Randomized Iterative Algorithms for Fisher Discriminant Analysis (Appendix)

Appendix A PRELIMINARIES

We start by reviewing a result regarding the convergence of a matrix von Neumann series for $(\mathbf{I}-\mathbf{P})^{-1}$. This will be an important tool in our analysis.
Proposition 7. Let \mathbf{P} be any square matrix with $\|\mathbf{P}\|_{2}<1$. Then $(\mathbf{I}-\mathbf{P})^{-1}$ exists and

$$
(\mathbf{I}-\mathbf{P})^{-1}=\mathbf{I}+\sum_{\ell=1}^{\infty} \mathbf{P}^{\ell}
$$

Appendix B EVD-BASED ALGORITHMS FOR FDA

For RFDA, we quote an EVD-based algorithm along with an important result from [36] which together are the building blocks of our iterative framework. Let $\mathbf{M} \in$ $\mathbb{R}^{c \times c}$ be the matrix such that $\mathbf{M}=\boldsymbol{\Omega}^{\top} \mathbf{A G}$. Clearly, \mathbf{M} is symmetric and positive semi-definite.

```
Algorithm 2 Algorithm for RFDA problem (3)
    Input: \(\mathbf{A} \in \mathbb{R}^{n \times d}, \boldsymbol{\Omega} \in \mathbb{R}^{n \times c}\) and \(\lambda>0\);
    \(\mathbf{G} \leftarrow\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{I}_{d}\right)^{-1} \mathbf{A}^{\top} \boldsymbol{\Omega} ;\)
    \(\mathbf{M} \leftarrow \mathbf{\Omega}^{\top} \mathbf{A G} ;\)
    Compute thin SVD: \(\mathbf{M}=\mathbf{V}_{\mathbf{M}} \boldsymbol{\Sigma}_{\mathbf{M}} \mathbf{V}_{\mathbf{M}}^{\top}\);
    Output: \(\mathbf{X}=G V_{M}\)
```

Theorem 8. Using Algorithm 2, let \mathbf{X} be the solution of problem (3), then we have

$$
\mathbf{X X}^{\top}=\mathbf{G} \mathbf{G}^{\top}
$$

For any two data points $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathbb{R}^{d}$, Theorem 8 implies

$$
\begin{aligned}
& \left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)^{\top} \mathbf{X} \mathbf{X}^{\top}\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)=\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)^{\top} \mathbf{G} \mathbf{G}^{\top}\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right) \\
\Longleftrightarrow & \left\|\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)^{\top} \mathbf{X}\right\|_{2}=\left\|\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)^{\top} \mathbf{G}\right\|_{2} .
\end{aligned}
$$

Theorem 8 indicates that if we use any distance-based classification method such as k-nearest neighbors, both \mathbf{X} and \mathbf{G} shares the same property. Thus, we may shift our interest from \mathbf{X} to \mathbf{G}.

Appendix C PROOF OF THEOREM 1

Proof of Lemma 3. Using the full SVD representation of A we have

$$
\begin{aligned}
\mathbf{G}^{(j)} & =\mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}\left(\mathbf{U}_{f} \boldsymbol{\Sigma}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}+\lambda \mathbf{U}_{f} \mathbf{U}_{f}^{\top}\right)^{-1} \mathbf{L}^{(j)} \\
& =\mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top}\left(\boldsymbol{\Sigma}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left[\left(\begin{array}{cc}
\boldsymbol{\Sigma}^{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+\lambda \mathbf{I}_{n}\right]^{-1}\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left[\left(\begin{array}{cc}
\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \lambda \mathbf{I}_{n-\rho}
\end{array}\right)\right]^{-1}\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\lambda} \mathbf{I}_{n-\rho}
\end{array}\right)\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)}
\end{aligned}
$$

$$
\begin{align*}
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1}\left(\mathbf{I}_{\rho}+\lambda \boldsymbol{\Sigma}^{-2}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}_{\lambda}^{2} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}, \tag{29}
\end{align*}
$$

which completes the proof.
Detailed proof of Lemma 4. First, using SVD of A, we express $\widetilde{\mathbf{G}}^{(j)}$ in terms of $\mathbf{G}^{(j)}$.

