
Approximate Inference in Structured Instances with Noisy

Categorical Observations – Supplementary Material

Alireza Heidari, Ihab F. Ilyas, Theodoros Rekatsinas

1 ANALYSIS FOR TREES

1.1 Proof of Lemma 1

Proof. In G = (V,E), for each edge (u, v) ∈ E, we have a random variable Lu,v = 1(ϕ(Zu, Zv) 6= Xu,v) with
distribution:

Lu,v =

{
1, p

0, 1− p

To apply the Bernstein inequality, we must consider Lu,v − p. We have E[Lu,v − p] = 0 and σ2(Lu,v − p) =
p(1−p). We must also have that the random variables are constrained. We know that |Lu,v−p| ≤ max{1−p, p}
and p < 1/2 so |Lu,v − p| ≤ 1− p. Now, we apply the Bernstein inequality:

P

 ∑
(u,v)∈E

Lu,v − p ≤ t

 ≥ 1− exp

(
− t2

2|E|σ2 + 2
3 (1− p)t

)
Let u , − t2

2|E|σ2+ 2
3 t(1−p)

. Solving for t we obtain:

t =
1

3
u(1− p) +

√
(1− p)2u2

9
+ 2|E|σ2u

Now we have that:

P

(∑
Lu,v − p ≤

1

3
u(1− p) +

√
(1− p)2u2

9
+ 2|E|σ2u

)
≥ 1− e−u

We choose u = ln
(

2
δ

)
, and substituting |E| = n − 1 for trees and σ2 = p(1 − p), we have that with

probability 1− δ:

∑
(u,v)∈E

1(ϕ(u, v) 6= Xu,v) ≤
1

3
ln(

2

δ
)(1− p) +

√
(1− p)2 ln( 2

δ )2

9
+ 2(n− 1)p(1− p) ln(

2

δ
) + (n− 1)p

Simplifying by noting that
√
a+ b ≤

√
a+
√
b, we have proven the lemma.

1.2 Proof of Lemma 3

Proof. For Ŷv = Yv, we have that PZ(Yv 6= Zv)− PZ(Yv 6= Zv) = 0 and so we are done. When Ŷv 6= Yv, we
have that PZ(Yv 6= Zv) = q and get the following for the first term:

PZ(Ŷv 6= Zv) = PZ(Ŷv 6= Zv ∧ Zv = Yv) + PZ(Ŷv 6= Zv ∧ Zv 6= Yv)

= PZ(Ŷv 6= Zv ∧ Zv = Yv) +
∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i)

1



We know that PZ(Ŷv 6= Zv ∧ Zv = Yv) = 1− q. For each i we have PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i) = q
k−1 .

So we have: ∑
i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i) =
q

k − 1

∑
i∈[k]∧i 6=Ŷv∧i 6=Yv

1 =
q(k − 2)

k − 1

Given this we have:

PZ(Ŷv 6= Zv) = PZ(Ŷv 6= Zv ∧ Zv = Yv) +
∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i)

= (1− q) +
q(k − 2)

k − 1
= 1− q

k − 1

Finally, consolidating these, we get:

P (Ŷv 6= Zv)− P (Yv 6= Zv) = 1− q

k − 1
− q = 1− k

k − 1
q

This is exactly c, and so the hamming error and excess risk are proportional. Furthermore, we can set c to
1− k

k−1q.

1.3 Proof of Corollary 1

Proof. Before the actual proof, we show that:

Lemma 1. In trees, if Y ∈ F then Y ∗ = Y .

Proof. We have that Y ∈ F hence
∑

(u,v)∈E 1{ϕ(Yu, Yv) 6= Xu,v} ≤ t with t = (n− 1)p+ 2
3 ln(2/δ)(1− p) +√

2(n− 1)p(1− p) ln(2/δ) and it holds with probability 1−δ. We have that Y ∗ = arg minY ′∈F
∑
v∈V

P(Y ′v 6= Yv)

which among all possible Y ′ ∈ F finds the one nearest to Y . So we have Y ∗ = Y .

Let Y ∗ = arg minY∈F
∑
v∈V P(Yv 6= Zv) and let Ŷ be the ERM. Because Y ∈ F so Y ∗ = Y .Then from

Lemma 2, we have:∑
v∈V

P (Ŷv 6= Zv)−
∑
v∈V

P (Y ∗v 6= Zv) ≤
(

2

3
+
c

2

)
log

(
|F|
δ

)
+

1

c

∑
v∈V

1{Ŷv 6= Yv}

For all c > 0, we can use Lemma 3 and apply it to the RHS to obtain(
1− 1

ct

)[∑
v∈V

P (Ŷv 6= Zv)−
∑
v∈V

P (Y ∗v 6= Zv)

]
≤
(

2

3
+
c

2

)
log

(
|F|
δ

)

where t = 1− k
k−1q. Now, because this holds for c > 0, we can choose c = 2

t thus obtaining(
1

2

)∑
v∈V

P (Ŷv 6= Zv)−
∑
v∈V

P (Y ∗v 6= Zv) ≤
(

2

3
+

1

t

)
log

(
|F|
δ

)

Finally, applying that q = 1
2 − ε, we obtain our result.

1.4 Proof of Theorem 1

Proof. By Lemma 1, we have with probability at least 1− δ
2∑

(u,v)∈E

1(ϕ(u, v) 6= Xu,v) ≤ t

2



which we will use it to define a hypothesis class F as

F =

Ŷ :
∑

(u,v)∈E

1(ϕ(Ŷu, Ŷv) 6= Xu,v) ≤ t


with

t = (n− 1)p+
2

3
ln(

2

δ
)(1− p) +

√
2(n− 1)p(1− p) ln(

2

δ
)

Which suggests that Y ∈ F with high probability. By Corollary 1, we have that Ŷ being the ERM over
F implies that

∑
v∈V

P (Ŷv 6= Zv)− min
Y ∈F

∑
v∈V

P (Yv 6= Zv) ≤

(
4

3
+

2
1
4 +

(
1
4 − ε

)(
1− k

k−1

)) log

(
|F|
δ

)

Combining this with Lemma 3, we conclude that
∑
v∈V 1{Ŷv 6= Yv} is bounded form above by

