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Abstract

Several peer consistency mechanisms have
been proposed to incentivize agents for hon-
estly solving crowdsourcing tasks. These
game-theoretic mechanisms evaluate the an-
swers provided by an agent based on the cor-
relation with answers provided by other agents
(“peers”) who solve the same tasks. In this pa-
per, we consider the problem of eliciting per-
sonal attributes (for e.g. body measurements)
of the agents. Since attributes are personal in
nature, the tasks can not be shared between
two agents. We show for the first time how
to extend a peer consistency incentive mech-
anism, the Logarithmic Peer Truth Serum, to
this setting for collecting personal attributes.
When individuals report combinations of mul-
tiple personal data attributes, the correlation
between them can be exploited to find peers.
This new mechanism applies, for example, to
collecting personal health records and other
multi-attribute measurements at private prop-
erties such as smart homes. We provide a the-
oretical analysis of the incentive properties of
the new mechanism and show the performance
of the mechanism on several public datasets,
which confirm the theoretical analysis.

1 INTRODUCTION

Crowdsourcing is a promising method to collect data in
an inexpensive way. The data can be, for example, sub-
jective opinions such as restaurant reviews or objective
measurements such as pollution levels in a city and im-
age labels. Measurements tasks are particularly impor-
tant in collecting features which are useful in supervised
and unsupervised machine learning. However, there is

always a concern about the reliability of the data thus
obtained. While some crowdworkers (henceforth called
agents) will do their best to provide accurate data, many
are not motivated to make the effort to obtain and report
the data properly. This degrades the quality of the data.
For example, if the data is to be observed with a sensor
device, many may not be willing buy and maintain the
device to obtain correct measurements. One approach
to address this problem is providing the agents with in-
centives that cover the cost of their effort and encourage
them to provide high quality data. The incentives have
to be contingent on the quality of the data, for exam-
ple, based on spot-checking the data for agreement with
a trusted ground truth. In many of the most interesting
applications, however, the ground truth is not accessi-
ble. Peer consistency is an elegant idea for designing in-
centive mechanisms in this situation. The output agree-
ment (Waggoner and Chen, 2014), the Bayesian truth
serum (Prelec, 2004; Witkowski and Parkes, 2012a),
the peer prediction (Miller et al., 2005), the peer truth
serum (Radanovic et al., 2016) and the correlated agree-
ment (Shnayder et al., 2016; Dasgupta and Ghosh, 2013)
are all examples of the peer consistency mechanisms.
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Figure 1: Strategic agents in crowdsourcing.

There is a lot of interest in extending this approach to
collecting information such as records of personal sports
activity, physiological measurements or diet. Other ex-
amples of personal information include sensor measure-
ments observed at private properties such as smart homes
or hotels. However, a fundamental limitation of the ex-
isting peer consistency mechanisms is that they require



that a group of agents, called peers, observes the same
data or a noisy version of it. For example, a group of
agents should label the same image, measure pollution at
the same location or give opinion about the same service.
This does not work with personal data, since every agent
is reporting data about a different object. However, we
can extend the idea of peer consistency to a setting where
agents report a combination of attributes that are known
to be correlated with one another, even if the correlation
structure is not known. When rewarding the report about
one of the attributes, we can identify peers based on sim-
ilarity in the other attributes reported at the same time.

In this paper, we show how one such mechanism, the
Logarithmic Peer Truth Serum (LPTS) (Radanovic and
Faltings, 2015), can be extended to elicit multi-attribute
personal data from a crowd. We call this novel mecha-
nism the Personalized Peer Truth Serum (PPTS). We in-
troduce task settings for eliciting continuous valued per-
sonal features from agents, exploit them to develop the
PPTS and discuss the theoretical properties and practi-
cal applicability of the new mechanism. Our mecha-
nism works in large scale settings when there are mul-
tiple agents reporting data and there exist (unknown)
groups of agents sharing some personal characteristics.
We show the validity of our assumptions on real datasets.
We also show that even when these groups are estimated
from the data reported by agents, the incentive compati-
bility of the mechanism is not affected.