$$
\begin{align*}
& \widetilde{\mathbf{G}}^{(j)}=\mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}\left(\mathbf{U}_{f} \boldsymbol{\Sigma}_{f} \mathbf{V}_{f}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}+\lambda \mathbf{U}_{f} \mathbf{U}_{f}^{\top}\right)^{-1} \mathbf{L}^{(j)} \\
& =\mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top}\left(\boldsymbol{\Sigma}_{f} \mathbf{V}_{f}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left[\left(\begin{array}{cc}
\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+\lambda \mathbf{I}_{n}\right]^{-1}\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{ll}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left[\left(\begin{array}{cc}
\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \lambda \mathbf{I}_{n-\rho}
\end{array}\right)\right]^{-1}\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\left(\mathbf{\Sigma}^{\top} \mathbf{S S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\lambda} \mathbf{I}_{n-\rho}
\end{array}\right)\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\left(\begin{array}{ll}
\mathbf{V} & \mathbf{V}_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{30}\\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}_{\lambda}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{31}\\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}+\lambda \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\mathbf{I}_{\rho}+\mathbf{E}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{32}
\end{align*}
$$

Eqn. (31) used the fact that $\boldsymbol{\Sigma}_{\lambda} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}_{\lambda}=\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}$. Eqn. (32) follows from the fact that $\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with i-th diagonal element

$$
\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right)_{i i}=\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}+\frac{\lambda}{\sigma_{i}^{2}+\lambda}=1
$$

for any $i=1 \ldots \rho$. Thus, we have $\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right)=\mathbf{I}_{\rho}$. Since $\|\mathbf{E}\|_{2}<1$, Proposition 7 implies that $\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1}$ exists and

$$
\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1}=\mathbf{I}_{\rho}+\sum_{\ell=1}^{\infty}(-1)^{\ell} \mathbf{E}^{\ell}=\mathbf{I}_{\rho}+\mathbf{Q}
$$

Thus, eqn. (32) can further be expressed as

$$
\begin{align*}
\widetilde{\mathbf{G}}^{(j)} & =\mathbf{V} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}_{\lambda}\left(\mathbf{I}_{\rho}+\mathbf{Q}\right) \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \boldsymbol{\Sigma}_{\lambda}^{2} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}+\mathbf{V} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{G}^{(j)}+\mathbf{V} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}, \tag{33}
\end{align*}
$$

where the last line follows from Lemma 3. Further, we have

$$
\begin{equation*}
\|\mathbf{Q}\|_{2}=\left\|\sum_{\ell=1}^{\infty}(-1)^{\ell} \mathbf{E}^{\ell}\right\|_{2} \leq \sum_{\ell=1}^{\infty}\left\|\mathbf{E}^{\ell}\right\|_{2} \leq \sum_{\ell=1}^{\infty}\|\mathbf{E}\|_{2}^{\ell} \leq \sum_{\ell=1}^{\infty}\left(\frac{\varepsilon}{2}\right)^{\ell}=\frac{\varepsilon / 2}{1-\varepsilon / 2} \leq \varepsilon \tag{34}
\end{equation*}
$$

where we used the triangle inequality, the sub-multiplicativity of the spectral norm, and the fact that $\varepsilon \leq 1$. Next, we combine eqns. (33) and (34) to get

$$
\begin{align*}
\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\widetilde{\mathbf{G}}^{(j)}-\mathbf{G}^{(j)}\right)\right\|_{2} & =\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V}\right\|_{2}\left\|\boldsymbol{\Sigma}_{\lambda}\right\|_{2}\|\mathbf{Q}\|_{2}\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq \varepsilon\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V}\right\|_{2}\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\varepsilon\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2}, \tag{35}
\end{align*}
$$

which completes the proof.
The next bound provides a critical inequality that can be used recursively to establish Theorem 1.
Detailed proof of Lemma 6. From Algorithm 1, we have for $j=1 \ldots t-1$

$$
\begin{align*}
\mathbf{L}^{(j+1)} & =\mathbf{L}^{(j)}-\lambda \mathbf{Y}^{(j)}-\mathbf{A} \widetilde{\mathbf{G}}^{(j)} \\
& =\mathbf{L}^{(j)}-\left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A} \mathbf{S S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)} \tag{36}
\end{align*}
$$