1

1− k
k−1q

(
4

3
+

2
1
4 +

(
1
4 − ε

)(
1− k

k−1

)) log

(
|F|
δ

)
Now, we approximate the size of the class F . We can do so by upper-bounding the number of ways to

violate the observed measurements. Pessimistically, of the possible l = 0, 1, . . . t violations, there are at most l
nodes which are involved in this violation. Furthermore, there are at most k−1 ways for each of these nodes to
be involved in such a violation. Therefore, we have,setting t = 2

3 ln(2/δ)(1− p) +
√

2(n− 1)p(1− p) ln(2/δ) +
(n− 1)p

|F| ≤
t∑
l=0

(
n

l

)
kl ≤ kt

t∑
l=0

(
n

l

)
≤ kt2t

Using this bound for |F|, and assuming that the noise and sampling distribution is constant, we obtain
that the hamming error is bounded by Õ(log(k)np)

1.5 Solving the Optimization Problem on Trees with Dynamic Programming

Because G is assumed to be a tree, we can compute optimal solutions to subproblems. Specifically, we can
turn any undirected tree into a controlled one by a breadth-first search.

Then we can define a table OPT (u,B|`) which stores optimal values to the subtree rooted at u, constrained
to budget B and with the parent of u constrained to class `. Given the values of OPT for all descendants of
a node u, it is not difficult to find values for the table at u. We formalize this in the following theorem.

Theorem 3. The optimization problem 1 can be solved in time O(kn3p).

Proof. Given a tree T = (V,E), a budget t, observations X = {Xu,v}(u,v)∈E and Z = {Zv}v∈V , we would
like to compute a solution to

∑
(u,v)∈E

1(ϕ(Zu, Zv) 6= Xu,v) ≤
2

3
ln(2/δ)(1− p) +

√
2(n− 1)p(1− p) ln(2/δ) + (n− 1)p

First, we turn T into a tree rooted at some node r by running a breadth-first search from r and directing

nodes according to their time of discovery. Call this directed tree rooted at r
−→
T r. We specify a table OPT

which will collect values of optimal subproblems.

Specifically, denote
−→
T u as the subtree of

−→
T r rooted at a node u. Then OPT will be a matrix parameterized

by OPT (u,B|`) where u ∈ V , 0 ≤ B ≤ |
−→
T u| (no tree can violate the observations more times than the

number of nodes in the tree) and ` ∈ [k]. Let Pa(u) be the singular parent of the node u. Then OPT values

3



represent the optimal value of the subtree rooted at u with a budget B and Pa(u) restricted to the value `.
Our recursive equation for OPT is then

OPT (u,B|i) = min
`∈[k]

min∑
v∈N(u)

Bv

=B−1{Xu,v 6=ϕ(i,`)}

∑
v∈N(u)

OPT (v,Bv|`) + 1{` 6= Zu}

If we have the value of OPT (u,B|`) for all nodes u 6= r, values ` and valid budgets B ≤ t, we can calculate
the optimum value of the tree by the following: We attach a node r′ to r by an edge r′ → r and set the
information on the node to Xr′,r = 1 then solve OPT (r, t|1), then repeat the process but with Xr′,r = −1,
return the smaller of these two values.

For a leaf node w, the value of OPT (w,B′|`) is simply mini 1{i 6= Zw} for B′ = 1. If B′ = 0 then we
must choose i such that it does not violate the side information, i.e. we must have ϕ(i, `) = Xw,Pa(w)

Finally we show how to compute the summation in (??) efficiently. For each value ` ∈ [k] we must
optimize the summation

min∑
v∈N(u)

Bv

=B−1{Xu,v 6=ϕ(i,`)}

 ∑
v∈N(u)

OPT (v,Bv|`) + 1{` 6= Zu}


Because each node’s optimal value is independent, we can rewrite this sum by submitting an optional

order on N(u) of 1, 2, . . . ,m = |N(u)| and reforming this sum to

min
B1∈[0,K−1{ϕ(`,s) 6=Xu,Pa(u)}]

OPT (1, B1|`) + min∑
j∈[2,m] Bj=B−B1−1{ϕ(`,s) 6=Xu,Pa(u)}

∑
j∈2,m

OPT (j, Bj |`)

The minimization for the first two vertices whose number of constraints violated are at most B can
be solved in O(B2) time. The calculation for the first three vertices can then be done in O(B2) time by
reusing the information from the first two. We can repeat this until we have considered all children of u.
Hence because we must calculate this value for all k possible classes, we get an algorithm which takes time
k
∑
v∈V |N(v)|B2 = O(nkB2). The statistical analysis below shows that B is poly(n, p).

2 ANALYSIS FOR GENERAL GRAPHS

2.1 Approximation Correlation Clustering

We have following Theorem,

Theorem 4. (Giotis & Guruswami, 2006) There is a polynomial time factor 0.878 approximation algorithm
for MaxAgree[2] on general graphs. For every k ≥ 3, there is a polynomial time factor 0.7666 approximation
algorithm for MaxAgree[k] on general graphs.

With this assumption in the worse case, we have labeling with 0.7666Opt[k]. If Opt = |E| − b which b is
the number of bad edges that the optimal does not cover. We know the original graph is a k cluster with no
bad-cycle (a cycle with one negative edge), so whatever bad edges that we see are the result of the noise process
on the edges, so b ≤ |E|p because part of them do not generate bad-cycles. We can consider the approximate
process as an extra source to generate more bad edges so we have |E| − b′ ≥ Approx[k] = 0.7666Opt[k].
Also, by our assumption we have p ≤ p′ so b ≤ b′

|E|−b′ ≥ Approx[k] = 0.7666Opt[k] = 0.7666
(
|E| − b

)
→ b′ ≤ 0.2334|E|+ 0.7666b

So we have

b ≤ b′ ≤ 0.2334|E|+ 0.7666b

4



We have upper bound for the error introduced by our approximation and we assume all that noise come
from edge noise process and the correlation clustering could not correct it, we can assume a noise process
with p′ such that b′ = |E|p′ so :

|E|p′ = b′ ≤ 0.2334|E|+ 0.7666b ≤ 0.2334|E|+ 0.7666|E|p→ p′ ≤ 0.2334 + 0.7666p

So we consider exact correlation clustering result in our analyses and if we interested to see the effect of
approximation algorithm on the result and get an error bound, we update p to 0.2334 + 0.7666p as worst
case analysis which means we directly inject the approximation noise error to the results. This assumption is
weak because part of b′ can be captured by the local and global optimizer which we neglect it.