1.1 Related Work

Different information elicitation mechanisms exist in the
literature for two major settings. Techniques such as
proper scoring rules (Gneiting and Raftery, 2007) and
prediction markets (Wolfers and Zitzewitz, 2004) can be
used to elicit truthful beliefs about events that are to be
realized in future, if the realized outcomes of the events
are observable by the mechanism. When such verifica-
tion is not possible, peer-prediction mechanisms are a
well-known solution for truthful information elicitation.
In this paper, we are interested in the truthful mecha-
nisms for information elicitation without verification.

The original peer-prediction method (Miller et al., 2005)
is a mechanism for information elicitation without ver-
ification. The mechanism uses proper scoring rules to
reward agents for reports that are predictive of other
agents’ reports and admits truth-telling as a Nash equilib-
rium. Several other methods (Jurca and Faltings, 2009)
don’t use proper scoring rules and instead use an “auto-
mated mechanism design” approach to determine adap-
tive payment rules that are incentive compatible. How-
ever, these mechanisms are not detail-free in the sense
that they require agents’ beliefs to be known.

The Bayesian Truth Serum (BTS) (Prelec, 2004) is an-
other classic mechanism for information elicitation with-
out verification. BTS doesn’t use the knowledge of com-
mon beliefs to compute rewards, but collects two reports
from each agent - an ‘information’ report (agent’s own
observation) and a ‘prediction’ report (agent’s predic-
tion about the distribution of information reports from
other agents). The reward mechanism of the BTS ensures
that truthful reporting is the highest-reward Nash equi-
librium as number of agents solving a task tend to infin-
ity. The Robust BTS of (Witkowski and Parkes, 2012b;
Radanovic and Faltings, 2013) generalize the BTS to
small populations in binary and non-binary answer set-
tings respectively. These mechanisms are not minimal
in the sense that they ask the agents to submit additional
information than desired.

Several minimal and detail-free game theoretic incentive
mechanisms have been developed recently for crowd-
sourcing. The seminal work in this category is due
to (Dasgupta and Ghosh, 2013). The main idea in this
work is to exploit multi-task settings, in which every
agent solves multiple tasks. The mechanism rewards
the agents for agreeing on a shared task and penalizes
them for agreeing on a non-shared task. This mech-
anism ensures that truth-telling is a focal equilibrium
in binary answer settings. The Correlated Agreement
mechanism (Shnayder et al., 2016) generalizes the mech-
anism of (Dasgupta and Ghosh, 2013) to non-binary an-
swer spaces with additional assumptions on the corre-
lation structure of workers’ observations. Both these
mechanisms require that workers solve multiple tasks.
The Logarithmic Peer Truth Serum (Radanovic and Falt-
ings, 2015), which is based on an information theo-
retic principle, requires no such assumptions and ensures
strong-truthfulness in non-binary answer spaces. (Kong
and Schoenebeck, 2019) provide further complementary
analysis for this information-theoretic framework. The
guarantees of the mechanism are ensured in the limit
(when every task is solved by an infinite number of
workers). The Peer Truth Serum (PTSC) of (Radanovic
et al., 2016) doesn’t require even this assumption for the
theoretical guarantees and works with a bounded num-
ber of tasks overall. The Deep Bayesian Trust mecha-
nism (Goel and Faltings, 2019) ensures dominant strat-
egy incentive compatibility and also computes fair re-
wards in large scale crowdsourcing by using both peer
answers and some gold standard answers. The funda-
mental assumption in all of the above mechanisms is
that the task solved by an agent can be shared with an-
other agent, who submits independent noisy observa-
tion. (Agarwal et al., 2017) extend the Correlated Agree-
ment mechanism to the settings where agents belong to
one of the k possible categories of rating behaviors (for



e.g. strict and lenient rating behavior). They cluster
the agents with similar rating behavior to apply the CA
mechanism. However, in this mechanism too, the as-
sumption of shared tasks remains.

All these mechanisms are inherently inapplicable to elicit
personal data. This is because when workers are asked
to report measurements about the personal objects she
owns (for example, her body or house), no other worker
can share that task (because no worker can access the
personal object owned by another worker). We extend
the Logarithmic Peer Truth Serum to this setting while
using a concept similar to that of “peers”. In such a
setting, these peers can not be distinguished using the
‘shared task’ definition. Our mechanism approximates
them from the data reported by the workers while guar-
anteeing truthful equilibrium.