Now, starting with the full SVD of A, we get

$$
\begin{align*}
& \left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A S S} \mathbf{S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)} \\
= & \left(\mathbf{U}_{f} \boldsymbol{\Sigma}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}+\lambda \mathbf{U}_{f} \mathbf{U}_{f}^{\top}\right)\left(\mathbf{U}_{f} \boldsymbol{\Sigma}_{f} \mathbf{V}_{f}^{\top} \mathbf{S S}^{\top} \mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top} \mathbf{U}_{f}^{\top}+\lambda \mathbf{U}_{f} \mathbf{U}_{f}^{\top}\right)^{-1} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{f}\left(\boldsymbol{\Sigma}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right) \mathbf{U}_{f}^{\top} \mathbf{U}_{f}\left(\boldsymbol{\Sigma}_{f} \mathbf{V}_{f}^{\top} \mathbf{S S}^{\top} \mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{f}\left(\boldsymbol{\Sigma}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\boldsymbol{\Sigma}_{f} \mathbf{V}_{f}^{\top} \mathbf{S S}^{\top} \mathbf{V}_{f} \boldsymbol{\Sigma}_{f}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{f}\left(\begin{array}{cc}
\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \lambda \mathbf{I}_{n-\rho}
\end{array}\right)\left(\begin{array}{cc}
\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\lambda} \mathbf{I}_{n-\rho}
\end{array}\right) \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{f}\left(\begin{array}{cc}
\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S S}\right. \\
\left.\mathbf{0} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
= & \mathbf{I}_{n-\rho}^{\top}
\end{array}\right) \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)} \\
= & \left(\mathbf{U} \quad \mathbf{U}_{\perp}\right)\left(\begin{array}{cc}
\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{n-\rho}
\end{array}\right)\binom{\mathbf{U}^{\top}}{\mathbf{U}_{\perp}^{\top}} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{37}\\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}_{\lambda}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}^{+}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \left.\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}+\lambda \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right) \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\lambda}^{-1}\left(\mathbf{I}_{\rho}+\mathbf{E}\right) \boldsymbol{\Sigma}_{\lambda}^{-1} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{38}
\end{align*}
$$

Here, eqn. (38) holds because $\boldsymbol{\Sigma}_{\lambda} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}_{\lambda}=\boldsymbol{\Sigma}_{\lambda}^{2}+\mathbf{E}$ and the fact that $\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose i th diagonal element satisfies

$$
\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right)_{i i}=\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}+\frac{\lambda}{\sigma_{i}^{2}+\lambda}=1
$$

for any $i=1 \ldots \rho$. Thus, we have $\left(\boldsymbol{\Sigma}_{\lambda}^{2}+\lambda \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma}_{\lambda}\right)=\mathbf{I}_{\rho}$. Since $\|\mathbf{E}\|_{2}<1$, Proposition 7 implies that $\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1}$ exists and

$$
\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1}=\mathbf{I}_{\rho}+\sum_{\ell=1}^{\infty}(-1)^{\ell} \mathbf{E}^{\ell}=\mathbf{I}_{\rho}+\mathbf{Q}
$$

where $\mathbf{Q}=\sum_{\ell=1}^{\infty}(-1)^{\ell} \mathbf{E}^{\ell}$.
Thus, we rewrite eqn. (38) as

$$
\left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A} \mathbf{S S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)}
$$

$$
\begin{align*}
& =\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}\left(\mathbf{I}_{\rho}+\mathbf{E}\right)^{-1} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}\left(\mathbf{I}_{\rho}+\mathbf{Q}\right) \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}^{2} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U} \mathbf{U}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{39}\\
& =\left(\mathbf{U U}^{\top}+\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top}\right) \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{U}_{f} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{40}
\end{align*}
$$

Eqn. (39) holds as $\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}^{2} \boldsymbol{\Sigma}^{-1}=\mathbf{I}_{\rho}$. Further, using the fact that $\mathbf{U}_{f} \mathbf{U}_{f}^{\top}=\mathbf{I}_{n}$, we rewrite eqn. (40) as

$$
\begin{equation*}
\left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A} \mathbf{S S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)}=\mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{41}
\end{equation*}
$$

Thus, combining eqns. (36) and (41), we have

$$
\begin{equation*}
\mathbf{L}^{(j+1)}=-\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{42}
\end{equation*}
$$

Finally, using eqn. (42), we obtain

$$
\begin{aligned}
\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j+1)}\right\|_{2} & =\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda} \mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\left\|\mathbf{Q} \boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \leq\|\mathbf{Q}\|_{2}\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq \varepsilon\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2},
\end{aligned}
$$

where the third equality holds as $\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\lambda}=\mathbf{I}_{\rho}$ and the last two steps follow from sub-multiplicativity and eqn. (34) respectively. This concludes the proof.