2.2 Proof of Lemma 4

Proof. We mix two partitions into one notation and each data point in D shows as vi = (Ȳi, Zi) , for each
i ∈ D, and Ȳi ∈ Ȳ and Zi ∈ Z. We define ∀l ∈ [k]

Xl = {vi|Ȳi = l}
Tl = {vi|Zi = l}

and the error is E =
∑
vi∈D

1{Zi 6= Ȳi}. The only thing that we allowed to change is the label of Xls. We

can represent the partition X and T as,

X = {X1, X2, . . . , Xk}
T = {T1, T2, . . . , Tk}

We claim that with Algorithm 2, we can find the permutation π on X, such that E minimize. Let π∗ be the
permutation that makes minimum E. We prove this theorem with reductio ad absurdum. Therefore

Eπ∗ ≤ Eπ (1)

Let N be the set of all vi ∈ D such that π(Ȳi) 6= π∗(Ȳi),

N = {vi ∈ D|π(Ȳi) 6= π∗(Ȳi)}

We can write E for π,

Eπ =
∑
vi∈D

1{π(Ȳi) 6= Zi}

=
∑
vi∈N

1{π(Ȳi) 6= Zi}+
∑
vi 6∈N

1{π(Ȳi) 6= Zi}

Similarly we can define Eπ∗ ,

Eπ∗ =
∑
vi∈D

1{π∗(Ȳi) 6= Zi}

=
∑
vi∈N

1{π∗(Ȳi) 6= Zi}+
∑
vi 6∈N

1{π∗(Ȳi) 6= Zi}

Second term in Eπ∗ and Eπ are equal, using Inequality 1, and we define Eπ(N) =
∑
vi∈N

1{π(Ȳi) 6= Zi}

and similarly Eπ∗(N) for π∗, so we have,

Eπ∗(N) ≤ Eπ(N) (2)

5



We know N ⊆ D, so the partition X on D present a sub-partition X̂ on N . X̂ defines like X, so
X̂ = {X̂1, X̂2, . . . , X̂k}. This sub-partition notion can be defined for both permutations π and π∗,

X̂π = {X̂π(1), X̂π(2), . . . , X̂π(k)}
X̂π∗ = {X̂π∗(1), X̂π∗(2), . . . , X̂π∗(k)}

In the greedy algorithm, we sort the intersections of Xis and Tis and select the biggest one each time,
because X̂ is sub-partition of X, so we have,

∀vi, vj ∈ X̂ π(Ȳi) = π(Ȳj)←→ π∗(Ȳi) = π∗(Ȳj) (3)

Based on Equation 3, we can define a isomorphism on N ,

∀vi ∈ N φ : π∗(Ȳi)→ π(Ȳi)

we define ˙max() as selecting the set with maximum size among all feasible sets, then we have,

X̂π(Ȳi) =

{
vj ∈ D|π(Ȳi) = π(Ȳj), π(Ȳj) 6= Zj , ˙max|XȲj ∩ Tπ(Ȳj)|

}
and also we can obtain,

Eπ∗(N) =
∑
vi∈N

1{π∗(Ȳi) 6= Zi}

=
∑

X̂i∈X̂π∗

∑
v=(Ȳ ,Z)∈X̂i

1{π∗(Ȳ ) 6= Z}

=
∑

X̂i∈X̂π∗

∑
v=(Ȳ ,Z)∈X̂i

1{φ−1(π(Ȳ )) 6= Z}

Also from Equation 4, we know

˙max|XȲj ∩ Tπ(Ȳi)| = X̂π(Ȳi) ∪Xπ(Ȳi)

because Tπ(Ȳi) might already given to bigger intersection so we used ˙max, and Xπ(Ȳi)
define as,

Xπ(Ȳi)
=

{
vj ∈ D|π(Ȳi) = π(Ȳj), π(Ȳj) = Zj , ˙max|XȲj ∩ Tπ(Ȳj)|

}
Based on greedy Xπ(Ȳi)

is maximized on other hands from Equation ??, we know that Eπ∗ ≤ Eπ, so there
exist equivalence C partition based on the φ, we have such that using Inequality 2,∑

v∈C
1{φ−1(π(Ȳ )) 6= Z} ≤

∑
v∈C

1{π(Ȳ ) 6= Z} (4)

moreover, this should be true for all z ∈ C. But if π∗(Ȳ ) is not π(Ȳ ) then,∣∣∣∣{vi ∈ D;1{π∗(Ȳi) = yi}
}∣∣∣∣ < Xπ(Ȳi)

so this contradicting with Inequality 4 so for equivalence class C, we have∑
v∈C

1{π∗(Ȳ ) 6= Z} =
∑
v∈C

1{π(Ȳ ) 6= Z}

and because X̂π and X̂π∗ is finite, this mean φ is identity function φ(x) = x so π = π∗. That mean greedy
algorithm finds the best permutation transformations that satisfies Z.

6



2.3 Proof of Lemma 5

Proof. Let G = (V,E), and set Y is the node labels from L assigned to V . Let C ⊆ L be the set of all labels
that used in Y . The easy case is when we want to change a color c ∈ Y to c′ /∈ Y , this is like renaming. To
proof this lemma, we use induction. For showing an edge, we use i+ j means that two end point of nodes have
label i and j and the edge label is +1. Let C = {c, c′}, we have multiple scenarios that generate violation
V i = {c′+c, c+c′, c−c, c′−c′, } and also the set of non-violation scenarios is nV i = {c′−c, c−c′, c+c, c′+c′}
as you can see nV i and V i closed under swap operation.

We assume the theorem is true for |C| = k − 1, let Y used for k colors to color them. We know k − 1
colors can swap, only color k is matter now, consider swap i ∈ [k − 1] and k. All edges involve in this
swap is {i + k, i − k, k + i, k − i, i + i, i − i, k − k, k + k} and errors involved with these two labels are
{i+ k, k + i, i− i, k − k}, and this set size does not change after the swap.

Based on the statement at the beginning of the proof, we are sure about k appear to [k−1] colors, because
it is like renaming, the only thing is changing k to i. Let j be a label such that e = (vi, vj) ∈ E : label(vl) =
j
∧
label(vm) = k, the number of error are {j + k, k+ j} and after swap we have same number of edge in this

set. So Y and its version after swap, Y ′ have same number of edge violations on the label set L, In other
word, for any L, we have the following statement.

