distribution over contexts ~u
(omitted for clarity), in the red distribution over the high-
level temperature variable E. The intervention C ← c
can be instantiated in the low-level wind map ~W in many
ways, according to the intervention distribution PrI .
Mapping the (manipulated) distribution over ~W using
ML results in a distribution over the low-level temper-
ature map ~T that combines uncertainty from PrI and
PrU . Abstracting this distribution using τ to E results in
the black distribution over E. MH is a probabilistic τ -α-
approximate abstraction of ML if the distance between
the expectations of these distributions is less than α.

implemented by the low-level intervention ~X ← ~x.

Definition 4.8: Given a surjective map τ : R(VL) →
R(VH) and an intervention-distribution PrI , the dis-
tance function dPrI

τ on pairs of τ -consistent probabilistic
causal models is defined by taking

dPrI
τ (ML,MH) = min{τU : τU (PrL)=PrH}max~Y←~y∈IH

(
∑
~uL∈RL(UL) PrL(~uL)∑
~X←~x∈IL PrI( ~X ← ~x | ~Y ← ~y)

dVH (τ(ML(~uL, ~X ← ~x)),MH(τU (~uL), ωτ ( ~X ← ~x)))).

Intuitively, for each high-level intervention ~Y ← ~y, we
take the expected distance between the two ways of lift-
ing a low-level intervention to ~Y ← ~y. In computing
the expectation, there are two sources of uncertainty: the
likelihood of a given context (this is determined by PrL)
and the likelihood on each low-level intervention that
maps to ~Y ← ~y (this is given by PrI(· | ~Y ← ~y)).
Fig. 4 illustrates the point for the climate example.

We can also define dτβ and dτ,PrI
β in a manner completely

analogous to Definition 4.2. We omit these definitions
for reasons of space, but the details should be clear.

It is worth comparing our approach to other approaches
to determining the distance between causal models. The
more standard way to compare two causal models is to
compare their causal graphs. The causal graph is a di-

rected acyclic graph (dag) that has nodes labeled by vari-
ables; (the node labeled) X is an ancestor of (the node
labeled) Y iff X ≺ Y . Dags have been compared using
what is called the structural Hamming distance (SHD)
(Acid and de Campos 2003), where the SHD between
G and H (which are assumed to have an identical set of
nodes) is the number of pairs of nodes (i, j) on which
G and H differ regarding the edge between i and j (ei-
ther because one of one of them has an edge and the
other does not, or the edges are oriented in different di-
rections). As Peters and Bühlmann (2015) observe, the
SHD misses out on some important information in causal
networks. In particular, it does not really compare the ef-
fect of interventions. They want a notion of distance that
takes this into account, as do we. However, they take into
account the effect of interventions in a way much closer
in spirit to SHD. Roughly speaking, in our language,
given two similar causal models M1 and M2, they count
the number of pairs (X,Y ) of endogenous variables such
that intervening on X leads to a different distribution
over Y in M1 and M2. More formally, let PrM,X←x

Y

denote the marginal of PrM,X←x on the variable Y in
model M . (Since we want to compare probability distri-
butions in two different models, we add the model to the
superscript.) The SID between similar models M1 and
M2 is the number of pairs (X,Y ) such that there exists
an x ∈ R(X) such that PrM1,X←x

Y 6= PrM2,X←x
Y .

Although SID does compare the predictions that two
models make, it differs from our distance functions in
several important respects. First, it compares just the
effect of interventions on single variables, whereas we
allow arbitrary interventions. We believe that it is impor-
tant to consider arbitrary interventions, since sometimes
variables act together, and it takes intervening on more
than one variable to distinguish two models. Second,
we are interested in how far apart two distributions are,
not just the fact that they are different. Finally, we want
a definition that applies to models that are not similar,
since this is what we need for approximate abstraction.