1.2 Our Contributions

From a technical standpoint, we address three main chal-
lenges in this work:

1. Define which agents can act as peers for one another
in settings when agents can’t share tasks.

2. Show that even if such peers are estimated from the
reports submitted by the agents, the incentive com-
patibility is not affected.

3. Extend the mechanism to handle continuous data
values instead of only discrete answers.

The summary of our contributions in the paper is as fol-
lows:

• We propose a novel incentive mechanism to elicit
continuous valued, multi-attribute and personal
data from crowd.

• We analyze and present several interesting theoret-
ical properties of the mechanism. Our mechanism
ensures that truthful reporting is an equilibrium and
other undesired equilibria are less attractive. We
also provide a practically useful and theoretically
sound test to judge the applicability of our mecha-
nism on a new type of data to be elicited.

• We show the performance of the mechanism on
three real datasets, which are publicly available and
are relevant to the settings of the paper.

2 SETTINGS

We consider the settings in which a requester (center)
is interested in collecting data from a large number of

agents W (|W | = n → ∞) with some personal char-
acteristics. The data being elicited consists of a set of
attributes A (|A| = d ≥ 2). The attributes A are personal
characteristics such as body measurements of the agents.
Agents independently obtain measurements for their at-
tributes and report them to the center. The center in turn
rewards them based on the quality of their reports. We as-
sume the agents to be rational, seeking to maximize their
expected rewards. The agents choose a reporting strategy
to maximize their expected rewards. In a heuristic report-
ing strategy, they save the effort of even measuring the
attribute and just report a random measurement drawn
from an arbitrary probability distribution. In an informed
reporting strategy, they obtain the measurement but re-
port a mapping of the obtained measurement. Our aim
is to formulate our incentive mechanism as a Bayesian
game between the agents (who have probabilistic beliefs
about the measurements of one another) and make truth-
ful reporting (i.e. informed reporting with identity map-
ping) a profitable equilibrium strategy of the game for all
agents. The strategic setting is described in Figure 1.

2.1 Belief Model

We model the beliefs of an agent i using thee continuous
random variables for each attribute j. The first random
variableXij is the attribute measurement itself. P (Xij)

1

is agent i’s prior belief about measurements for the at-
tribute j. The second random variable Gj models the
global factors that affect the value of the jth attribute
of any random agent. P (Gj) is the agent’s prior belief
about the global factors before obtaining her measure-
ment for attribute j and P (Gj |Xij) is her posterior be-
lief after obtaining the measurement. The third random
variable models the local factors that are personal to the
agent and affect her attribute value. For every agent i,
we model a set of other agents Ni ⊂ W (1 << |Ni| <<
|W |), called cluster of agent i which share only these
personal factors. Note that this is a much weaker mod-
eling condition as compared to that of sharing personal
measurements. Further, the clusters are unknown to the
mechanism. The random variable for personal factors
is denoted by Lkj , k being the cluster to which agent
i belongs. In the rest of the paper, we will simply use
notation Lij for Lkj such that Lij are equal for all i in
the same cluster k. The P (Lij) is the agent’s prior belief
about the personal factors before taking measurement for
attribute j and P (Lij |Xij) is the posterior belief after
taking measurement. Lij and Gj are related through the
conditional distribution P (Lij |Gj). It is easy to show
that, in this model, the global distribution P (Xij |Gj) can
be modeled by a mixture distribution as follows:

1In the paper, we use P (·) for density functions to keep
notations simple.



P (Xij |Gj) =

K∑
k=1

αk · P (Xij |Lkj)

where K (<< N) is the number of distinct clusters in
the population and αk is the mixing probability of kth

cluster. The model is summarized in Figure 2.
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Figure 2: (Belief Model) Left - Agent population contains clus-
ters of agents with similar characteristics. Right - Agents’ mea-
surements can be modeled using Gaussian mixture.