∑
(u,v)∈E 1{ϕ(Yu, Yv) 6= Xu,v} =∑

(u,v)∈E 1{ϕ(Y ′u, Y
′
v) 6= Xu,v}

2.4 Proof of Lemma 6

Proof. Let δ(S)+ and δ(S)− show the positive and negative edges in δ(S). We define the external boundary
nodes as follow,

V S = {v ∈ G : (v, e) ∈ δ(S) ∧ v 6∈ S}

and internal boundary nodes as

VS = {v ∈ G : (v, e) ∈ δ(S) ∧ v ∈ S}

It is simple to verify that for each v ∈ V S there exist u ∈ VS such that (u, v) ∈ δ(S) and vice versa. We know
that ỸWv = Yv for v ∈ V S . If δ(S)− = ∅ and all edges in δ(S) be correct, we can follow the labels node in V S ,
so for each v ∈ V S we select the edges (v, u) in δ(S) and we define swap(S, v, u) so we have set of mapping
Φ+(S) = {swap(S, v, u) : v ∈ V S ∧ u ∈ VS ∧ (u, v) ∈ δ(S)}, from Lemma 5, we know the that the number of
violations in S is same, so we resolved some violations in δ(S) which has contradiction with ỸW ∈ Imin, so
when δ(S)− = ∅, at least half of nodes are incorrect and we actually can derive the labeling.

Let Γk(S) be all label permutation in S such that each permutation can be represented with a sequence
of swaps. We can easily show that any sequence of swap is also does not change the edge violation, so we
know for all π ∈ Γk(S) the number of edge violations in S is constant. Because V S is correct labeled so at

least d δ(S)
2 e of edges in δ(S) are incorrect, otherwise there exist a labeling permutation that contradict with

minimization of edge violation because the edges inside S does not add violation but we resolve more than
half of δ(S), In this case we know the existential of such a this permutation but in binary and δ(S)− = ∅
cases, we can actually build the better permutation.

2.5 Proof of Lemma 7

Proof. From Lemma 6, we know at least half of δ(S) for any S ⊂W ∗ are incorrect, so we used this to find an
upper bound for this probability, so the best permutation of labels also should satisfy Lemma 6 so we have

P
(

min
π∈Γk(W∗)

1{π(ȲW
∗
) 6= YW } > 0

)
≤

∑
S⊂W∗,S∩W 6=∅,S̄∩W 6=∅

pd
δ(S)

2 e

≤
∑
S⊆W∗

pd
mincut∗(W )

2 e(because |δ(S)| ≤ mincut∗(W ) for all S ⊆W ∗)

≤ 2|W
∗|pd

mincut∗(W )
2 e (there are 2|W

∗| subsets)

7



where mincut∗(W ) = minS⊂W∗,S∩W 6=∅,S̄∩W∗ 6=∅|δG(W )(S)|

2.6 Proof of Lemma 8

We have following theorem from Boucheron et al. (2003)

Theorem 5. If there exists a constant c > 0 such that V+ ≤ cS then

P{S ≥ E[S] + t} ≤ exp
(

−t2

4cE[S] + 2ct

)
Subsequently, with probability at least 1− δ,

S ≤ E(S) + max

{
4c log(

1

δ
), 2

√
2cE(S) log(

1

δ
)

}
≤ 2E(S) + 6c log(

1

δ
).

Now we can prove this theorem,

Proof. We define a random variable that shows the number of the component that has an error concerning
the real labels of each component. This random variable is a function of given edges X.

S(X) =
∑
W∈W

min
π∈Γk(W )

1{π(ỸW (X)) 6= YW } (5)

We know S(X) = 0 means perfect matching with a given X and in maximum S(X) = |W|, and also
ỸW (X) is the component-wise estimator with given edge labels observation X. We know that S : [k]|E| → R
so we can use Theorem 5 if we can prove that S(X) satisfies the assumption.

S(X)− S(X(e)) =
∑
W∈W

(
min

π∈Γk(W )
1

[
π(ỸW (X)) 6= YW

]
− min
π∈Γk(W )

1

[
π(ỸW (X(e))) 6= YW

])
The right-hand side of the equation is zero for hypernodes that e is not in them so we can reduce the

equation to the hypernodes that have e, so we show it with W(e). Formally W(e) = {W ∈ W|e ∈ E(W )}

S(X)− S(X(e)) =
∑

W∈W(e)

(
min

π∈Γk(W )
1

[
π(ỸW (X)) 6= YW

]
− min
π∈Γk(W )

1

[
π(ỸW (X(e))) 6= YW

])
For evaluate Theorem 5, in next proposition we showed V+ is bounded.

Proposition. The variation of V+ of S(X) in Equation 5 is bounded, V+ ≤ cS(X).

Proof.

(S(X)− S(X(e)))2.1

(
S(X) > S(X)(e)

)
=

1

(
S(X) > S(X)(e)

)
×

∑
W∈W(e)

(
min

π∈Γk(W )
1

[
π(ỸW (X)) 6= YW

]
− min
π∈Γk(W )

1

[
π(ỸW (X(e))) 6= YW

])2

≤
∑

W∈W(e)

(
min

π∈Γk(W )
1

[
π(ỸW (X)) 6= YW

])2

//second part removed and square of minus part added

≤ |W(e)|
∑

W∈W(e)

min
π∈Γk(W )

1

[
π(ỸW (X)) 6= YW

]

8



Now we can use this for calculating the expectation.
We directly start with V+ to find its bound.