5 COMPOSING ABSTRACTION AND
APPROXIMATION

It can be useful to understand an approximate abstrac-
tion as the result of composing an approximation and an
abstraction, in some order. For example, we can explain
the ideal gas law in terms of thinking of frictionless elas-
tic collisions between particles (this is an approximation
to the truth) and then abstracting by replacing the kinetic
energy of the particles by their temperature (a measure
of average kinetic energy). Here we examine the extent
to which an approximate abstraction can be viewed this
way. We start with two easy results showing that if we



compose an approximation and an abstraction in some
order, then we do get an approximate abstraction.

Proposition 5.1 : If (MH , IH) is a τ -abstraction of
(ML, IL) and (M ′H , IH) is a dmax-α-approximation of
(MH , IH) then (M ′H , IH) is a τ -α approximate abstrac-
tion of (ML, IL). 4

In Proposition 5.1 we considered an abstraction followed
by an approximation. Things change if we do things in
the opposite order; that is, if we consider an approxima-
tion followed by an abstraction. For suppose thatM ′L is a
dmax-α approximation ofML andMH is a τ -abstraction
ofML. Now it is not in general the case thatMH is a dτ -
α-approximate abstraction of M ′L. The problem is that
when assessing how good an abstraction MH is of M ′L,
we are comparing two high-level states (using dVH ). But
when comparing ML to M ′L, we use dVL . In general,
dVL(~vL, ~v

′
L) and dVH (τ(~vL), τ(~v

′
L)) may be unrelated.

Proposition 5.2 : If (MH , IH) is a τ -abstraction of
(ML, IL) and (ML, IL) is a dmax-α approximation of
(M ′L, IL), then (MH , IH) is a τ -kα approximate ab-
straction of (M ′L, I ′L), where k is

max ~X←~x∈IL,~uL∈RL(UL)
dVH (τ(M ′

L(~uL,
~X←~x)),τ(ML(~uL, ~X←~x)))

dVL (M ′
L(~uL,

~X←~x),ML(~uL, ~X←~x))
.

While composing an approximation and an abstraction
gives us an approximate abstraction, the following two
examples show that we cannot in general decompose an
approximate abstraction into an abstraction composed
with an approximation or an approximation composed
with an abstraction. Theorem 5.6 below shows that if we
restrict ourselves to the constructive case then we can do
the former. However, Example 5.4 shows that, even
if we restrict to the constructive case, we cannot do the
latter.

Example 5.3: ML has one exogenous variable U and
endogenous variables A, B, and C. MH also has one
exogenous variable U and endogenous variables D and
E. All the endogenous variables have range {0, 1}; U
has range {0}. Let τ : R(VL)→ R(VH) be τ(a, b, c) =
(a⊕b, b⊕c), where⊕ denotes addition mod 2. The equa-
tions for both ML and MH take the form V = U for all
variables V . IL consists of the empty intervention, and
interventions B ← 1, B ← 0, A ← 1, and A ← 0. IH
consists of only the empty intervention. Taking as dVH
the Euclidean distance, we leave it to the reader to ver-
ify that MH is a τ -

√
2 approximate abstraction of ML.

4Proofs of all technical results from here onwards can be
found in the appendix.

However, there does not exist any M ′L that is similar to
ML such that MH is a τ -abstraction of M ′L. To see why,
note that the only state in MH that arises from apply-
ing an intervention is (0, 0). Therefore, the only states
in ML that can arise from interventions are ones where
a ⊕ b = 0 and b ⊕ c = 0. This means that under the
intervention B ← 0, we must have A = 0, and under
B ← 1, we must have A = 1. Therefore B ≺ A. It also
means that under A← 1 we must have B = 1 and under
A← 0 we must have B = 0, so that A ≺ B. Thus, MH

cannot be recursive.