In this paper, we will use (Lyon, 2014) normal distribu-
tion2 to model Xij’s dependence on Lij , i.e.,

P (Xij |Lij) = N (µLij , σ
2
Lij )

3 THE PPTS MECHANISM

The center collects reports from all agents for all their
attributes. It then assigns each agent to its corresponding
cluster described in agent i’s belief. The cluster assign-
ment step is discussed in Section 5. For now, let’s assume
this as an oracle that provides the mechanism with every
agent’s true cluster label. We define the jth attribute
score of agent i for reporting Xij = y as :

rij = log
f(y|µ̂Lij , σ̂

2
Lij

)∑K
k=1 α̂k · f(y|µ̂Lkj , σ̂

2
Lkj

)
(1)

where f is the Gaussian function given by

f(x|µ, σ2) =
1

σ
√
2π
e−

(x−µ)2

2σ2

µ̂lij and σ̂2
lij

are the mean and variance of values reported
for attribute j by agents in the cluster Ni. α̂k is the em-
pirical relative mixing frequency of cluster k.

Agent i finally gets a cumulative reward (CR) equal to
the average of attribute scores rij for all attributes j ∈
{1, 2...d}. More formally,

CR(i) =

∑d
j=1 rij

d
2This assumption simplifies the analysis of the mechanism

and is not crucial for the main results presented in the paper.

Example: As an example for calculation of attribute
scores, consider agent i who reports its wrist measure-
ment as 4.5 units. The reported wrist measurements of
agents in the cluster of agent i have mean 4 and s.d. 3.
If there are 2 distinct clusters in the population, another
with mean 5 and s.d. 5 (with equal mixing frequencies),
then the wrist attribute score of agent i is given by:

rij = log
f(4.5|4, 32)

0.5 · (f(4.5|4, 32) + f(4.5|5, 52))

≈ log
0.1311

0.5 · (0.1311 + 0.0793)
≈ 0.22

On the other hand, if the means and s.d. of reports in the
cluster of i are 0 and 1 respectively, then wrist attribute
score of i is

rij = log
f(4.5|0, 12)

0.5 · (f(4.5|0, 12) + f(4.5|5, 52))

≈ log
0.00002

0.5 · (0.00002 + 0.0793)
≈ −8.2

4 ANALYSIS

Intuitively, the numerator of the fraction inside the loga-
rithm in Equation 1 measures how common (likely) a re-
port is in its cluster while the denominator measures how
likely a report is globally. Thus, similar to the Bayesian
Truth Serum, PPTS rewards ‘surprisingly common’ re-
ports. In the following theorems, we formally discuss
the incentive compatibility and other properties of the
mechanism. For better understanding, we first discuss
the theoretical properties treating the cluster assignment
step as a black box oracle and show in Section 5 how the
mechanism obtains the clusters while preserving incen-
tive compatibility. Because of space constraints, proofs
are provided in the supplementary material, available on
the first author’s website3. The proof of theorem 1 is
provided at the end of this paper to give an idea of the
techniques used in the proofs.

We call a mechanism Bayes-Nash incentive compati-
ble if truthful reporting is an equilibrium of the mech-
anism i.e. if other agents report their observations truth-
fully, no agent has an incentive to deviate from the truth-
ful strategy for any observation of the agent. This is
sometimes also called as the ex-post subjective equilib-
rium (Witkowski and Parkes, 2012a) since the beliefs of
the agents are different (subjective).

Theorem 1. The PPTS mechanism is Bayes-Nash incen-
tive compatible, with strictly positive expected payoffs in
the truthful reporting equilibrium.

3http://lia.epfl.ch/∼goel/

http://lia.epfl.ch/~goel/


The theorem states that given other agents are truthful,
it is the best strategy for any agent to be truthful. The
sketch of our information-theoretic proof is that from
many independent and identically distributed truthful ob-
servations of other agents, the mechanism obtains maxi-
mum likelihood estimates of the true global and personal
factors. A simple application of Bayes rule then shows
that the mechanism rewards a report for its informative-
ness in predicting the personal factors, and the reward is
maximized and is strictly positive for a truthful report.

While a truthful equilibrium is a desired outcome, there
are other (non-truthful) equilibria that the mechanism ad-
mits - which is a common feature in the peer-consistency
methods. It is important to ensure that such equilibria are
not more profitable than the truthful equilibrium. They
include heuristic reporting strategy equilibria. As dis-
cussed in Section 2, in heuristic reporting strategy, agents
save the effort of even making an observation and report
a random sample drawn from a probability distribution.
Theorem 2. Heuristic reporting equilibria result in zero
expected payoff in the mechanism.

