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Abstract

Bayesian quadrature (bq) is a sample-
efficient probabilistic numerical method
to solve integrals of expensive-to-evaluate
black-box functions, yet so far, active
bq learning schemes focus merely on the
integrand itself as information source, and
do not allow for information transfer from
cheaper, related functions. Here, we set the
scene for active learning in bq when multi-
ple related information sources of variable
cost (in input and source) are accessible.
This setting arises for example when evalu-
ating the integrand requires a complex sim-
ulation to be run that can be approximated
by simulating at lower levels of sophistica-
tion and at lesser expense. We construct
meaningful cost-sensitive multi-source ac-
quisition rates as an extension to common
utility functions from vanilla bq (vbq), and
discuss pitfalls that arise from blindly gener-
alizing. In proof-of-concept experiments we
scrutinize the behavior of our generalized ac-
quisition functions. On an epidemiological
model, we demonstrate that active multi-
source bq (ams-bq) allocates budget more
efficiently than vbq for learning the integral
to a good accuracy.

1 INTRODUCTION

Integrals of expensive-to-evaluate functions arise in
many scientific and industrial applications, for exam-
ple when expected values need to be computed and
each evaluation of the integrand requires the run of a
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complex computer simulation where an input is only
known by its distribution e.g., in meteorology, astro-
physics, fluid dynamics, biology, operations research,
et cetera. This complex simulation could be a Monte
Carlo simulation, a finite-element or finite-volume
simulation, or a stochastic model. Within reasonable
budget, integration using Monte Carlo may not be fea-
sible and alternative numerical integration schemes
are needed that require fewer function evaluations.

Bayesian quadrature (bq)—a means of constructing
posterior measures over the unknown value of the
integral (O’Hagan, 1991; Diaconis, 1988; Briol et al.,
2019)—mitigates a high sample demand by encoding
known or assumed structure of the integrand such
as smoothness or regularity, usually via a Gaussian
process (gp). With its increased ‘data’1 efficiency,
bq is a natural choice when function evaluations are
precious (Rasmussen & Ghahramani, 2003). In the
past, bq has been applied in reinforcement learn-
ing (Paul et al., 2018), filtering (Kersting & Hennig,
2016), and has been extended to probabilistic inte-
grals (Osborne et al., 2012a; Osborne et al., 2012b;
Gunter et al., 2014; Chai & Garnett, 2019).

A complementary approach to sample efficiency is
to make use of related, cheaper secondary informa-
tion sources. The task of finding approximations
to computationally demanding numerical models is
an area of active research all on its own (see e.g.,
Benner et al., 2017). Secondary information sources
of reduced cost and quality include numerical models
that are run at a lower resolution (e.g., a coarser grid
in a fluid dynamics application), model simplifica-
tions by neglecting details or by using an approximate
model that is easier to solve numerically, and analytic
approximations. A primary source could be an elab-
orate Earth system model to simulate anthropogenic

1See e.g., Hennig et al. (2015) and Cockayne et al.
(2017) for a discussion on ‘data’ in numerical solvers.



climate change. There exist a plethora of such models
and secondary sources might parametrize important
effects like albedo or neglect detailed land surface pro-
cesses or ocean biogeochemistry (Flato et al., 2013).

Multi-source modeling is a statistical technique for
harvesting information from related functions by con-
structing correlated surrogates over multiple sources.
When the information sources are hierarchical in
that they are ordered from most to least informa-
tive, this concept is known as multi-fidelity modeling
(Kennedy & O’Hagan, 2000; Peherstorfer et al., 2018;
Forrester et al., 2007; Le Gratiet & Garnier, 2014).
The notion of multi-source models is more overar-
ching and includes settings in which sources do not
exhibit an easily identifiable order, if any. Each of
the sources has its own cost function that quantifies
the cost of evaluating the source at a certain input.
An input-dependent cost might arise when the simu-
lation run to query the integrand needs to be refined
for certain values of the input to ensure numerical
stability. A linear instance of a multi-source model
is a multi-output gp aka. co-kriging (Alvarez et al.,
2012). bq with multi-output gps to integrate sev-
eral related functions has been studied by Xi et al.
(2018), who impose properties on data—which they
assume given—to prove theoretical guarantees and
consistency of the Bayes estimator.

bq leverages active learning schemes similar to
Bayesian optimization (Shahriari et al., 2016) or
experimental design (Atkinson et al., 2007; Yu et al.,
2006). Through its argmax, an acquisition function
identifies optimal future locations to query the inte-
grand according to a user-defined metric. Metrics of
interest in bq are information gain on the value of
the integral or its predictive variance. By optimizing
the target per cost, active multi-source bq (ams-bq)
trades off improvement on the target (the integral)
and ressources spent. In Bayesian optimization, this
setting has been explored by Poloczek et al. (2017).