Example 5.4: Let ML be the model where UL = {U},
VL = {X1, X2, X3},R(Xi) = {0, 1} for i = 1, 2, 3, the
equations areX1 = U , X2 = X1, andX3 = X2, and IL
consists of all interventions such that X1 is intervened
on iff X3 is intervened on. Let MH be the model where
UH = UL = {U}, VH = {Y1, Y2}, R(Y1) = {0, 1} ×
{0, 1}, R(Y2) = {0, 1}, the equations are Y1 = (U,U),
Y2 = proj 1(Y1), the first component of Y1, and IH con-
sists of all interventions. Let P = {{X1, X3}, {X2}},
and τ is such that τ(x1, x2, x3) = ((x1, x3), x2). Note
that τ is constructive, that MH and ML are τ -consistent,
and that IL = IτL. Therefore MH is a constructive τ -α
approximate abstraction of ML for some α (the value of
α depends on the choice of metric dVH ). It is easy to
see that ωτ (X1 ← i,X3 ← j) = (Y1 ← (i, j)) and
ωτ (X2 ← k) = (Y2 ← k). Note that ML(0, (X1 ←
1, X3 ← 0)) = (1, 1, 0), ML(0, (X1 ← 0, X3 ←
1)) = (0, 0, 1), ML(0, X2 ← 0) = (0, 0, 0), and
ML(0, X2 ← 1) = (0, 1, 1). For a causal model M ′H
that is similar to MH to be a τ -abstraction of ML, there
must be some surjection τU such that MH(τU (0), Y1 ←
(1, 0)) = ((1, 0), 1), MH(τU (0), Y1 ← (0, 1)) =
((0, 1), 0), MH(τU (0), Y2 ← 0) = ((0, 0), 0), and
MH(τU (0), Y2 ← 1) = ((0, 1), 1). It follows that
Y1 ≺τU (0) Y2 and Y2 ≺τU (0) Y1. Thus, there is no (re-
cursive) model M ′H that is a τ -abstraction of ML.

As the following result shows, we can test whether an
approximate abstraction can be viewed as the result of
composing an abstraction and an approximation.

Theorem 5.5: If (MH , IH) is a τ -α-approximate ab-
straction of (ML, IL) then the problem of determin-
ing whether there exists a model (M ′H , IH) (resp.,
(M ′L, IL)) that is similar to (MH , IH) and is an abstrac-
tion of (ML, IL) (resp., (ML, IL)) is in nondeterministic
time polynomial in |IL| × |RL(UL)|.

There is one important special case where we are guar-
anteed to be able to find an appropriate intermediate low-
level model, and to do so in polynomial time: if the map-
ping τ is constructive.



Theorem 5.6: If τ : RL(VL) → RH(VH) is construc-
tive, the causal models (ML, IL) and (MH , IH) are τ -
consistent, and (MH , IH) is a τ -α-approximate abstrac-
tion of (ML, IL), then we can find a model (M ′L, IL)
that is similar to (ML, IL), and such that (MH , IH)
is a τ -abstraction of (M ′L, IL) in time polynomial in
|IL| × |R′L(UL)|.

As noted earlier, Example 5.4 shows that τ being con-
structive does not similarly guarantee the existence of
M ′H in the first half of Theorem 5.5.

6 DISCUSSION AND CONCLUSIONS

By defining notions of abstraction, approximation, and
approximate abstraction, we have presented a framework
that relates causal models that describe the same sys-
tem at (possibly) different levels of granularity. While
coarser models offer a degree of simplification by omit-
ting details, they also in general entail a loss in accu-
racy with respect to the fundamental description. Our
framework shows how to quantify this loss in accuracy
by defining a distance metric that captures the degree to
which a more abstract causal model approximates a more
detailed causal model. High- and low-level causal mod-
els of the same system can vary on almost any dimen-
sion. They need not share the same equations, the same
variables, or the same interventions. They may involve
entirely distinct state spaces. Inevitably, then, there is
some degree of choice as to what one deems relevant to
the approximation.

Starting with deterministic causal models, we provided a
general method for quantifying the “goodness” of an ap-
proximate abstraction. As an interesting special case, our
approach allows for the comparison of causal models that
operate at the same level of detail. We then extended to
probabilistic causal models, and considered several dif-
ferent choices for quantifying the distance between mod-
els. Finally, we considered the extent to which we could
decompose an approximate abstraction into an abstrac-
tion and an approximation.