This is because when agents draw independently from a
random distribution, both local and global MLEs con-
verge to common values and it results in a reward of
log 1 = 0.

There are also informed non truthful equilibria, where
agents do take the measurements but use a mapping
to transform their actual measurements x into their re-
ports y. Consider linear transformation mappings, where
agents use a function y = g(x) = ax + b to get their
reports from their measurements x. In the real world,
this strategy corresponds to agents systematically over
reporting or under reporting their measurements.
Theorem 3. In the PPTS mechanism, an equilibrium
strategy profile defined by a function g(x) = ax+b is not
in expectation more profitable than the truthful strategy.

The proof uses the observation that if agents use linear
transformation to report, the MLE estimates also change
accordingly and reward remains unchanged. Such equi-
libria don’t give higher expected reward but choosing
same g requires a lot of coordination among the agents
and hence are unlikely to be played. Agents unilaterally
choosing a different linear g′ get lower scores than if they
stay with g as well and thus such profile is not in equilib-
rium.

Next, we look at the ex-ante expected score of a truthful
agent i.e. expected score before taking the measurement.
Theorem 4. The ex-ante expected score of a truthful
agent is equal to the conditional mutual information
(CMI) of the attribute measurements and the personal
factors given the global factors.

The CMI (Cover and Thomas, 1991) is the expected
value of the mutual information of two random variables
given the value of a third, where the mutual informa-
tion of two random variables measures the mutual de-
pendence between two random variables. Since, CMI
is always non-negative, the ex-ante expected score of a
truthful agent is always non-negative. When the CMI is
0 i.e. when the attribute is independent of the personal
factors, the mechanism can’t be used to elicit truthful in-
formation because the expected payment is 0 regardless
of the report. We discuss an interesting use of this theo-
rem in further sections.

5 CLUSTERS APPROXIMATION

A crucial step in the mechanism described in Section 3
was to assign every agent to its correct cluster. We now
describe how the mechanism achieves this without af-
fecting the incentive compatibility. In the absence of the
oracle, naturally the only option available to the center
is to use the reports of the agents themselves to approxi-
mate the clusters. However, the question is whether do-
ing this is game theoretically sound and preserves incen-
tive compatibility?
Definition 1. (ε-Correct Clustering Algorithm) A clus-
tering algorithm is called ε-correct, if given true reports,
it assigns a true report to a wrong cluster with probabil-
ity at most ε and ε is such that as |Nk| → ∞, the MLE
estimates {µ̂kj , σ̂

2
kj} converge to {µkj , σ

2
kj} and α̂k con-

verge to αk, ∀k.

Note that the definition doesn’t require every point to be
assigned to correct clusters but only the approximated
cluster parameters to converge to correct parameters.
The conditions required for correct estimation of Gaus-
sian mixture parameters from a finite sample are dis-
cussed in (Kalai et al., 2010),(Moitra and Valiant, 2010).
The conditions include a lower bound on the mixing
probabilities and the statistical distance between the clus-
ter distributions. This implies that the more separated the
clusters are, the better are the approximations of cluster
parameters with fewer samples.
Theorem 5. Given an ε- correct clustering algorithm,
the PPTS is Bayes-Nash incentive compatible even if the
clusters are approximated from the reports.

The main insight of this theorem is the following : the
fact, that the mechanism doesn’t know the cluster labels
but instead uses an ε-correct clustering algorithm to clus-
ter the reports of the agents, doesn’t provide any agent
with a more profitable non-truthful strategy to deviate
from the truthful equilibrium. This result addresses the
concern that agents may strategically manipulate their re-
port to get assigned to a different cluster and get a better
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Figure 3: Cluster Distribution in Datasets

reward. Hence, an ε-correct clustering algorithm can be
applied to assign the clusters while preserving incentive
compatibility.