Proof of Theorem 1. Applying Lemma 6 iteratively, we get

$$
\begin{equation*}
\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(t)}\right\|_{2} \leq \varepsilon\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(t-1)}\right\|_{2} \leq \ldots \leq \varepsilon^{t-1}\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(1)}\right\|_{2} \tag{43}
\end{equation*}
$$

Now, from eqn (43), we apply sub-multiplicativity to obtain

$$
\begin{equation*}
\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(1)}\right\|_{2}=\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \boldsymbol{\Omega}\right\|_{2} \leq\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1}\right\|_{2}\left\|\mathbf{U}^{\top}\right\|_{2}\|\boldsymbol{\Omega}\|_{2}=\max _{1 \leq i \leq \rho}\left(\sigma_{i}^{2}+\lambda\right)^{-\frac{1}{2}} \leq \lambda^{-\frac{1}{2}} \tag{44}
\end{equation*}
$$

Notice that $\mathbf{L}^{(1)}=\boldsymbol{\Omega}$ by definition. Also, $\boldsymbol{\Omega}^{\top} \boldsymbol{\Omega}=\mathbf{I}_{c}$ and thus $\|\boldsymbol{\Omega}\|_{2}=1$. Furthermore, we know that $\left\|\mathbf{U}^{\top}\right\|_{2}=1$ and $\left\|\boldsymbol{\Sigma}_{\lambda} \boldsymbol{\Sigma}^{-1}\right\|_{2}=\max _{1 \leq i \leq \rho}\left(\sigma_{i}^{2}+\lambda\right)^{-\frac{1}{2}}$ and the last inequality holds since $\left(\sigma_{i}^{2}+\lambda\right)^{-\frac{1}{2}} \leq \lambda^{-\frac{1}{2}}$ for all $i=1 \ldots \rho$.
Finally, combining eqns. (22), (43) and (44), we conclude

$$
\left\|(\mathbf{w}-\mathbf{m})^{\top}(\widehat{\mathbf{G}}-\mathbf{G})\right\|_{2} \leq \frac{\varepsilon^{t}}{\sqrt{\lambda}}\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}
$$

which completes the proof.

Appendix D PROOF OF THEOREM 2

Lemma 9. For $j=1 \ldots$, let $\mathbf{L}^{(j)}$ and $\widetilde{\mathbf{G}}^{(j)}$ be the intermediate matrices in Algorithm $1, \mathbf{G}^{(j)}$ be the matrix defined in eqn. (12) and \mathbf{R} be defined as in Lemma 3. Further, let $\mathbf{S} \in \mathbb{R}^{d \times s}$ be the sketching matrix and define $\widehat{\mathbf{E}}=\mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V}-\mathbf{I}_{\rho}$. If eqn. (8) is satisfied, i.e., $\|\widehat{\mathbf{E}}\|_{2} \leq \frac{\varepsilon}{2}$, then for all $j=1, \ldots, t$, we have

$$
\begin{equation*}
\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\widetilde{\mathbf{G}}^{(j)}-\mathbf{G}^{(j)}\right)\right\|_{2} \leq \varepsilon\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \tag{45}
\end{equation*}
$$

where $\mathbf{R}=\mathbf{I}_{\rho}+\lambda \boldsymbol{\Sigma}^{-2}$.

Proof. Note that $\boldsymbol{\Sigma}_{\lambda}^{2}=\mathbf{R}^{-1}$. Applying Lemma 3, we can express $\mathbf{G}^{(j)}$ as

$$
\begin{equation*}
\mathbf{G}^{(j)}=\mathbf{V} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{46}
\end{equation*}
$$

Next, rewriting eqn. (30) gives

$$
\begin{align*}
\widetilde{\mathbf{G}}^{(j)} & =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{47}\\
& =\mathbf{V} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{E}}\right) \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}=\mathbf{V} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{E}}+\lambda \boldsymbol{\Sigma}^{-2}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V}(\mathbf{R}+\widehat{\mathbf{E}})^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}=\mathbf{V}\left(\mathbf{R}\left(\mathbf{I}_{\rho}+\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{48}
\end{align*}
$$

Further, notice that

$$
\begin{equation*}
\left\|\mathbf{R}^{-1} \widehat{\mathbf{E}}\right\|_{2} \leq\left\|\mathbf{R}^{-1}\right\|_{2}\|\widehat{\mathbf{E}}\|_{2} \leq\left\|\mathbf{R}^{-1}\right\|_{2} \cdot \frac{\varepsilon}{2}=\left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\lambda}\right) \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2}<1 \tag{49}
\end{equation*}
$$