We summarize our contributions:

• We lay the foundations for active bq for the task
of integrating an expensive function that comes
with cheaper approximations. We assign cost to
function evaluations and generalize vbq acquisi-
tion functions to acquisition rates that trade off
improvement on the integral against cost.

• We find that some rates induce sane, others patho-
logical acquisition policies. Pathologies were not
present in the common vbq acquisition schemes
that all give rise to the same degenerate policy,
regardless of the acquisition’s value. Cost-adapted
rate policies do depend on these values and are thus

intricately tied to the meaning of the acquisition
function that encodes progress on the quadrature
task. Simply put, all considered (even pathologi-
cal) multi-source acquisition policies collapse onto
a single policy for vbq, as a corner case of ams-bq.

• We conduct proof-of-concept experiments which
show that ams-bq improves upon vbq in that it
spends less budget on learning the integral to an
acceptable precision.

2 MODEL

We wish to estimate the integral over the informa-
tion source of interest (the primary source), w.l.o.g.
indexed by 1, f1 : Ω 7→ R, x 7→ f1(x) and integrated
against the probability measure π on Ω ⊆ RD,

〈f1〉 =:
∫

Ω
f1(x) dπ(x) (1)

in presence of L− 1 not necessarily ordered or order-
able secondary information sources f2, . . . , fL, with
fl : Ω 7→ R. Each source l ∈ L = {1, . . . , L}
comes with an input-dependent cost cl(x) which
must be invested to query fl at location x. For
ease of interpretation and numerical stability we set
c : L × Ω 7→ [δ, 1] and 0 < δ ≤ 1. This is equivalent
to assuming there exists a cmin > 0 and a cmax <∞
s.t. cmin ≤ cl(x) ≤ cmax and then normalizing w.r.t.
cmax, i.e., δ = cmin

cmax
. In other words, no query takes

an infinite amount of resources, nor does any evalua-
tion come for free. Normalization is not required and
in practice, neither cmax nor cmin need to be known.

In this section we review the tools for building a sta-
tistical model that allows us to harvest information
from both the primary and the secondary sources for
learning the integral 〈f1〉 of Eq. (1), before turning to
the decision theoretic problem of how to actively se-
lect locations and sources to query next in Section 3.

2.1 VANILLA BQ

Let f : Ω 7→ R, x 7→ f(x) be a function and π a prob-
ability measure on Ω ⊆ RD that has an intractable
integral 〈f〉 =

∫
Ω f(x) dπ(x). In vanilla Bayesian

quadrature (vbq), we express our epistemic uncer-
tainty about the value of 〈f〉 through a random vari-
able Z. The distribution over Z is obtained by inte-
grating a Gaussian process (gp) prior that is placed
over the integrand f , i.e. f ∼ GP(m, k), where
m : Ω 7→ R, x 7→ m(x) denotes the prior mean func-
tion and k : Ω× Ω 7→ R, (x, x′) 7→ k(x, x′) the covari-
ance function or kernel. Observations come in form
of potentially noisy function evaluations2 y = f(x)+ε



with ε ∼ N (0, σ2). Let X denote the matrix of N
input locations X = [x1 . . . xN ]ᵀ and y = f(X) + ε
the set of corresponding observations, summarized
in D = {X, y} (see Rasmussen & Williams, 2006 for
an introduction to gp inference). With the closure
property of gps, the posterior over Z when condi-
tioning on D is a univariate Gaussian distribution
with posterior mean E[Z | D] = 〈mD〉 and variance
V[Z | D] =

∫
Ω
∫

Ω kD dπ(x) dπ(x′) =: 〈〈kD〉〉 that are
integrals over the gp’s posterior mean mD(x) and
covariance kD(x, x′). These expressions are detailed
below for the general multi-source case that vbq is
a subset of and further derivations can be found in
Briol et al. (2019). So as not to replace an intractable
integral by another intractable integral, the kernel
k(x, x′) is chosen to be integrable against π(x).