V+ =
∑
e∈E

E
[
(S(X)− S(X(e)))2 · 1

(
S(X) > S(X)(e)

)∣∣∣∣X1, X2, . . . , Xn

]
=
∑
e∈E

(S(X)− S(X(e)))2 · 1
(
S(X) > S(X)(e)

)
× P

[
(S(X)− S(X(e)))2 · 1

(
S(X) > S(X)(e)

)∣∣∣∣X1, X2, . . . , Xn

]
(we assume all probabilities are 1)

≤
∑
e∈E

(S(X)− S(X(e)))2.1

(
S(X) > S(X)(e)

)
//from last result

≤
∑
e∈E
|W(e)|

∑
W∈W(e)

min
π∈Γk(W )

1

[
π(ỸW (X)) 6= YW

]

≤ max
e∈E
|W(e)|

∑
e∈E

∑
W∈W(e)

min
π∈Γk(W )

1

[
π(ỸW (X)) 6= YW

]

= max
e∈E
|W(e)|

∑
W∈W(e)

∑
e∈E

min
π∈Γk(W )

1

[
π(ỸW (X)) 6= YW

]

≤ max
e∈E
|W(e)| max

W∈W
|E(W )|

∑
W∈W(e)

min
π∈Γk(W )

1

[
π(ỸW (X)) 6= YW

]
= max

e∈E
|W(e)| max

W∈W
|E(W )|S(X)

Therefore, there is c = max
e∈E
|W(e)| max

W∈W
|E(W )| such that V+ ≤ cS(X).

So with c = max
e∈E
|W(e)| max

W∈W
|E(W )|, the Theorem 5 with probability at least 1− δ

2 is valid,

S ≤ 2E(S) + 6 max
e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

We only need to derive E(S) using Lemma 7, because Ỹ ∈ IȲ , so Lemma 7 is also valid for Ỹ ,

E(S) =
∑
W∈W

P
(

min
π∈Γk(W )

1

{
π(ỸW (X)) 6= YW

})
× min
π∈Γk(W )

1

{
π(ỸW (X)) 6= YW

}
=
∑
W∈W

P
(

min
π∈Γk(W )

1

{
π(ỸW (X)) 6= YW

}
= 1

)
=
∑
W∈W

P
(

min
π∈Γk(W )

1

{
π(ỸW (X)) 6= YW

}
> 0

)
≤
∑
W∈W

2|W |pd
mincut(W )

2 e // from Lemma 7

so finally we have,

min
π∈[Γk]W

∑
W∈W

1{π(ỸW ) 6= YW } ≤
∑
W∈W

2|W |+1pd
mincut(W )

2 e + 6 max
e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

9



2.7 Proof of Theorem 2

From Lemma 8, we can directly proof same result for extend of tree components.

Corollary 2. There is straightforward deduction to derive the result for W ∗ = EXT (W ) on T = (W, F )
with probability 1− δ

2 ,

min
π∈[Γk]W

∑
W∈W

1{π(ȲW
∗
) 6= YW

∗
} ≤

∑
W∈W

2|W
∗|+1pd

mincut∗(W )
2 e + 6 max

e∈E
|W∗(e)| max

W∈W
|E(W ∗)| log(

2

δ
)

we define the maximum size of a hyper-graph as its degree deg∗E(T ) = max
e∈E
|W∗(e)| which W∗(e) = {W ∈

W|e ∈ E(W ∗)} and E(W ∗) is the set of all edged in E that are in W ∗, so we have

min
π∈[Γk]W

∑
W∈W

1{π(ȲW
∗
) 6= YW

∗
} ≤ 2wid

∗(W )+2
∑
W∈W

pd
mincut∗(W )

2 e + 6deg∗E(T ) max
W∈W

|E(W ∗)| log(
2

δ
)

Where wid∗(W ) , maxW∈W |W ∗| − 1.

Now we can start to Theorem 2,

Proof. To prove this theorem, we need to define a hypothesis class and find information bound for the optimal
solution in there, next, we can find a bound for the distance of the real answer of the problem and best
answer in the hypothesis class.

Consider the following permutation finding of the components in T:

Π? = arg min
Π∈Γ

|W|
k

∑
W∈W

1
{

Π(ỸW ) 6= YW
}

from Corollary 2, we know that

min
π∈[Γk]W

∑
W∈W

1{π(ỸW ) 6= YW } ≤ Kn

Because ỸW
∗

and ȲW
∗

both are in IȲW∗ and also ỸW is ỸW
∗

restricted to W and Kn is

Kn ,2wid
∗(W )+2

∑
W∈W

pd
mincut∗(W )

2 e+

6deg∗E(T ) max
W∈W

|E(W ∗)| log(
2

δ
)

So if we have Π?, we can produce a vertex prediction with at most Kn mistakes with probability 1− δ.
However, computing Π? is impossible because we do not have access to Y , so we need to see using Z as a
noisy version of Y , how much approximation error will add to the theoretical bound of prediction.

We define the following hypothesis class, which is defined with Kn so we make even bigger to include an
even better possible solution.

F , ([k]× [k])W

s.t.
∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= S(W,W ′)} ≤ Ln
}

In this context, each element of ([k]× [k])W is a vector of size W element which each sown as π. Our goal
is to show that best permutation is in F with high probability.

10



Such that Ln = deg(T ).Kn which enrich the hypothesis class with make it bigger than using Kn. We
know that if min

π∈[Γk(W )]
1{π(ỸW ) 6= YW } = 0 for a component W then we can find a π̄W ∈ Γk such that we

can effect on YW to get ỸW so π̄W (YW ) = ỸW .
We also have

∑
(W,W ′)∈F

1{ψ(πW , πW ′) 6= S(W,W ′)} =
∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= [2.1(ỸWv , ỸW
′

v )− 1]}

and we know v ∈W ∩W ′, so if for each W ∈ W we have π̄W , if the range of πW and πW ′ be same they
get 1 and their range is Y , the right hand side also is 1 because the range of two permutations are YW and
v ∈W ∩W ′, so 1{ψ(πW , πW ′) 6= [2.1(ỸWv , ỸW

′

v )− 1]} = 0 when ever W and W ′ have no errors. Therefore
Π? ∈ F with probability 1− δ. The complexity of hypothesis class can parametrized with the size of F(X)
so we have

|F(X)| =
Ln∑
m=0

(
|W|
m

)
k!m

≤
Ln∑
m=0

(
|W|
m

)
k!Ln = k!Ln

Ln∑
m=0

(
|W|
m

)

≤ k!Ln
(
e|W|
Ln

)Ln
≤
(
e.n.k!

Ln

)Ln
We consider non-redundant decomposed trees which means for (Wi,Wj) ∈ F we have Wi\(Wi ∩Wj) 6= ∅.

In Algorithm 3, we use Z instead of Y . So we have

π̂ = min
π∈F(X)

∑
W∈W

∑
v∈W

1
{
π(ỸWv ) 6= Zv

}
.