Implementation and Practical Considerations

In this paper, we implement the PPTS mechanism by us-
ing the following technique to approximate the clusters.
Consider approximating the cluster for calculation of the
jth attribute score of the agents. LetA−j be the set of all
attributes excluding attribute j i.e. A−j = A \ {j}. We
then apply k-means clustering algorithm on attribute sets
A−j to obtain the clusters used in calculating of the jth

attribute score.

It remains to discuss how one can judge if the clusters
found using the above technique are indeed fit for being
used with the PPTS mechanism in practice. For this, we
make use of Theorem 4. The theorem says that if the con-
ditional mutual information I(Xij ;Lij |Gj) is close to 0,
then the mechanism can’t be used for truthful elicitation.
If some trusted prior data (i.e. some true observations
Xij) is available to the center for analysis, CMI estima-
tors (Vejmelka and Paluš, 2008),(Ver Steeg, 2000) can be
used to estimate I(Xij ;Lij |Gj) by using µ̂Lij from the
approximated clusters in place of Lij . A low value of
this CMI estimate suggests the unsuitability of the clus-
ters for the mechanism. In the next section, we demon-
strate this method on real datasets. To understand this in
a more intuitive manner, recall that we use attribute set
A−j for approximating the clusters. If all attribute pairs
are independent, observations for attribute j will be in-
dependent of the cluster approximated using A−j , which
means that the estimated clusters can’t be used with the
mechanism. Therefore, to find suitable clusters, we need
to elicit interdependent attributes.

6 EXPERIMENTAL EVALUATION

A real world validation of our mechanism by using it
to collect new personal data is perhaps not feasible in

Dataset CMI Estimate

Body Measurements

Air Quality

Seed

Census Income

0.41559387

0.98769209

0.98322659

0.0194241

Table 1: Average CMI estimates for different datasets

the absence of ground truth for performance evaluation.
However, the manipulation resistant properties of the
mechanism can be best verified through simulations on
real datasets. We simulate, on three real datasets, the
strategies that agents may adopt and discuss the rewards
that our mechanism decides for them.

6.1 Datasets

We selected three datasets from different domains for
evaluating the mechanism through simulations. The
Body Measurements (Heinz et al., 2003) dataset con-
tains 21 body dimension measurements as well as age,
weight, height, and gender of 507 individuals. The 247
men and 260 women were mainly young adults, with a
few older men and women. The Seed (Charytanowicz
et al., 2010) dataset consists of 7 measurements of 210
seeds of wheat. It has 70 samples each of three varieties
of seeds (with labels). The Air Quality (De Vito et al.,
2008) dataset consists of 9358 instances (852 complete
instances) of hourly averaged responses from an array of
5 metal oxide chemical sensors embedded in an air qual-
ity multi-sensor device. The Air Quality dataset was not
collected at different places but at a single place at differ-
ent times. Another dataset that we considered for evalu-
ation was extracted from U.S. 1994 census data. This
Census Income (Kohavi, 1996) has 15 personal infor-
mation attributes (continuous and categorical) about the
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Figure 4: Statistics of Attribute Scores
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Figure 5: Statistics of Cumulative Rewards (Average of attribute scores of all attributes)

(a) Body Data (b) Seed Data (c) Air Data

Figure 6: Statistics of Cumulative Rewards (Median of attribute scores of all attributes)

population such as salary class, education level, work-
ing hours, native country, age, sex, race, occupation etc.
For simulations, we can assume each instance (row) in
a given dataset to be reported by a different agent and
each instance having multiple attributes. For example, in
the Air Quality dataset, an instance has 5 attributes cor-
responding to the 5 metal oxide sensors. The datasets act
as true private observations of agents. In Seed and Body
datasets, clusters capture similarity between different in-
dividuals and seeds. In the Air Quality dataset, clusters
capture the temporal similarity between pollution mea-
surements. As datasets with more personal attributes are
hardly available publicly, these public datasets do a good
job at simulating the task settings we target i.e. elicita-
tion of continuous valued unique personal attributes with
normal like distribution. Figure 3 shows one attribute
each in the Body Measurements dataset, the Seed dataset
and the Air dataset along with their normal approxima-

tions in the clusters. The body and seed datasets are la-
beled but labels are used only for visualization and not
for other experiments reported in the paper. Air dataset
is unlabeled, hence we used our approximated clusters
for visualization also.