2.2 MULTI-SOURCE MODELS

We consider linear multi-source models, which can
equally be phrased as multi-output Gaussian pro-
cesses (Alvarez et al., 2012) over the vector-valued
function f = [f1, . . . , fL], f : Ω 7→ RL. Non-linear
models for multi-source modeling exist and have been
considered by Perdikaris et al. (2017). They do how-
ever come with the additional technical difficulty
that the model may not be integrable analytically—a
sensible pre-requisite for bq—and are thus another
beast altogether. The notation mimics the single-
output case, that is, f ∼ GP(m,K), where K is an
L× L matrix-valued covariance function. More pre-
cisely, the covariance between two sources fl and fl′
at inputs x and x′ is cov[fl(x), fl′(x′)] = kll′(x, x′).
The kernel kll′(x, x′) encodes not only characteris-
tics of the individual sources (e.g., smoothness), but
crucially the correlation between them. In the multi-
source setting, observations come in source-location-
evaluation triplets (l, x, yl) with yl = fl(x) + εl and
source-dependent observation noise εl ∼ N (0, σ2

l ) as
usually only one element of f is being observed (see
supplementary material (supp. mat.) for alternative
representation as linear observations).

The dataset D = {`,X, y`} contains N data triplets
from evaluating elements of f at N locations
X = [x1 . . . xN ]ᵀ with corresponding sources
` = [l1 . . . lN ]ᵀ and observations y` = [fl1(x1) +
εl1 . . . flN (xN ) + εlN ]ᵀ. The gp posterior over f has
mean and covariance

ml|D(x) = ml(x) + kl`(x,X)G`(X)−1(y` −m`(X)),
kll′|D(x, x′) = kll′(x, x′)− kl`(x,X)G`(X)−1k`l(X, x′),

(2)
2Noise free evaluations are usually assumed in bq, but

this might not be true for a black-box integrand.

with the kernel Gram matrix G`(X) = K``(X,X) +
Σ` ∈ RN×N and Σ` = diag(σ2

l1
, . . . , σ2

lN
). A sum-

mary of the notation used can be found in Table 1
in the supplementary material.

2.3 MULTI-SOURCE BQ

The multi-source model of Section 2.2 can be inte-
grated and gives rise to a quadrature rule similar
to vbq (cf. sec. 2.1). Let Z denote the random
variable representing the integral of interest 〈f1〉 of
Eq. (1). The posterior over Z given data triplets D
is a univariate Gaussian with mean and variance

E[Z | D] = 〈m1〉+ 〈k1`(·,X)〉G`(X)−1(y` −m`(X)),
V[Z | D] = 〈〈k11〉〉 − 〈k1`(·,X)〉G`(X)−1〈k`1(X, ·)〉,

(3)
where 〈k1`(·,X)〉 =

∫
Ω k1`(x,X) dπ(x) is the kernel

mean and 〈〈k11〉〉 =
∫

Ω
∫

Ω k11(x, x′) dπ(x) dπ(x′) the
initial error, both of source 1. Just as in vbq, the
kernel is required to be integrable analytically.

We choose an intrinsic coregionalization model (icm)
(Alvarez et al., 2012) with kernel

kll′(x, x′) = Bll′κ(x, x′), (4)

where B ∈ RL×L is a positive definite matrix. Eq. (4)
is a simple extension of a standard kernel κ(x, x′) to
the multi-source case which factors the correlation
between the sources and input locations. If κ(x, x′)
is integrable analytically, kll′(x, x′) will be, too, and
thus retains the favorable property of a bq-kernel. A
typical choice for κ is the squared-exponential, aka.
rbf kernel κ(x, x′) = exp(−‖x−x′‖2

2/2λ2) with no de-
pendence on the sources l and l′. This model can
easily be extended e.g., to a linear model of coregion-
alization (lmc) without challenging integrability of
k. This would untie the lenthscales between sources,
but would also introduce L− 1 additional generally
unknown kernel parameters. The simpler icm is also
used by Xi et al. (2018) to establish convergence rates
for a multi-output bq rule.