Now, Proposition 7 implies that $\left(\mathbf{I}_{\rho}+\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{-1}$ exists. Let $\widehat{\mathbf{Q}}=\sum_{\ell=1}^{\infty}(-1)^{\ell}\left(\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{\ell}$, we have

$$
\left(\mathbf{I}_{\rho}+\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{-1}=\mathbf{I}_{\rho}+\sum_{\ell=1}^{\infty}(-1)^{\ell}\left(\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{\ell}=\mathbf{I}_{\rho}+\widehat{\mathbf{Q}}
$$

Thus, we can rewrite eqn. (48) as

$$
\begin{align*}
\widetilde{\mathbf{G}}^{(j)} & =\mathbf{V}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{Q}}\right) \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{V} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}+\mathbf{V} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
& =\mathbf{G}^{(j)}+\mathbf{V} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}, \tag{50}
\end{align*}
$$

where eqn. (50) follows eqn. (46). Further, using eqn. (49), we have

$$
\begin{equation*}
\|\widehat{\mathbf{Q}}\|_{2}=\left\|\sum_{\ell=1}^{\infty}(-1)^{\ell}\left(\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{\ell}\right\|_{2} \leq \sum_{\ell=1}^{\infty}\left\|\left(\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{\ell}\right\|_{2} \leq \sum_{\ell=1}^{\infty}\left\|\mathbf{R}^{-1} \widehat{\mathbf{E}}\right\|_{2}^{\ell} \leq \sum_{\ell=1}^{\infty}\left(\frac{\varepsilon}{2}\right)^{\ell}=\frac{\varepsilon / 2}{1-\varepsilon / 2} \leq \varepsilon \tag{51}
\end{equation*}
$$

where we used the triangle inequality, sub-multiplicativity of the spectral norm, and the fact that $\varepsilon \leq 1$. Next, we combine eqns. (50) and (51) to get

$$
\begin{align*}
\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\widetilde{\mathbf{G}}^{(j)}-\mathbf{G}^{(j)}\right)\right\|_{2} & =\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V}\right\|_{2}\|\widehat{\mathbf{Q}}\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq \varepsilon\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V}\right\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\varepsilon\left\|(\mathbf{w}-\mathbf{m})^{\top} \mathbf{V} \mathbf{V}^{\top}\right\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\varepsilon\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}\left\|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \tag{52}
\end{align*}
$$

where the first inequality follows from sub-multiplicativity and the second last equality holds due to the unitary invariance of the spectral norm. This concludes the proof.

Remark 10. Repeated application of Lemmas 5 and 9 yields:

$$
\begin{align*}
\left\|(\mathbf{w}-\mathbf{m})^{\top}(\widehat{\mathbf{G}}-\mathbf{G})\right\|_{2} & =\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\sum_{j=1}^{t} \widetilde{\mathbf{G}}^{(j)}-\mathbf{G}\right)\right\|_{2}=\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\widetilde{\mathbf{G}}^{(t)}-\left(\mathbf{G}-\sum_{j=1}^{t-1} \widetilde{\mathbf{G}}^{(j)}\right)\right)\right\|_{2} \\
& =\left\|(\mathbf{w}-\mathbf{m})^{\top}\left(\widetilde{\mathbf{G}}^{(t)}-\mathbf{G}^{(t)}\right)\right\|_{2} \leq \varepsilon\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(t)}\right\|_{2} \tag{53}
\end{align*}
$$

The next bound provides a critical inequality that can be used recursively in order to establish Theorem 2.
Lemma 11. Let $\mathbf{L}^{(j)}, j=1, \ldots, t$, be the matrices of Algorithm 1 and \mathbf{R} is as defined in Lemma 3. For any $j=1, \ldots, t-1$, define $\widehat{\mathbf{E}}=\mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V}-\mathbf{I}_{\rho}$. If eqn. (8) is satisfied i.e. $\|\widehat{\mathbf{E}}\|_{2} \leq \frac{\varepsilon}{2}$, then

$$
\begin{equation*}
\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j+1)}\right\|_{2} \leq \varepsilon\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \tag{54}
\end{equation*}
$$

Proof. From Algorithm 1, we have for $j=1, \ldots, t-1$,

$$
\begin{equation*}
\mathbf{L}^{(j+1)}=\mathbf{L}^{(j)}-\lambda \mathbf{Y}^{(j)}-\mathbf{A} \widetilde{\mathbf{G}}^{(j)}=\mathbf{L}^{(j)}-\left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A S S} \mathbf{S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)} \tag{55}
\end{equation*}
$$