Given the ubiquitous use of causal models in the social
and natural sciences that are known not to capture all the
causally relevant details, the framework we presented of-
fers a principled way to assess the trade-off between ab-
straction and accuracy.

Appendix: Proofs

In this appendix, we prove all the results not proved in
the main text. We repeat the statements of the results for
the reader’s convenience

Proposition 5.1: If (MH , IH) is a τ -abstraction of
(ML, IL) and (M ′H , IH) is a dmax-α-approximation of
(MH , IH) then (M ′H , IH) is a τ -α approximate abstrac-
tion of (ML, IL).

Proof: Fix ~X ← ~x ∈ IL and ~uL ∈ RL(UL). Since
(MH , IH) is a τ -abstraction of (ML, IL), there is a map-
ping τU : UL → UH such that

τ(ML(~uL, ~X ← ~x)) =MH(τU (~uL), ωτ ( ~X ← ~x)).

Since (M ′H , IH) is a dmax-α approximation of
(MH , IH), we must have

dVH (M
′
H(τU (~uL), ωτ ( ~X ← ~x))), τ(ML(~uL, ~X ← ~x)))

= dVH (M
′
H(τU (~uL), ωτ ( ~X ← ~x))),

MH(τU (~uL), ωτ ( ~X ← ~x)))
≤ α.

Thus, (MH′ , IH) is a τ -α approximate abstraction of
(ML, IL).

Proposition 5.2: If (MH , IH) is a τ -abstraction of
(ML, IL) and (ML, IL) is a dmax-α approximation of
(M ′L, IL), then (MH , IH) is a τ -kα approximate ab-
straction of (M ′L, I ′L), where k is

max ~X←~x∈IL,~uL∈RL(UL)
dVH (τ(M ′

L(~uL,
~X←~x)),τ(ML(~uL, ~X←~x)))

dVL (M ′
L(~uL,

~X←~x),ML(~uL, ~X←~x))
.

Proof: Fix ~X ← ~x ∈ IL and ~uL ∈ RL(UL). Since
(MH , IH) is a τ -abstraction of (ML, IL), there is a map-
ping τU : UL → UH such that

τ(ML(~uL, ~X ← ~x)) =MH(τU (~uL), ωτ ( ~X ← ~x)).

Since M ′L is a dmax-α approximation of ML, we
have that dVL(M

′
L(~uL,

~X ← ~x),ML(~uL, ~X ←
~x)) ≤ α. By the definition of k, we have
that dVH (τ(M

′
L(~uL,

~X ← ~x)), τ(ML(~uL, ~X ←
~x)) ≤ kα. Thus, dVH (MH(τU (~uL), ωτ ( ~X ←
~x)), τ(ML(~uL, ~X ← ~x)) ≤ kα. It follows
that (MH , IH) is a τ -kα approximate abstraction of
(M ′L, I ′L).

To make our results more general, we use the more
general interpretation of recursiveness as it appears in
(Halpern 2016). Concretely, this means that the partial
order � on the endogenous variables may depend on the
context. We write �~u for the partial order that exists for
context ~u. (See footnote 2.)

Theorem 5.5: If (MH , IH) is a τ -α-approximate ab-
straction of (ML, IL) and UL and IL are finite, then



the problem of determining whether there exists a model
(M ′H , IH) (resp., (M ′L, IL)) that is similar to (MH , IH)
and is an abstraction of (ML, IL) (resp., (ML, IL) is in
nondeterministic time polynomial in |IL| × |R′L(UL)|.