3 ACTIVE LEARNING

Active learning describes the automation of the
decision-making about prospective actions to be
taken by an algorithm in order to achieve a certain
learning objective. A heuristic measure of improve-
ment towards the specified goal (here: learning the
value of an integral) is defined through a utility func-
tion. It transfers the decision-theoretic problem to an
optimization problem, but usually an unfeasible one.
Therefore, the utility is commonly approximated by
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Figure 1: The multi-source acquisition-cube for a few of the possible acquisition functions. mi, ivr, and
ip stand for ‘mutual information’, ‘integral variance reduction’, and ‘integral precision’, respectively. The
forward arrows (

�

) denote the special case of one source only (L = 1) as in the case of vbq. The downward
facing arrows (↓) denote the special case where the cost c is not dependent on the locations X?. The
double-lines (===) between nodes denote that these acquisition functions are equivalent in the sense that they
yield the same optimal X?. The two grayed-out acquisitions for ip highlight that they exhibit non-favorable
behavior (cf. Section 3.2). The bottom front row in the cube denotes the special case of vbq (L = 1 and
c(X?) = const.) where all three acquisition policies (mi, ivr, ip) coincide.

an acquisition function. Optimizing the acquisition
function induces an acquisition policy that pins down
what action to take next. To obtain a sequence of
actions, the considered method (here: bq) is placed
in a loop where it is iteratively fed with N? new
observations (`?,X?, y`?

) in the general multi-step
look-ahead (non-myopic) approach. A myopic ap-
proximation is to instead optimize for a single new
observation triplet (l?, x?, yl?) at a time. Besides fea-
sibility, the lack of exact model knowledge motivates
a loop in which the model is repeatedly updated with
new observations.

In Section 3.1, we recapitulate several utilities that
are commonly used for vbq. All these utilities give
rise to the same acquisition policy in the absence of
cost and are thus not greatly differentiated between
in the literature. Intriguingly, the policies do not
coincide for ams-bq if cost is accounted for in the
acquisition functions, as will be shown and discussed
in Section 3.2.

3.1 MULTI-SOURCE BQ ACQUISITIONS

In the absence of any notion of evaluation cost (or
if all sources come at the same cost), the utility
functions from vbq generalize straightforwardly to
the multi-source case. The vbq case can be recovered
by setting the number of sources to one.

3.1.1 Mutual Information

From an information theoretic perspective, new
source-location pairs (`?,X?) can be chosen such
that they jointly maximize the mutual informa-
tion (mi) I[Z; y`?

] between the integral Z and a
set of new but yet unobserved observations y`?

with yli? = fli?(xi?) + εli? . In terms of the individ-
ual and joint differential entropies over Z and y`?

,
I[Z; y`?

] = H[Z] +H[y`?
]−H[Z, y`?

]. Sections 2.2
and 2.3 imply that both Z and y`?

are normally dis-
tributed and so is their joint. The differential entropy
of a multivariate normal distribution with covariance
matrix A ∈ RM×M is H = M

2 log(2πe) + 1
2 log |A|.

Since there is no explicit dependence on the value of
y`?

, we (sloppily) express the mutual information as
a function of the new source-location pairs (`?,X?),

I[Z; `?,X?] = −1
2 log

(
1− ρ2

1`?|D(X?)
)
, (5)

where we introduce the scalar correlation

ρ2
1`?|D(X?) :=

〈k1`?|D(·,X?)〉V−1
`?|D(X?) 〈k`?1|D(X?, ·)〉
V[Z | D] ,

(6)
∈ [0, 1], with the noise-corrected posterior covari-
ance matrix V`?|D(X?) = K`?`?|D(X?,X?) + Σ`? ∈
RN?×N? . In the one-step look-ahead case (N? = 1),

ρ1l?|D(x?) =
〈k1l?|D(·, x?)〉√
vl?|D(x?)V[Z | D]

(7)



is the bivariate correlation between Z and yl? .

3.1.2 Variance-Based Acquisitions

Variance-based approaches attempt to select (`?,X?)
such that the variance on Z shrinks maximally. As mi,
the integral variance reduction (ivr) normalized by
the current integral variance V[Z | D] can be written
in terms of correlation ρ as
∆V[Z; `?,X?]

V[Z | D] =
V[Z | D]− V[Z | D ∪ (`?,X?, y`?

)]
V[Z | D]

= ρ2
1`?|D(X?).