Rewriting eqn. (37), we have

$$
\begin{align*}
& \left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A} \mathbf{S S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{S} \mathbf{S}^{\top} \mathbf{V} \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right)\left(\boldsymbol{\Sigma}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{E}}\right) \boldsymbol{\Sigma}+\lambda \mathbf{I}_{\rho}\right)^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{E}}+\lambda \boldsymbol{\Sigma}^{-2}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{56}
\end{align*}
$$

Here, eqn. (56) holds because $\left(\mathbf{I}_{\rho}+\widehat{\mathbf{E}}+\lambda \boldsymbol{\Sigma}^{-2}\right)$ is invertible since it is a positive definite matrix. In addition, using the fact that $\mathbf{R}=\left(\mathbf{I}_{\rho}+\lambda \boldsymbol{\Sigma}^{-2}\right)$, we rewrite eqn. (56) as

$$
\begin{align*}
& \left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A S S} \mathbf{S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}(\mathbf{R}+\widehat{\mathbf{E}})^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}\left(\mathbf{R}\left(\mathbf{I}_{\rho}+\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}\left(\mathbf{I}_{\rho}+\mathbf{R}^{-1} \widehat{\mathbf{E}}\right)^{-1} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}\left(\mathbf{I}_{\rho}+\widehat{\mathbf{Q}}\right) \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top}\right) \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \\
= & \mathbf{U}_{f} \mathbf{U}_{f}^{\top} \mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} . \tag{57}
\end{align*}
$$

The second and third equalities follow from Proposition 7 (using eqn. (49)) and the fact that \mathbf{R}^{-1} exists. Further, $\widehat{\mathbf{Q}}$ is as defined as in Lemma 9. Moreover, the second last equality holds as $\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1}=\mathbf{I}_{\rho}$. Now, using the fact that $\mathbf{U}_{f} \mathbf{U}_{f}^{\top}=\mathbf{I}_{n}$, we rewrite eqn. (57) as

$$
\begin{equation*}
\left(\mathbf{A} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)\left(\mathbf{A} \mathbf{S} \mathbf{S}^{\top} \mathbf{A}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{L}^{(j)}=\mathbf{L}^{(j)}+\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{58}
\end{equation*}
$$

Thus, combining, eqns. (55) and (58), we have

$$
\begin{equation*}
\mathbf{L}^{(j+1)}=-\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)} \tag{59}
\end{equation*}
$$

Finally, from eqn. (59), we obtain

$$
\begin{align*}
\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j+1)}\right\|_{2} & =\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& =\left\|\widehat{\mathbf{Q}} \mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \leq\|\widehat{\mathbf{Q}}\|_{2}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2} \\
& \leq \varepsilon\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(j)}\right\|_{2}, \tag{60}
\end{align*}
$$

where the third equality holds as $\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}_{\rho}\right) \boldsymbol{\Sigma}^{-1}=\mathbf{I}_{\rho}$ and the last two steps follow from sub-multiplicativity and eqn. (51) respectively. This concludes the proof.

Proof of Theorem 2. Applying Lemma 11 iteratively, we have

$$
\begin{equation*}
\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(t)}\right\|_{2} \leq \varepsilon\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(t-1)}\right\|_{2} \leq \ldots \leq \varepsilon^{t-1}\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(1)}\right\|_{2} \tag{61}
\end{equation*}
$$

Now, from eqn (61) and noticing that $\mathbf{L}^{(1)}=\boldsymbol{\Omega}$ by definition, we have

$$
\begin{equation*}
\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{L}^{(1)}\right\|_{2} \leq\left\|\mathbf{R}^{-1} \boldsymbol{\Sigma}^{-1}\right\|_{2}\left\|\mathbf{U}^{\top}\right\|_{2}\|\boldsymbol{\Omega}\|_{2}=\max _{1 \leq i \leq \rho}\left\{\frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\right\} \leq \frac{1}{2 \sqrt{\lambda}} \tag{62}
\end{equation*}
$$

where we used sub-multiplicativity and the facts that $\left\|\mathbf{U}^{\top}\right\|_{2}=1, \boldsymbol{\Omega}^{\top} \boldsymbol{\Omega}=\mathbf{I}_{c}$, and $\|\boldsymbol{\Omega}\|_{2}=1$. The last step in eqn. (62) holds since for all $i=1 \ldots \rho$,

$$
\begin{equation*}
\left(\sigma_{i}-\sqrt{\lambda}\right)^{2} \geq 0 \quad \Rightarrow \quad \sigma_{i}^{2}+\lambda \geq 2 \sigma_{i} \sqrt{\lambda} \quad \Rightarrow \quad \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} \leq \frac{1}{2 \sqrt{\lambda}} \tag{63}
\end{equation*}
$$

Finally, combining eqns. (53), (61) and (62), we obtain

$$
\left\|(\mathbf{w}-\mathbf{m})^{\top}(\widehat{\mathbf{G}}-\mathbf{G})\right\|_{2} \leq \frac{\varepsilon^{t}}{2 \sqrt{\lambda}}\left\|\mathbf{V} \mathbf{V}^{\top}(\mathbf{w}-\mathbf{m})\right\|_{2}
$$

which concludes the proof.