We have following lemma to continue the proof

Lemma 10. For
∑
v∈W

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
we have following approximation,

∑
v∈W

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
=

1

c

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
=

+
1

c′

∑
v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
6=

such that c = −
(
1− k

k−1q
)

and c′ = 1− k
k−1q.

Proof. We prove this equation step by step∑
v∈W

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
=

∑
v∈W∧π?(ỸWv )=Yv

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
=

+
∑

v∈W∧π?(ỸWv )6=Yv

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
6=

=
1

c

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
=

+
1

c′

∑
v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
6=

11



We have to derive each part of the relation separately, for both sigma if π̂(ỸWv ) = π?(ỸWv ) the above is
true for any c and c′.

We need to calculate c and c′, for c which is π?(ỸWv ) = Yv, we have

PZ
{
π̂(ỸWv ) 6= Zv ∧ π?(ỸWv ) = Yv

}
=
k − 2

k − 1
q

and PZ
{
π∗W (ỸWv ) 6= Zv

∣∣π?(ỸWv ) = Yv
}

= 1− q so we can calculate c.

PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}
=
k − 2

k − 1
q − (1− q) = −

(
1− k

k − 1
q
)

so c = −
(
1− k

k−1q
)
. Next, we calculate c′ which is π?(ỸWv ) 6= Yv, therefore we have

PZ
{
π̂(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv

}
=

PZ
{
π̂(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv ∧ Yv = Zv

}
+ PZ

{
π̂(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv ∧ Yv 6= Zv

}
=

k − 2

k − 1
q + 1− 1

k − 1
q = 1− q

and for second part we have,

PZ
{
π?(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv

}
=

= PZ
{
π?(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv ∧ Yv = Zv

}
+ PZ

{
π?(ỸWv ) 6= Zv ∧ π?(ỸWv ) 6= Yv ∧ Yv 6= Zv

}
=

= q +
k − 2

k − 1
q

so we can calculate c′

PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}
=

= (1− q)−
[
q +

k − 2

k − 1
q
]

= 1− k

k − 1
q

therefore that c′ = 1− k
k−1q.

Fix π̂ ∈ F(X) for each component W ∈ W we have

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤
∑
v∈W

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
+
∑
v∈W

1
{
π?(ỸWv ) 6= Yv

}
//Triangle inequality

≤
∑
v∈W

1
{
π̂(ỸWv ) 6= π?(ỸWv )

}
+ |W |1

{
π?(ỸW

∗

v ) 6= Yv
}

//Maximize component error

= − 1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

+
1

1− k
k−1q

∑
v∈W∧π?(ỸWv ) 6=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
+ |W |1

{
π?(ỸWv ) 6= Yv

}
//From Lemma 10

For the first part, we can the following approximation:

12



− 1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

≤ 2
∑
v∈W

1
{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

≤ 2|W |1
{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

We conclude that:

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ 3|W |1

{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv ) 6=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
≤ 3|W |1

{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv ) 6=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
+

1

1− k
k−1q

∑
v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

≤ 3|W |1
{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
v∈W

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
We apply this formula for all components W ∈ W we have

∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ 3

(
max
W∈W

|W |
) ∑
W∈W

1
{
π?(ỸWv ) 6= Yv

}
+

1

1− k
k−1q

∑
W∈W

∑
v∈W

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
≤ 3

(
max
W∈W

|W |
)
Kn +

1

1− k
k−1q

∑
W∈W

∑
v∈W

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}

using Lemma 2 for right hand side of the equation, we have excess risk bound with probability 1− δ
2 ,

∑
W∈W

∑
v∈W

{
PZ
{
π̂(ỸWv ) 6= Zv

}
− PZ

{
π∗W (ỸWv ) 6= Zv

}}
≤
(

2

3
+
c

2

)
log(

2|F(X)|
δ

) +
1

c

∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
so we can mix these inequalities,

13



∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ 3

(
max
W∈W

|W |
)
Kn +

1

1− k
k−1q

(
2

3
+
c

2

)
log(

2|F(X)|
δ

) +
1

c

∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
so we have

∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ 1

1− 1
c

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1q

(
2

3
+
c

2

)
log(

2|F(X)|
δ

)

]
We put c = 1

1−ε and rearrange then with probability 1− δ we have∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ 1

1− 1
1

1−ε

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1q

(
2

3
+

1
1−ε
2

)
log(

2|F(X)|
δ

)

]

=
1

ε

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1q

(
2

3
+

1

2(1− ε)

)
log(

2|F(X)|
δ

)

]
From before, we have |F(X)| ≤

(
en.k!
Ln

)Ln
, wid(T ) = max

W∈W
|W |, Kn, and Lemma 2 so we can conclude

∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
=

=
1

ε

(
3 max
W∈W

|W |
)
Kn +

1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
log(

2|F(X)|
δ

)

=
3

ε
.wid(T ).Kn +

1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
×
(

log(
2

δ
) + Ln. log(

en.k!

Ln

)
)
)

≤ 3

ε
.wid(T ).Kn +

1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
×
[

log(
2

δ
) +Kn.deg(T ).k. log(n.k)

]
=

1

ε
.Kn ×

[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1q

.(
2

3
+

1

2(1− ε)
)
]

+
1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
log(

2

δ
)

≤ 1

ε
.Kn ×

[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1q

.(
2

3
+

1

2(1− ε)
)
]

+
1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
log(

2

δ
)

≤ 1

ε
.

[
2wid

∗(W )+2
∑
W∈W

pd
mincut∗(W )

2 e + 6deg∗E(T ) max
W∈W

|E(W ∗)| log(
2

δ
)

]
×
[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1q

.(
2

3
+

1

2(1− ε)
)
]

+
1

ε.
(
1− k

k−1q
)(2

3
+

1

2(1− ε)

)
log(

2

δ
)

so we have∑
W∈W

∑
v∈W

1
{
π̂W (ỸWv ) 6= Yv

}
≤ O

(
1

ε2
.

[
2wid

∗(W )+2
∑
W∈W

pd
mincut∗(W )

2 e + 6deg∗E(T ) max
W∈W

|E(W ∗)| log(
2

δ
)

]
×
[
3.wid(T ) + deg(T ).k. log(n.k)

])
because mincut ≥ maximum degree

≤ Õ
(
k. log k.pd

∆
2 e.n

)
14



As π̂W (Ỹv) = Ŷv, so the algorithm ensures Hamming error has driven upper bound.