(8)
Eq. (8) is a monotonic transformation of Eq. (5) and
therefore, both utility functions share the same global
maximizer X?. In fact, any monotonic transformation
of Eq. (6), whether interpretable or not, gives rise to
the same acquisition policy. This is because the policy
only depends on the locations, but not the value of
the utility function’s global maximum. Hence, in
vbq it is equivalent to consider maximal shrinkage
of the variance of the integral, minimization of the
integral’s standard deviation, or maximal increase of
the integral’s precision (ip), to name a few—they all
lead to the same active learning scheme and have thus
not been greatly distinguished between in previous
work on active vbq.

3.2 COST-SENSITIVE ACQUISITIONS

When there is a location and/or source-dependent
cost associated to evaluating the information sources
(cf. Section 2), the utility function should trade off the
improvement made on the integral against the budget
spent for function evaluations. This is achieved by
considering the ratio of a cost-insensitive bq utility
and the cost function c`?

(X?) =
∑N?

i=1 cli(xi). Such
a ratio can be interpreted as an acquisition rate and
bears the units of the utility function divided by units
of cost. The notion of a rate becomes clearer when
considering for example the mutual information util-
ity Eq. (5) with cost measured in terms of evaluation
time: the unit is bits

second , i.e., a rate of information
gain.
This construction has an important consequence:
Modification of the vbq utility function (i.e., the
numerator), even by a monotonic transformation,
changes the maximizer of the cost-adapted acqui-
sition rate and hence, also the acquisition policy.
In other words, the degeneracy of bq acquisition
functions in terms of the policy they induce in the
absence of cost is lifted when evaluation cost is in-
cluded, firstly, because the argmax of each acquisi-
tion is shifted differently with cost, and, secondly,

because acquisition values from different sources are
discriminated against each other now. As will be
discussed below, not all monotonic transformations
yield a sensible acquisition policy; indeed, some dis-
play pathological behavior.

The adapted non-myopic acquisition rates for the
bq utilities mutual information (mi Eq. (5)) and
integral variance reduction (ivr Eq. (8)) are

αmi
`?

(X?) :=
− log

(
1− ρ2

1`?|D(X?)
)

c`?(X?)
(9)

αivr
`?

(X?) :=
ρ2

1`?|D(X?)
c`?(X?)

, (10)

where we have dropped the factor 1/2 in mi as an
arbitrary scaling factor. It is evident that these ac-
quisition rates do no longer share their maximizer;
yet they still induce a meaningful acquisition scheme.
Both mi and ivr have the property to be zero at
ρ2 = 0 and thus never select points X? that are un-
correlated with the integral Z, no matter the cost,
e.g., locations that have already been observed ex-
actly (with σ2 = 0). Such points do not update the
posterior of the integral Z when conditioned on. In
vbq these locations are the minimizers of all acqui-
sition functions and thus excluded no matter their
value. This is not ensured for the cost-adapted acqui-
sition rates and therefore, they additionally require
the numerator to be zero at ρ2 = 0. Hence, not every
monotonic transformation of the bq utility produces
a sane acquisition policy in the presence of cost.
Consider for example the valid transformation ρ2 7→
ρ2 − 1, which is −1 at ρ = 0. Maximizing this util-
ity function corresponds to maximizing the negative
integral variance, i.e., minimizing the integral vari-
ance, which is very commonly done in vbq. Since
ρ2 ∈ [0, 1], ρ2 − 1 is negative everywhere and gets
larger (takes a smaller negative value) with larger
cost. Hence when maximized, this acquisition would
favor expensive evaluations.
More subtle is the misbehavior of the integral preci-
sion (ip) which is positive everywhere and has the
desired behavior of favoring low-cost evaluations. In
terms of the squared correlation ρ2 ∈ [0, 1] from
Eq. (6) (with simplified notation for convenience),
the numerator of the ip acquisition rate can be writ-
ten as (1 − ρ2)−1. This expression is non-zero at
ρ2 = 0 and therefore, it does not exclude points of
zero correlation when they come at sufficiently cheap
cost, and in experiments we observe it getting stuck
re-evaluating at the location of minimum cost ad
infinitum. We conjecture that this is because ip only
encodes an absolute scale of the integral variance but
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tions as a function of univariate x? and myopic step
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maximizers coincide (top), but when divided by an
input-dependent cost c(x?) (bottom), the maximiz-
ers disperse (indicated by the dashed vertical lines)
(middle). For implications, cf. Section 3.2.