Appendix E SAMPLING-BASED CONSTRUCTIONS

We now discuss how to satisfy the conditions of eqns. (5) or (8) by sampling, i.e., selecting a small number of features. Towards that end, consider Algorithm 3 for the construction of the sampling-and-rescaling matrix S. Finally, the next result appeared in [6] as Theorem 3 and is a strengthening of Theorem 4.2 of [20], since the sampling complexity s is improved to depend only on $\|\mathbf{Z}\|_{F}^{2}$ instead of the stable rank of \mathbf{Z} when $\|\mathbf{Z}\|_{2} \leq 1$. We also note that Lemma 12 is implicit in [8].

```
Algorithm 3 Sampling-and-rescaling matrix
```

Algorithm 3 Sampling-and-rescaling matrix
Input: Sampling probabilities $p_{i}, i=1, \ldots, d$;
Input: Sampling probabilities $p_{i}, i=1, \ldots, d$;
number of sampled columns $s \ll d$;
number of sampled columns $s \ll d$;
$\mathbf{S} \leftarrow \mathbf{0}_{d \times s} ;$
$\mathbf{S} \leftarrow \mathbf{0}_{d \times s} ;$
for $t=1$ to s do
for $t=1$ to s do
Pick $i_{t} \in\{1, \ldots, d\}$ with $\mathbb{P}\left(i_{t}=i\right)=p_{i} ;$
Pick $i_{t} \in\{1, \ldots, d\}$ with $\mathbb{P}\left(i_{t}=i\right)=p_{i} ;$
$\mathbf{S}_{i_{t} t}=1 / \sqrt{s p_{i_{t}}} ;$
$\mathbf{S}_{i_{t} t}=1 / \sqrt{s p_{i_{t}}} ;$
end for
end for
Output: Return S;

```
    Output: Return S;
```

Lemma 12. Let $\mathbf{Z} \in \mathbb{R}^{d \times n}$ with $\|\mathbf{Z}\|_{2} \leq 1$ and let \mathbf{S} be constructed by Algorithm 3 with

$$
s \geq \frac{8\|\mathbf{Z}\|_{F}^{2}}{3 \varepsilon^{2}} \ln \left(\frac{4\left(1+\|\mathbf{Z}\|_{F}^{2}\right)}{\delta}\right)
$$

then, with probability at least $1-\delta$,

$$
\left\|\mathbf{Z}^{\top} \mathbf{S S}^{\top} \mathbf{Z}-\mathbf{Z}^{\top} \mathbf{Z}\right\|_{2} \leq \varepsilon
$$

Applying Lemma 12 with $\mathbf{Z}=\mathbf{V} \boldsymbol{\Sigma}_{\lambda}$, we can satisfy the condition of eqn. (5) using the sampling probabilities $p_{i}=\left\|\left(\mathbf{V} \boldsymbol{\Sigma}_{\lambda}\right)_{i *}\right\|_{2}^{2} / d_{\lambda}$ (recall that $\left\|\mathbf{V} \boldsymbol{\Sigma}_{\lambda}\right\|_{F}^{2}=d_{\lambda}$ and $\left\|\mathbf{V} \boldsymbol{\Sigma}_{\lambda}\right\|_{2} \leq 1$). It is easy to see that these probabilities are exactly proportional to the column ridge leverage scores of the design matrix \mathbf{A}. Setting $s=\mathcal{O}\left(\varepsilon^{-2} d_{\lambda} \ln d_{\lambda}\right)$ suffices to satisfy the condition of eqn. (5). We note that approximate ridge leverage scores also suffice and that their computation can be done efficiently without computing \mathbf{V} [8]. Finally, applying Lemma 12 with $\mathbf{Z}=\mathbf{V}$ we can satisfy the condition of eqn. (8) by simply using the sampling probabilities $p_{i}=\left\|\mathbf{V}_{i *}\right\|_{2}^{2} / \rho$ (recall that $\|\mathbf{V}\|_{F}^{2}=\rho$ and $\|\mathbf{V}\|_{2}=1$), which correspond to the column leverage scores of the design matrix \mathbf{A}. Setting $s=\mathcal{O}\left(\varepsilon^{-2} \rho \ln \rho\right)$ suffices to satisfy the condition of eqn. (8). We note that approximate leverage scores also suffice and that their computation can be done efficiently without computing V [13].