6.2 Cluster Fitness Evaluation

To evaluate the fitness of the clusters approximated by
the k-means algorithm on these datasets, we make use of
Theorem 4. The average CMI estimates (of all attributes)
from the four datasets are shown in Table 1. Note that for
Census Income, the average CMI estimate is very small
(close to 0). Hence, we can not use the clusters for elicit-
ing the attributes of this dataset for reasons explained in
Section 5.



Results

For better understanding, we present the results in two
parts - attribute scores in Section 6.3 and cumulative re-
wards in Section 6.4. We will be discussing the fol-
lowing statistics of scores/rewards - mean (average of
scores/rewards), Q1 (1st quartile of scores/rewards), Q2
(2nd quartile),Q3 (3rd quartile) andF (fraction of agents
receiving strictly positive score/reward), under different
simulated strategies.

6.3 Attribute Score

We simulate the following reporting strategies that can
be used by agents :

1. TR - All agents report all attributes truthfully.

2. RA - All agents report jth attribute randomly within
its true range and all other attributes truthfully.

3. R - All agents report all attributes truthfully except
agent i, who reports jth attribute randomly within
its true range but other attributes truthfully.

4. GS - All agents collude to report jth attribute using
a Gaussian distribution with true mean and variance
of the attribute and report all other attributes truth-
fully.

Figures 4a, 4b and 4c show statistics of attribute scores
for jth attribute in each dataset under different report-
ing strategies of agents. This jthattribute is ‘height’ in
the Body Measurements data, ‘kernel length’ in the Seed
data and ‘PT08.S2’ in the Air Quality data . Figure 4b
shows results for the Seed Measurements data. The first
important point to note is that the fraction of agents get-
ting strictly positive score is more than 0.92 when agents
report truthfully but hardly goes above 0.5 in other non-
truthful strategies, which means that non-truthful strate-
gic agents do no better in expectation than a random
guesser. The other thing to note is that the mean score
when agents are non-truthful is not positive, whereas for
truthful agents, it is strictly positive with sufficient value
to distinguish it from a 0 score. A similar trend can
be observed for other statistics such as Q1, Q2 and Q3,
where the score for truthful reporting is always greater
than that for non-truthful strategies. In particular, we can
observe that Q2 (i.e. the median) is also strictly positive
for truthful agents and not more than 0 for non-truthful
agents. Similar results can be seen in Figures 4a and 4c
for Body and Air datasets respectively. It is worth men-
tioning here that the scores can be appropriately scaled
to cover the cost of participation and satisfying budget
constraints without affecting the incentive-compatibility
of the mechanism.

Also to confirm our earlier conclusion of the clusters not
being useful for the Census Income dataset, we computed
the rewards of agents for reporting this data truthfully
and found that only about 32% of the agents get positive
score with mean score approaching 0.

6.4 Cumulative Reward

Here, we report simulation results for the following re-
porting strategies :

1. TR - All agents report all attributes truthfully.

2. RA - All agents report all attributes randomly within
true ranges of respective attributes.

3. R - All agents report all attributes truthfully except
agent i, who reports all attributes randomly within
true ranges of respective attributes.

4. GS - All agents collude to report all attributes us-
ing Gaussian distributions with true means and vari-
ances of respective attributes.

In section 3, we defined the cumulative reward of a agent
as the average of all attribute scores of this agent. Fig-
ures 5a, 5b and 5c show statistics of final or cumulative
rewards. Figure 5b shows the results for Seed data. Sim-
ilar to attribute scores discussed in Section 6.3, the frac-
tion of agents with strictly positive cumulative reward is
0.93 when they report truthfully and is hardly more that
0.5 when they report non-truthfully. The mean cumula-
tive reward for truthful reporting strategy is strictly posi-
tive and is not more than 0 for non-truthful strategies, at-
testing Theorem 1 and Theorem 2. In Figures 6a, 6b and
6c, we show statistics of cumulative rewards calculated
as the median of the attribute scores instead of average
of attribute scores, i.e.,

CR(i) = median
j∈{1...d}

{
rij
}

The median is another way to calculate CR from attribute
scores and makes it robust to outliers in attribute scores.
We also find the median to perform better in simulations
as it makes the minimum reward of truthful agents non-
negative.