does not quantify any “improvement” on the integral
value.
Figure 1 illustrates the augmentation of utility func-
tions from vbq with multiple information sources and
cost. Figure 2 displays the behavior of a few acqui-
sitions, mi, ivr, and ip. The right plot shows these
acquisitions as used in vbq in terms of the squared
correlation ρ2 ∈ [0, 1] (Eq. (6)) in the absence of cost.
All acquisitions are strictly monotonically increasing
functions of ρ2. Among the sane acquisition rates
that are zero at ρ2 = 0, the differences in the cor-
responding policy can also be understood from the
functional dependence on ρ. mi diverges at perfect
correlation ρ2 → 1. Therefore, and since the cost c
lies in [δ, 1], mi will always take a ‘perfect step’ to
learn the integral exactly, i.e., it will always select
the points X? with correlation ρ2(X?) = 1, if the
step is available and no matter the cost. ivr, how-
ever, is finite at ρ2 = 1 and trades off cost against
correlation even if the perfect X? with ρ2(X?) = 1
exists. These interpretations are reinforced by the
left three plots of Figure 2, in which we plot mi, ivr,
and ip versus a univariate x? for the synthetic choice
ρ2(x?) = 0.95 sin2(10x?), x? ∈ [0, 0.2] and a myopic
step (N? = 1). In the pure vbq situation, the loca-
tions of all their maxima coincide, but as soon as a
non-constant cost c(x?) is applied, the shapes of the
acquisition functions become relevant which discrim-
inates their X? and lifts the degeneracy in policies.
mi tends more towards higher correlation than ivr,
the maximizer of which moves further towards loca-

tions of lower cost. While mi and ivr act differently,
they are both sensible choices for acquisition func-
tions in ams-bq. In fact for low to mid-ranged values
of ρ2 <∼ 0.5 where mi is approximately a linear func-
tion of ρ2 they roughly coincide.
The choice of acquisition ultimately depends on the
application and the user, who may choose which
measures of improvement on the integral and cost to
trade off.

4 EXPERIMENTS

The key practical applications for ams-bq is solving
integrals of expensive-to-evaluate black-box functions
that are accompanied by cheaper approximations, po-
tentially in a setting where a finite budget is available.
Typical applications are models of complex nonlin-
ear systems that need to be tackled computationally.
With evaluations being precious, the goal is to get a
decent estimate of the integral with as little budget
as possible, rather than caring about floating-point
precision. In the experiments, we focus on the rear
vertices of the acquisition cube Figure 1, i.e., multi-
ple sources with source and input-dependent or only
source-dependent cost, and separate them into two
main experiments:

1. A synthetic multi-source setting with cost that
varies in source and location for the purpose of
exploring and demonstrating the behavior of the
acquisition functions derived in Section 3.

2. An epidemiological model of the spread of a dis-
ease with uncertain input, in which two sources
correspond to simulations that differ in cost as
well as quality of the quantity of interest.

Additionally, we present a bivariate experiment with
three sources in the supp. mat. Section D. We take a
myopic approach to all scenarios in that we optimize
the acquisition for a single source-location pair a
time. The implementation of the gp-model uses GPy
(GPy, since 2012) in Python 3.7.

4.1 MULTI-SOURCE, VARIABLE COST

We initially consider a synthetic two-source setting
with univariate input. The cost functions depend on
both source and location. The experiment’s purpose
is to demonstrate our findings from Section 3 and
convey intuition about the behavior of the novel ac-
quisition functions. The sources we consider have
been suggested by Forrester et al. (2007) with the
primary source f1(x) = (6x−2)2 sin(12x−4) and the
secondary source f2(x) = 1

2f1(x) + 10x for x ∈ [0, 1].
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The cost functions both take the form of a scaled and
shifted logistic function in a way that the cost lies
in (0, 1] (cf. Figure 8 in the supp. mat.). The costs
of both sources converge to the same value close to
x? = 0; for larger x?, f2 is two orders of magnitude
cheaper than f1. Figure 3 shows snapshots of three
consecutive query decisions taken by the mi multi-
source acquisition. The gp model (depicted in the
left column) has been initialized with 3 datapoints
in the primary and 5 in the secondary source and
merely the noise variance was constrained to 10−2.
The mi acquisition given the current state of the gp is
shown on the right—the top left frame is shown for
mi, ivr, and ip in Figure 7 in the supp. mat. to
emphasize the pathology of ip and to highlight the
subtle difference between mi and ivr in practice. The
acquisition function is optimized using the l-bfgs-b
optimizer in scipy. We observe that ams-bq does
not query f2 where the source costs are almost identi-
cal for x? <∼ 0.2 (see Figure 9 in supp. mat.). This is
because the two sources are not perfectly correlated
and evaluating f1 always conveys more information
about Z than f2. The fact that c2 decreases with
increasing x? is nicely represented in the increasing
height of the maxima of the dashed acquisition func-
tion for the secondary source in the top left frame of
Figure 3.

