
A APPENDIX

A.1 Reparametrization of the Pólya-Gamma
variables

By applying the augmentation of the sigmoid (8) to the
augmented likelihood (7), we obtain the Pólya-Gamma
augmented likelihood
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where we impose the prior distributions

p(ω̃i) =PG(1, 0)
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PG(ωci |nci , 0).

We simplify this expression by combining all terms
corresponding to the index k. To this end, we use
a one hot-encoding of y ∈ {0, . . . , C}N as y′ ∈
{0, 1}C×N ,
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Building on the identity ω1 + ω2 = ω3 with ω1 ∼
PG(b1, c), ω2 ∼ PG(b2, c) and ω3 ∼ PG(b1 + b2, c),
we rewrite equation (10) as
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where the terms corresponding to ω̃ are now absorbed
into the terms corresponding to ω.

A.2 Block coordinate ascent (CAVI) updates

The variational distribution is q(u,λ,n,ω) =
q(u)q(λ)q(ω,n) and the factors are
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In the CAVI scheme (Hoffman et al., 2013) each factor is
iteratively updated by the following equation. Suppose we
want to update the variational distribution corresponding

to the latent variable θ ∈ {u,λ,n,ω}. Let θ be the set of
the other latent variables, then q∗(θ) is updated by
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Using this equation gives the closed-form update for each
variational parameter.
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where ψ(.) is the digamma function. When κµ � 0,
equation (12) easily overflows. One can solve this problem
by approximating exp(−0.5κµ)/ cosh(0.5f̄) with σ(κµ)

by neglecting the variance terms K̃ + κΣκ> in f̄ .

Equation (12) and (13) shows a direct interdependence
between αi and γci . We use inner loop of alternating
between updating both variables until convergence to solve
the problem. We find that 5 iterations in the inner loop
are enough.

Finally, if class subsampling (the extreme classification
version of our algorithm Alg. 2) is used, αi is approxi-
mated by
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where C is the number of classes and |K| is the number
of sub-sampled classes.

A.3 Subsampling the classes (extreme classification
version)

The extreme classification version of our algorithm is pre-
sented in Alg. 2. In each iteration we only consider a
minibatch of the classes B ⊂ {1, . . . , C} and the varia-
tional parameters bci , αci , µc, Σc (lines 13, 11, 18, 19 in
Alg. 1) are only updated for i ∈ B. The updates that are
global w.r.t. the classes, i.e. λi and the hyperparameters



Figure 8: RGB representation of the predictive likelihood for a toy dataset as described in section 5.1 with variance
σ2 = 0.5. Each class is attributed a color channel (Red, Green, Blue) and predictive likelihoods are mapped into RGB
values.

h (lines 11, 22) are now replaced by stochastic gradient
updates.

Algorithm 2 Conjugate multi-class Gaussian process clas-
sification with class subsampling
1: Input: dataX ,y, minibatch size |S|and |B|
2: Output: variational posterior GPs p(uc|µc,Σc)
3: Set the learning rate schedules ρt, ρht appropriately
4: Initialize all variational parameters and hyperparameters
5: SelectM inducing points locations (e.g. kMeans)
6: for iteration t = 1, 2, . . . do
7: # Sample minibatch:
8: Sample a minibatch of the data S ⊂ {1, . . . , N}
9: Sample a set of labels K ⊂ {1, . . . , C}
10: # Local variational updates
11: for i ∈ S do
12: Update (αi, γ

c
i )c∈K (Eq. 12,17)

13: for c ∈ K do
14: Update bci (Eq. 14)
15: end for
16: end for
17: # Global variational GP updates
18: for c ∈ K do
19: µc ← (1− ρt)µc + ρtµ̂

c (Eq. 15)
20: Σc ← (1− ρt)Σc + ρtΣ̂

c (Eq. 16)
21: end for
22: # Hyperparameter updates
23: Gradient step h← h+ ρht∇hL
24: end for

A.4 Visualization of the different likelihoods

To get a better intuition of the behavior of each likelihood,
we visualize the prediction function of each method as a
contour plot using the toy dataset from section 5.1. To
visualize the predictive likelihood, we map the predic-
tive values of each class to a RGB color channel (where
each class corresponds to one color and mixing of colors
indicates a contribution of multiple classes). A highly
saturated color corresponds to a high confidence in the
class prediction, while mixed colors indicate zones of tran-
sition between classes and lower confidence. The results

are shown in Figure 8 for a toy dataset consisting of 500
points generated from a mixture of Gaussians with vari-
ance σ2 = 0.5. As expected, the robust-max likelihood
leads to extremely sharp decision boundaries and high
confidences for all regions (even for the overlapping re-
gions). The other likelihoods lead to better calibration
resulting in soft boundaries and less confident predictions
in the overlapping regions.

A.5 Convexity of the negative ELBO

In the following we prove that the negative ELBO (−L) of
our augmented model is convex in the global variational
parameters µc and Σc. To prove this statement, we write
the negative ELBO in terms of µc and Σc,
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Differentiating twice in µc gives diag(θc) +K−1 which
is positive definite since θci > 0 for all i and by definition
ofK. Therefore, the negative ELBO is convex in µc for
all c.

Differentiating twice in Σc gives (Σc)
−1⊗(Σc)

−1, where
⊗ is the Kroenecker product. This is again positive defi-
nite since (Σc)

−1 is positive definite and the Kroenecker
product preserves positive definiteness. Therefore, the
negative ELBO is also convex in Σc for all c.