7 CONCLUSIONS

In this paper, we investigated the problem of incentiviz-
ing agents to honestly report their personal attributes
such as physiological measurements. We distinguish this
problem from the problem of incentivizing agents where
multiple agents can solve a common task such as label-
ing a common image. We thus extend the applicability of



the peer based incentive mechanisms from discrete labels
for shared objects to real valued multi-dimensional per-
sonal features. We propose the Personalized Peer Truth
Serum (PPTS) to address the problem. The PPTS shows
desired properties by making the honest reporting equi-
librium more profitable than heuristic reporting equilib-
ria. We further investigate the problem of finding peer
agents against whom the report of an agent is to be eval-
uated and propose to exploit other reports of the agent to
estimate its peers. We guarantee that the incentive com-
patibility of the mechanism continues to hold while do-
ing so. We provide a theoretically sound practical test to
determine the applicability of PPTS for a given set of at-
tributes by estimating the ex-ante expected payment. We
empirically analyze the performance of PPTS using esti-
mated peers on real datasets. The PPTS is able to incen-
tivize/penalize simulated honest and heuristic reporting
strategies with a good accuracy.

A PROOF OF THEOREM 1

Proof. The attribute score of agent i is given by :

log
f(y|µ̂Lij , σ̂

2
Lij

)∑K
k=1 αk · f(y|µ̂Lkj , σ̂

2
Lkj

)

Given that all other agents report truthfully, the attribute
score becomes :

log
f(y|µLij , σ

2
Lij

)∑K
k=1 αk · f(y|µLkj , σ

2
Lkj

)

This is because the maximum likelihood estimates
{µ̂Lij , σ̂

2
Lij
} converge to {µLij , σ

2
Lij
} as n, |Ni| → ∞

under the assumptions of conditional independence and
statistical similarity. We can write it as:

rij = log
P (Xij = y|Lij)

P (Xij = y|Gj)

The expected attribute score R of agent i, who observed
Xij = x and reported Xij = y is then given by :

R =

∫
Lij ,Gj

P (Lij , Gj |Xij = x) log
P (Xij = y|Lij)

P (Xij = y|Gj)
dLijdGj

where P (Lij , Gj |Xij = x) is agent’s posterior belief about
Lij and Gj conditional on observing Xij = x.

Under the assumption that attribute value Xij is conditionally
independent of global factors Gj given the personal factors Lij ,
i.e., P (Xij = y|Lij) = P (Xij = y|Gj , Lij) , we get

R =

∫
Lij ,Gj

P (Lij , Gj |x) · log
P (y|Gj , Lij)

P (y|Gj)
dLijdGj (2)

However, we know (using Bayes’ rule) that,

P (y|Gj , Lij)

P (y|Gj)
=

P (Lij |y,Gj)

P (Lij |Gj)
(3)

Using Equations 2 and 3,

R =

∫
Lij ,Gj

P (Lij , Gj |x) · log
P (Lij |y,Gj)

P (Lij |Gj)
dLijdGj

=

∫
Lij ,Gj

P (Lij |x,Gj) · P (Gj |x) log
P (Lij |y,Gj)

P (Lij |Gj)
dLijdGj

=

∫
Lij ,Gj

P (Lij |x,Gj) · P (Gj |x)·

log
P (Lij |y,Gj) · P (Lij |x,Gj)

P (Lij |Gj) · P (Lij |x,Gj)
dLijdGj

which can be rearranged as,

R =

∫
Gj

P (Gj |x)
[ ∫
Lij

−P (Lij |x,Gj) log
P (Lij |x,Gj)

P (Lij |y,Gj)
dLij

+

∫
Lij

P (Lij |x,Gj) log
P (Lij |x,Gj)

P (Lij |Gj)
dLij

]
dGj (4)

for brevity,

R =

∫
Gj

P (Gj |x)[−KL1 +KL2]dGj

where, KL1 and KL2 are KL-divergences and hence non-
negative. It is easy to see that R is uniquely maximized when
KL1 = 0, which happens only when y = x. The expected
attribute score at y = x is

RTruth =

∫
Gj

P (Gj |x)KL2dGj (5)

which is strictly positive.
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