For assessing the performance of ams-bq, we com-
pare against vbq and a percentile estimator (pe) that

both operate on the primary source. The latter is
obtained by separating the domain into intervals that
contain the same probability mass and summing up
the function values at these nodes. For the uniform
integration measure used here, this is equivalent to
a right Riemann sum. We assume that gp inference
comes at negligible cost as compared to the function
evaluations and thus consider cost to be incurred
purely by querying the information sources.
To render the integration problem more difficult, we
modify the Forrester functions to vary on a smaller
length scale by adding a sinusoidal term and adapting
some parameters, s.t. f1(x) = (6x−2)2 sin(12x−4)−
(2−x)2 sin(36x) and f2(x) = 3

4f1(x)+16
(
x− 1

2
)
+10

which we integrate from 0 to 1 against a uniform
measure (cf. Figure 4, top left). To avoid over- or
underfitting, we set a conservative gamma prior on
the lengthscale with a mode at a small fraction of
the domain [0, 1] for both vbq and ams-bq, and
assume zero observation noise. With six3 more hy-
perparameters than vbq, ams-bq is more prone to
over-/underfitting, and we further set a prior on the
coregionalization matrix B (cf. Section 2.3) with pa-
rameters estimated from the initial three data points
using empirical Bayes. This is to avoid initial over- or
under-estimation of the correlation between sources,
which would either cause the active scheme to select
only f2 or only f1, respectively. Compared to the

3Due to the construction of B = WWᵀ + diag(η)
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Figure 4: Top left: the wigglified Forrester func-
tions with f1 and f2 primary/secondary source, re-
spectively; top right: the cost functions used; bot-
tom: relative error E[Z]−〈f1〉/〈f1〉 with two std. devia-
tions (shaded) as a function of normalized cost for
the ams-bq acquisitions mi and ivr compared to
vbq and a percentile estimator (pe). Vertical dashed
lines are a visual help to indicate the cost spent to
achieve acceptable accuracy.

previous experiment, the cost is changed to have a
minimum, but still composed of a sum of logistic
functions and normalized to be in (0, 1] (Figure 4,
top right). The effect of these cost functions on the
final state is depicted in the supp. mat., Figure 10.
Furthermore, this setting reveals the pathology of
the ip acquisition (cf. Section 3.2) that everlastingly
re-evaluates the secondary source at the location
of minimal cost. The convergence behavior of the
well-behaved acquisition functions mi and ivr are
displayed in Figure 4 (bottom) in comparison to
vbq and pe. The hyperparameters of the gp are
optimized after every newly acquired node, both for
vbq and ams-bq. Figure 4 shows the superior perfor-
mance of both ams-bq methods in arriving close the
true integral with little budget. The vertical jumps
in the ams-bq methods occur when f2 is evaluated
at cheaper cost.

4.2 A SIMULATION OF INFECTIONS

We now consider multi-source models in which
sources come with input-independent cost, a.k.a.
multi-fidelity models (bottom rear mi vertex in Fig-
ure 1). We choose an epidemiological model in which
evaluating the primary source requires running nu-
merous stochastic simulations and the secondary
source solves a system of ordinary differential equa-

tions. Epidemiological models deal with simulating
the propagation of an infectious disease through a
population. The sir model forms the base for many
compartmental models and assumes a population
of fixed size N where at any point in time, each
individuum is in one of three states—susceptible, in-
fected, and recovered (sir)—with sizes NS , NI , and
NR (Kermack & McKendrick, 1927). The dynamics
are determined by stochastic discrete-time events of
individuals changing infection state, for which Pois-
son processes (i.e., exponentially distributed inter-
event times) are commonly assumed (see e.g., Daley
& Gani, 1999). In the thermodynamic limit where
N is large, the average dynamics is governed by a
system of odes that does not admit a generic ana-
lytic solution. There are two parameters in the sir
model: the infection rate a, and the recovery rate b.
Model details and experiment setup can be found in
Section C (supp. mat.).