Proof: We start with the problem of determining M ′H .
Since UH and UL are finite, there are only finitely many
possible surjections from UL to UH . A surjection τU is
potentially high-level compatible with τ if

PC1. For all ~X ← ~x, ~X ′ ← ~x′ ∈ IL and all ~u, ~u′ ∈
RL(UL), if ωτ ( ~X ← ~x) = ωτ ( ~X

′ ← ~x′) and
τU (~u) = τU (~u

′), then τ(ML(~uL, ~X ← ~x)) =

τ(ML(~u
′
L,
~X ′ ← ~x′))

PC2. For all ~uH ∈ RH(UH), there exists a partial or-
der ≺~uH on the variables in VH such that for all
~uL ∈ RL(UL) with ~uH = τU (~uL), all pairs
of interventions ~X ← ~x and ~X ′ ← ~x′ in IL,
and all variables Y ∈ VH whose value differs in
τ(ML(~uL, ~X ← ~x)) and τ(ML(~uL, ~X

′ ← ~x′)),
there exists a variable Z such that Z �~uH Y (i.e.,
Z ≺~uH Y or Z = Y ) and different values in
ωτ ( ~X ← ~x) and ωτ ( ~X ′ ← ~x′) or Z is assigned
a value in one of ωτ ( ~X ← ~x) and ωτ ( ~X ′ ← ~x′)
and not in the other.

We claim that τU is potentially high-level compati-
ble with τ iff there exists a (recursive) causal model
(M ′H , IH) such that, for all contexts ~uL ∈ RL(UL) and
interventions ~X ← ~x ∈ IL, we have

τ(ML(~uL, ~X ← ~x)) =M ′H(τU (~uL), ωτ ( ~X ← ~x)).
(1)

It is easy to see that if PC1 or PC2 do not hold for τU ,
then there can be no (recursive) causal model (M ′H , IH)
satisfying (1). For the converse, to build the model M ′H ,
we have to specify the equations for each variable in such
a way that ≺~uH really is the partial order showing the
dependence on variables in context ~uH . Say that a high-
level state ~vH ∈ RH(VH) is constructible for ~uH and
Y ∈ VH if ~vH = τ(ML(~uL, ~X ← ~x)) for some inter-
vention ~X ← ~x ∈ IL and context ~uL ∈ RL(UL) such
that τU (~uL) = ~uH and ωτ ( ~X ← ~x) does not include an
intervention on Y . Each high-level state ~vH constructible
for ~uH and Y ∈ VH determines one output of F ′Y in con-
text ~uH in the obvious way. Specifically, if F ′Y gets as
arguments ~uH and the values of the variables other than
Y in ~vH , then it must output the value of Y in ~vH . Note
that it follows from PC2 that for the values of F ′Y so de-
fined, if two inputs to F ′Y agree on the values of all vari-
ables Z such that Z ≺~uH Y , they will agree on the value

of Y . We want to extend all the equations F ′Y such that
this continues to be true. This is straightforward.

Fix ~uH . We define F ′Y when the context is ~uH for all
variables Y ∈ VH as follows. If Y has no predecessors
in the ≺~uH order, then it gets the same value in all the
constructible states for context ~uH . We extend F ′Y so
that Y gets that value no matter what the values of the
endogenous variables other than Y are in context ~uH .
Similarly, if Z1, . . . , Zk are the variables that precede Y
in the ≺~uH order, and (Z1, . . . , Zk) = (z1, . . . , zk) ap-
pears in some constructible state for ~uH then, by PC2,
Y has the same value in all constructible states for ~uH
where (Z1, . . . , Zk) = (z1, . . . , zk). We extend F ′Y so
that Y has that value for all inputs where (Z1, . . . , Zk) =
(z1, . . . , zk) and the context is ~uH . If there is no con-
structible state where (Z1, . . . , Zk) = (z1, . . . , zk), then
we just pick a fixed value y ∈ RH(Y ) and take F ′Y to
be y for all inputs where (Z1, . . . , Zk) = (z1, . . . , zk)
and the context is ~uH . It is clear by construction that this
definition has the desired properties.