3 MIXTURE OF EDGES AND NODES INFORMATION

In all previous works (Foster et al., 2018; Ofer Meshi & Sontag, 2016; Globerson et al., 2015), the algorithms
consider the information of edge and node labels in different stages. For instance in (Globerson et al., 2015),
first solves the problem based on the edge because p < q, then it uses the nodes information. The information
value of positive and negative edges in binary cases are same, but this courtesy breaks under categorical
labels, on the other hand, we can use some properties in the graph to trust more on some information. We
can calculate the probability of correctness of graph nodes and edges label using p and q. In categorical
labeling, the space of noise has some variations from the binary case, so we have the following facts in the
categorical case:

• Flipping an edge makes an error.

• Switching the label of a node might not make an error.

Using Bayes rule and the property of nodes, we have Pr(v = i|v′ = j) = Pr(v′ = j|v = i)), the prim for a
vertex shows the vertex after effecting noise.

We have following theorem the proof come in supplementary material,

Theorem 6. The likelihood of correctness of an edge e = (vi, vj) ∈ E with label with L are as follow,

Pr(L is untouched |e, L) =

cL ×


2(1− q)q + ( q

k−1 )2. k−2
k.(k−1) L = 1, vio

(1− q)2 + ( q
k−1 )2. 1

k.(k−1) L = 1,nvio

2(1− q). q
k−1 + ( q

k−1 )2. k−2
k(k−1) L = −1, vio

(1− q)2 + ( q
k−1 )2.k−2

k L = −1,nvio

which cL = (1−p)|E|
#L in graph , vio means φ(Xi, Xj) 6= Xij, and nvio means φ(Xi, Xj) = Xij.

Proof. In all cases, two head nodes of a given edge are vi and vj , and L shows the label of the edge. We first
calculate the probability Pr(vi, vj , L|L is untouched) the using Bayes theorem, we derive the likelihood.

• The first case is e generates a violation φ(Zi, Zj) 6= Xij , and the edge label L = 1, in this case, the
probability of the event is only one of the node labels are changed or both node labels have been
changed but to the different labels.

Pr(only one of the node labels are changed) =

2Pr(vi is changed) =

2(1− q).
∑

vi.label=j∧j 6=Xi

Pr(vi.label = j|vi.label = i)

= 2(1− q).
∑

vi.label=j∧j 6=Xi

q

k − 1
= 2.(1− q)q

and also we have, (v′i and v′j are the label of given nodes after noise effect)

Pr(v′i 6= v′j ∧ vi = vj ∧ v′j 6= vj ∧ v′i 6= vi)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi = vj)× Pr(v′i 6= v′j |vi = vj ∧ v′j 6= vj ∧ v′i 6= vi)

=
q

k − 1
.
q

k − 1
.
1

k
.
(k − 1)(k − 2)

(k − 1).(k − 1)

= (
q

k − 1
)2.

k − 2

k.(k − 1)

15



Because Pr(vi 6= v′i), Pr(vj 6= v′j), and Pr(vi = vj) are independent, so the whole probability would be

2.(1− q)q + ( q
k−1 )2. k−2

k.(k−1) .

• The second case is e does not generate any violation, φ(Zi, Zj) = Xij , and the edge label L = 1, in this
case, either both node labels are untouched or they changed but to the same label.

Pr(both node labels are untouched) =

Pr(vi = v′i).P r(vj = v′j) = (1− q)(1− q) = (1− q)2

and also we have,

Pr(v′i = v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi = vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi = vj)× Pr(v′i = v′j |vi 6= v′i ∧ vj 6= v′j ∧ vi = vj)

=
q

k − 1
.
q

k − 1
.
1

k
.

(k − 1)(1)

(k − 1).(k − 1)

= (
q

k − 1
)2.

1

k.(k − 1)

so the whole probability would be (1− q)2 + ( q
k−1 )2. 1

k.(k−1) .

• The third case is e generates a violation φ(Zi, Zj) 6= Xij , and the edge label L = −1, in this case, the
probability of the event is either one label change to the same label of other head or both change to the
same label

Pr(a label change to the same of other head)

= 2Pr(vi is changed to Xj) = 2(1− q). q

k − 1

and also we have,

Pr(v′i = v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi 6= vj)× Pr(v′i = v′j |vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

=
q

k − 1
.
q

k − 1
.
k − 1

k
.

(k − 2)(1)

(k − 1).(k − 1)

= (
q

k − 1
)2.

k − 2

k(k − 1)

so the whole probability would be 2(1− q). q
k−1 + ( q

k−1 )2. k−2
k(k−1) .

• The fourth case is e does not generate any violation, φ(Zi, Zj) = Xij , and the edge label L = −1, in
this case, either both node labels are untouched or they changed but to different labels.

Pr(both node labels are untouched)

= Pr(vi = v′i).P r(vj = v′j)

= (1− q)(1− q) = (1− q)2

and also we have,

Pr(v′i 6= v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi 6= vj)× Pr(v′i 6= v′j |vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

=
q

k − 1
.
q

k − 1
.
k − 1

k
.
(k − 1)(k − 2)

(k − 1).(k − 1)

= (
q

k − 1
)2.
k − 2

k

so the whole probability would be (1− q)2 + ( q
k−1 )2.k−2

k .

16



Based on the Bayes theorem we have,

Pr(L is untouched|vi, vj , L) =
Pr(vi, vj , L|L is untouched).P r(L is untouched)

Pr(vi, vj , L)

We have Pr(vi, vj , L) = #L in graph
|E| , and Pr(L is untouched) = 1− p, so we can derive the result.

As it can be seen with k = 2, the trust score for positive and negative are only depend to their frequencies,
and if their frequencies are equal we can trust them equally.

Example 1. (Uniform Frequencies) Let #{L = +1} ' #{L = −1} and k ≥ 3, then the second part of is
negligible because of ( q

k−1 )2 parameter, then if 2(1 − q)q ≤ (1 − q)2 and 2(1 − q). q
k−1 ≤ (1 − q)2 which is

q < min{ 1
3 ,

k−1
k+1} = 1

3 then the non-violating edges are more reliable.

The following example is more related to the grid graphs that considered in (Globerson et al., 2015).