For the ams-bq experiment, we assume that we know
b, but we are uncertain about a. We are interested in
the expected maximum number of simultaneously in-
fected individuals Ea[maxtNI(t)] and the time this
maximum occurs Ea[arg maxtNI(t)], which might
be relevant for vaccination planning. Querying the
primary source f1 for the quantities of interest as
a function of a requires numerous realizations of a
stochastic four-compartments epidemic model (an
extension to the sir model) using the Gillespie algo-
rithm (Gillespie, 1976; Gillespie, 1977). For each tra-
jectory, the maximum value and time are computed
and henceforth averaged over. In our implementa-
tion, each query of f1 takes ∼ 16 s on a laptop’s cpu.
The secondary source f2 solves the system of odes
for given a and computes the maximum value and
time for the resulting function NI(t), which takes
about 8 · 10−3s to evaluate. As in previous experi-
ments, we set a gamma prior on the lengthscale, a
prior on the coregionalization matrix B, and the noise
variance to zero as in Section 4.1. Both vbq and
ams-bq are given the same initial value of f1, and
ams-bq additionally gets the value of f2 at the same
location, as well as one more random datum from f2.
This is justified since ams-bq needs to learn more
hyperparameters than vbq and secondary source
evaluations are very cheap. Otherwise, if the initial
evaluations of f2 were further apart than the prior
lengthscale from the locations of the initial primary
datum, virtually zero correlation would be inferred
between the sources, and the primary source would
be evaluated until a sampled location roughly co-
incides with locations where the secondary sources
have been evaluated.
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Figure 5: Relative error vs. budget spent for the sir model for the max number of simultaneously infected
individuals (left) and for the time after which the maximum occurs (right). Primary source has cost 1.
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Figure 6: Evaluation sequences of primary and sec-
ondary source in the sir experiment.

Figure 5 shows the relative error of the ams-bq es-
timator against normalized cost as compared
to vbq and pe for Ea[maxtNI(t)] (left) and
Ea[arg maxtNI(t)] (right). The horizontal dashed
line shows 〈f2〉, i.e., the integral of the secondary
source with one evolution of a Monte Carlo estimator
of f2. This illustrates that simply using the secondary
source for the integral estimate might be computa-
tionally cheap, but results in an unknown bias. In
the left plot, ams-bq achieves a good estimate with
one additional evaluation of f1 only, while vbq takes
another six evaluations. Again, the vertical jumps
for ams-bq are caused by evaluations of f2. The
initial high confidence on the integral is caused by
the choice of prior on the output scale from the ini-
tial data, which is located in the tail of the gamma
prior on a. Figure 6 displays the order in which
ams-bq evaluates primary and secondary source.

5 DISCUSSION

The multi-source model presented in Section 2.2 can
be extended in various ways to increase its expres-
siveness by using a more elaborate kernel (e.g., one
lengthscale per source), or by encoding knowledge
about the functions to be integrated, e.g., a prob-
abilistic integrand. Other applications might come

with the complication that the cost function c is un-
known a priori and needs to be learned during the
active bq-loop from measurements of the amount
of resource required during the queries. A simple
example was presented in Section 4.2 where the cost
was parameterized by a constant, estimated during
the initial observations. A probabilistic (in contrast
to parametric) model upon the cost would induce an
acquisition function which is not only conditioned
on the uncertain model predictions but also on the
uncertain cost predictions. Furthermore, as in other
active learning schemes, non-myopic steps for ac-
quiring multiple observations y`?

at once might be
beneficial especially when the multi-source model
is already known, and does not benefit from being
re-fitted to new data; or when multiple evaluations
of sources come at lower cost than evaluating se-
quentially. On the experimental side, more elaborate
applications of ams-bq in areas of active research
are reserved for future work.

5.1 CONCLUSION

We have placed multi-source bq in a loop and thus en-
abled active learning to infer the integral of a primary
source while including information from cheaper sec-
ondary sources. We discovered that utilities that
yield redundant acquisition policies in vbq give rise
to various policies, some desirable and others patho-
logical, when evaluation cost is accounted for. Our ex-
periments illustrate that with the sensible acquisition
functions, the ams-bq algorithm allocates budget to
information retrieval more efficiently than traditional
methods do for solving expensive integrals.
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