We conclude this part of the proof by observing that
checking that PC1 holds can be done in time polynomial
in |IL| × |RL(UL)|, and for a fixed ordering ≺τU , PC2
can be checked in time polynomial in |IL| × |RL(UL)|.
Thus, we can determine whether there exists a model
(M ′H , IH) that is an abstraction of (ML, IL) and differs
from (MH , IH) only in the equations by guessing τU and
a collection of partial orders ≺~uH , one for each high-
level context, and confirming that PC1 and PC2 hold.
Thus, this can be done in nondeterministic time polyno-
mial in |IL| × |RL(UL)|.

The algorithm for determining (M ′L, IL) is very similar
in spirit. A surjection τU : RL(VL) → RH(VH) and
a function f : R(UL) × IL → R(VL) are potentially
low-level compatible with τ if they satisfy:

PC1′. For all ~X ← ~x, ~X ′ ← ~x′ ∈ IL and all ~u, ~u′ ∈
RL(UL), if ωτ ( ~X ← ~x) = ωτ ( ~X

′ ← ~x′) and
τU (~u) = τU (~u

′), then τ(f(~uL, ~X ← ~x)) =

τ(f(~u′L,
~X ′ ← ~x′))

PC2′. For all ~uL ∈ RL(UL), there exists a partial order
≺~uL on the variables in VL such that for all inter-
ventions ~X ← ~x and ~X ′ ← ~x′ in IL, and all vari-
ables Y ∈ VL whose value differs in f(~uL, ~X ← ~x)

and f(~uL, ~X ′ �~uL Y and either Z gets different
values in ~X ← ~x and ~X ′ ← ~x′ or Z is assigned a
value in one of ~X ← ~x and ~X ′ ← ~x′ and not in the
other.

Essentially, f(~uL, ~X ← ~x) is playing the same role in
PC2′ as ML(~uL, ~X ← ~x) played in PC2.



We now claim that τU : R′L(V ′L) → RH(VH) and
f : R(U ′L)×I ′L → R(V ′L) are potentially low-level com-
patible with τ iff there exists a (recursive) causal model
(M ′L, IL) such that for all contexts ~uL ∈ RL(UL) and
interventions ~X ← ~x ∈ IL, we have M ′L(~uL, ~X ←
~x)) = f(~uL, ~X ← ~x)) and

τ(M ′L(~uL, ~X ← ~x)) =MH(τU (~uL), ωτ ( ~X ← ~x)).

The argument is almost identical to that given above for
the first part, so we omit it here.

Thus, to determine whether there exists an appropriate
model (M ′L, IL), we simply need to guess f , τU , and
≺~uL for all ~uL ∈ RL(UL) and verify that PC1′ and PC2′

hold.

Theorem 5.6: If τ : RL(VL) → RH(VH) is construc-
tive, the causal models (ML, IL) and (MH , IH) are τ -
consistent, and (MH , IH) is a τ -α-approximate abstrac-
tion of (ML, IL), then we can find a model (M ′L, IL)
that is similar to (ML, IL), and such that (MH , IH)
is a τ -abstraction of (M ′L, IL) in time polynomial in
|IL| × |R′L(UL)|.

Proof: Whereas in the proof of the second half in Theo-
rem 5.5 we had to guess τU and f , here we can construct
them efficiently. Indeed, we can take τU to be an arbi-
trary surjection from UL to UH .

To define f , suppose that VH = {Y1, . . . , Yn} and Pτ =

{~Z1, . . . , ~Zn+1} is the partition that makes τ construc-
tive (as in Definition 2.6).

In constructing f(~uL, ~X ← ~x), we split the intervention
~X ← ~x into two parts: an intervention on variables in
~Z1 ∪ . . . ∪ ~Zn and an intervention on variables in ~Zn+1.
How f works in the former case is determined by trans-
lating the intervention to MH . Interventions on variables
in ~Zn+1 are treated specially. An intervention V ← v

on a variable V ∈ ~Zn+1 just sets V to v, and does not
affect any other variables. In more detail, we proceed as
follows.