Appendix F SKETCH-SIZE REQUIREMENTS FOR STRUCTURAL CONDITIONS

We provide details on the sketch-size requirements for satisfying the structual conditions of eqns. (5) or (8) when various constructions of the sketching matrix \mathbf{S} are used. It was shown in [9] that eqn. (11) can be achieved using a count-sketch matrix \mathbf{S} with $s=\mathcal{O}\left(\frac{r}{\delta \varepsilon^{2}}\right)$ columns or an SRHT matrix \mathbf{S} with $s=\mathcal{O}\left(\varepsilon^{-2}(r+\log (1 / \varepsilon \delta)) \log \frac{r}{\delta}\right)$ columns (here, δ is the failure probability). As discussed in Section 2.2, setting $r=d_{\lambda}$ or $r=\rho$ in eqn. (11) for eqns. (5) or (8), respectively, we obtain the sketch-size requirements summarized in Table 1.

Appendix G ADDITIONAL EXPERIMENT RESULTS

Table 2 shows the CPU wall-clock times for running RFDA (on a single-core Intel Xeon E5-2660 CPU at 2.6GHz) by either computing \mathbf{G} exactly in eqn. (3) or via our iterative algorithm. For both datasets, we report the per-iteration runtime of our algorithm with various sketching-matrix constructions using a sketch size of $s=5,000$.

	Count-sketch	SRHT	Sampling (Appendix E)
Eqn. (5)	$s=\mathcal{O}\left(\frac{d_{\lambda}}{\delta \varepsilon^{2}}\right)$	$s=\mathcal{O}\left(\frac{d_{\lambda}+\log (1 / \varepsilon \delta)}{\varepsilon^{2}} \log \frac{d_{\lambda}}{\delta}\right)$	$s=\mathcal{O}\left(\frac{d_{\lambda} \log \left(d_{\lambda} / \delta\right)}{\varepsilon^{2}}\right)$
Eqn. (8)	$s=\mathcal{O}\left(\frac{\rho}{\delta \varepsilon^{2}}\right)$	$s=\mathcal{O}\left(\frac{\rho+\log (1 / \varepsilon \delta)}{\varepsilon^{2}} \log \frac{\rho}{\delta}\right)$	$s=\mathcal{O}\left(\frac{\rho \log (\rho / \delta)}{\varepsilon^{2}}\right)$

Table 1: Sketch-size requirements for satisfying eqns. (5) or (8) with probability at least $1-\delta$.

Dataset	SVD	Exact	Uniform	Leverage	Ridge leverage	Count-sketch
ORL	1.335	0.232	0.101	0.101	0.101	0.103
PEMS	35.781	3.770	0.917	0.892	0.899	0.970

Table 2: CPU wall-clock times (in seconds) for RFDA on ORL and PEMS.
As noted in Section 5, we conjecture that using independent sampling matrices in each iteration of Algorithm 1 (i.e., introducing new "randomness" in each iteration) could lead to improved bounds for our main theorems. We evaluate this conjecture empirically by comparing the performance of Algorithm 1 using either a single sketching matrix \mathbf{S} (the setup in the main paper) or sampling (independently) a new sketching matrix at every iteration j.
Figure 3 shows the relative approximation error vs. number of iterations on the PEMS dataset for increasing sketch sizes. Figure 4 plots the relative approximation error vs. sketch size after 10 iterations of Algorithm 1 were run. We observe that using a newly sampled sketching matrix at every iteration enables faster convergence as the iterations progress, and also reduces the sketch size s necessary for Algorithm 1 to converge.

Figure 3: Relative approximation error (on log-scale) vs. number of iterations on PEMS dataset for increasing sketch size s. Top row: using a single sketching matrix \mathbf{S} throughout. Bottom row: sample a new \mathbf{S}_{j} at every iteration j.

Figure 4: Relative approximation error vs. sketch size on ORL and PEMS after 10 iterations. Single S: using a single sketching matrix \mathbf{S} throughout the iterations. Multiple \mathbf{S}_{j} : sample a new \mathbf{S}_{j} at every iteration j. Errors are on log-scale; note the difference in magnitude of the approximation errors across plots.