Note that τ is also a surjection fromRL(~Z1 ∪ . . . ∪ ~Zn)
to RH(VH), since the variables in ~Zn+1 are ignored by
τ . Thus, there is a right inverse τ−1 : RH(VH) →
RL(~Z1∪ . . . cup~Zn) (so that τ ◦τ−1 is the identity func-
tion on RH(VH)). There are, in general, many such left
inverses, but given τ , we can find a left inverse in time
polynomial |R(UL)|.

Fix a setting ~z∗n+1 for the variables in ~Zn+1. Given an
intervention ~X ← ~x, let ~X† be the subset of variables in
~X that are in ~Z1 ∪ . . . ∪ ~Zn, and let ~X†† be the subset

of variables in ~X that are in ~Zn+1. Let ~x† and ~x†† be the
restrictions of ~x to ~X† and ~X††, respectively. Define

f(~uL, ~X ← ~x) =

(τ−1(MH(τU (~uL), ωT ( ~X
† ← ~x†))), ~z∗n+1[

~X†† = ~x††]),

where ~z∗n+1[
~X†† = ~x††)] is the tuple that results from

~z∗n+1 by setting the values of the variables in ~X†† to ~x††.

We first check PC1′. Suppose that ~X ← ~x, ~X ′ ← ~x′ ∈
IL, ~uL, ~u′L ∈ RL(UL), ωτ ( ~X ← ~x) = ωτ ( ~X

′ ← ~x′),
and τU (~uL) = τU (~u

′
L). Then, using the same notation

as above and just writing “. . .” for the component of the
state describing the values of the variables in ~Zn+1, since
these values are ignored by τ , we have that

τ(f(~uL, ~X ← ~x))

= τ(τ−1(MH(τU (~uL), ωτ ( ~X
† ← ~x†))), . . .)

= τ(τ−1(MH(τU (~u
′
L), ωτ ((

~X ′)† ← (~x′)†))), . . .)

= τ(f(~u′L,
~X ′ ← ~x′)).

To see that PC2′ holds, fix ~uL ∈ RL(UL). Suppose that
VH = {Y1, . . . , Yn} and Pτ = {~Z1, . . . , ~Zn+1} is the
partition that makes τ constructive (as in Definition 2.6).
Since MH is a recursive causal model, there exists a par-
tial order ≺τU (~uL) on the variables in VH such that if Yi
depends on Yj in context τU (~uL), then Yj ≺τU (~uL) Yi.
Define ≺~uL so that X ≺~uL X ′ iff for some i and j,
X ∈ Zj , X ′ ∈ Zi, and Yj ≺τU (~uL) Yi. (Note that this
means that the variables in ~Zn+1 are incomparable to all
the rest.)

We now show that this choice of ≺~uL satisfies PC2′.
Suppose that ~X ← ~x and ~X ′ ← ~x′ in IL, and the value
of V ∈ VL differs in f(~uL, ~X ← ~x) and f(~uL, ~X ′ ←
~x′).

If V ∈ ~Zn+1, then it must be the case that V is in ~X or
~X ′. On the other hand, if V ∈ ~Zi for some i ≤ n, then
the value of Yi differs in MH(τU (~uL), ωτ ( ~X ← ~x)) and
MH(τU (~uL), ωτ ( ~X

′ ← ~x′)). Therefore, there exists a
variable Yj ∈ VH such that Yj ≺τU (~uL) Yi and either Yj
gets different values in ωτ ( ~X ← ~x) and ωτ ( ~X ′ ← ~x′)

or Yj is assigned a value in one of ωτ ( ~X ← ~x) and
ωτ ( ~X

′ ← ~x′) and not in the other. By definition, this
means that for all variables W ∈ ~Zj , we have that
W ≺~uL V . Furthermore, at least one of these variables
W either gets different values in ~X ← ~x and ~X ′ ← ~x′,
or is assigned a value in one of ~X ← ~x and ~X ′ ← ~x′ and
not in the other.

This concludes the proof.
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