Example 2. (Image Segmentation) The case k ≥ 3 and #{L = +1} ≥ #{L = −1}, which we usually see in
the images, because the negative edges are on the boundary of regions. If q < 1/3, We have can trust more on
the non-violating negative edges than non-violating positive edges.

To the best of our knowledge, no algorithm considers the mixture of edges and nodes information on the
categorical data. Therefore, Theorem 6 can be a guide to design such an algorithm.

4 EXPERIMENT RESULTS

4.1 Details on Experimental Setup

We provide a detailed discussion on our experimental setup.

Trees Generation Process: We generate random trees, and we apply the noise to the generated graph.
We need to have at least one example of each k labels, so the generation process starts by creating k nodes,
one example for each category. Then, it generates k random numbers n1, . . . , nk such that

∑k
i=1 ni = n− k.

Next, it creates tree edges for the set of nodes V . Let S and E be empty sets. We select two nodes v and u
randomly from V and add (u, v) to E such that the label of the edge satisfies the label of u and v and set
S = S ∪ {u, v}, and V = V \{u, v}. Now, we select one node v ∈ S and one node u ∈ V randomly and add
(u, v) to E such that the edge label satisfies the endpoints and remove u from V and add it to S. We repeat
until V is empty. This process follows the Brooks theorem (Brooks, 1941). Finally, we apply uniform noise
model with probabilities of p and q. We select this simple generative process because it covers an extensive
range of random trees.

Grids Graph Generation: We use gray scale images as the source of grid graphs. The range of pixel
values in gray scale images is r = [0, 255], so we have that 0 ≤ k ≤ 255. We divide r to k equal ranges
{r1, r2, . . . , rk}. We map all pixels whose values are in ri to median(ri). For edges, we only consider horizontal
and vertical pixels and assign the ground truth edge labels based on the end points. We generate noisy node
and edge observations using the uniform noise model. We use Griffin et al. (2007) dataset to select gray-scale
images.

Baseline Method: A Majority Vote Algorithm: For each node v ∈ G assign fv = [s1, s2, . . . , sk] with
si = 0 : ∀i ∈ [k]. Let label(.) shows the label of the passed node. Then, for nodes in neighbourhood of v,
u ∈ N(v), we update fv with slabel(u) = slabel(u) +Xuv. At the end, for each node v, Ŷv = arg maxi∈[k](fv) if

|max(fv)| = 1 otherwise if Zv ∈ arg max(fv), then Ŷv = Zv else Ŷv = random(arg max(fv)). This is a simple
baseline. We use it as we want to validate that our methods considerably outperform simple baselines.

Evaluation Metric: We use the normalized Hamming distance
∑
v∈V 1(Yv 6= Ŷv)/|V |. between an

estimated labeling Ŷ and the ground truth labeling Y .

17



4.2 Additional Experiments on Grids

We provide some qualitative results on the performance of our methods.
Figure 1 presents a qualitative view of the results obtained by our method (and the majority vote baseline)

as k increases on the grey scale images. We see that using only the edge information (edge-based prediction)
becomes more chaotic for larger values of k. This is because the information that edges carry decreases.
However, we see that combining the information provided by both node and edge observations allows us to
recover the noisy image. As expected, the simple Majority vote baseline yields worse results than our method.

K=4 K=8 K=16 K=64K=32 K=128

Ground Truth

Noisy Ground Truth

Edge-based Prediction

Decomposition Inferred Image

Error 0.008 0.018 0.036 0.055 0.069 0.079

Error 0.098 0.147 0.223 0.271 0.278 0.266

Majority Inferred Image 

(Ȳ )
<latexit sha1_base64="CpdW44ltItwaGSdl6USkrXVRGoU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXBT0GvXiMYB6SLGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSTvzThGP6QDyfucUWOlVrkTUEUeTrvFkltxZyDLxMtICTLUusWvTi9iSYjSMEG1bntubPyUKsOZwEmhk2iMKRvRAbYtlTRE7aezeyfkxCo90o+ULWnITP09kdJQ63EY2M6QmqFe9Kbif147Mf0rP+UyTgxKNl/UTwQxEZk+T3pcITNibAllittbCRtSRZmxERVsCN7iy8ukcVbxzive3UWpep3FkYcjOIYyeHAJVbiFGtSBgYBneIU359F5cd6dj3lrzslmDuEPnM8fzoCPKA==</latexit>

(Ŷ )
<latexit sha1_base64="SSzToZE+VsxTLmwzVIyeYsA5HhM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXBT0GvXiMYB6ShDA7mU2GzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0y6eGS6F4HQVK3oo1p6EvedMf3Uz95hPXRkTqHscx74Z0oEQgGEUrtcqdIUXycNorltyKOwNZJl5GSpCh1it+dfoRS0KukElqTNtzY+ymVKNgkk8KncTwmLIRHfC2pYqG3HTT2b0TcmKVPgkibUshmam/J1IaGjMOfdsZUhyaRW8q/ue1EwyuuqlQcYJcsfmiIJEEIzJ9nvSF5gzl2BLKtLC3EjakmjK0ERVsCN7iy8ukcVbxzive3UWpep3FkYcjOIYyeHAJVbiFGtSBgYRneIU359F5cd6dj3lrzslmDuEPnM8f2sSPMA==</latexit>

(Y )
<latexit sha1_base64="LNYZKzrQks8PfBB7kRINITtmEO4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBT0GvXiMaB6SLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzDhGP6QDyfucUWOl+/LjabdYcivuDGSZeBkpQYZat/jV6UUsCVEaJqjWbc+NjZ9SZTgTOCl0Eo0xZSM6wLalkoao/XR26oScWKVH+pGyJQ2Zqb8nUhpqPQ4D2xlSM9SL3lT8z2snpn/lp1zGiUHJ5ov6iSAmItO/SY8rZEaMLaFMcXsrYUOqKDM2nYINwVt8eZk0zireecW7uyhVr7M48nAEx1AGDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBfX+NRQ==</latexit>

(Z)
<latexit sha1_base64="5++KrZo7ju3COFgy77IQIiqRa00=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBT0GvXiMaB6YLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzDhGP6QDyfucUWOl+/LjabdYcivuDGSZeBkpQYZat/jV6UUsCVEaJqjWbc+NjZ9SZTgTOCl0Eo0xZSM6wLalkoao/XR26oScWKVH+pGyJQ2Zqb8nUhpqPQ4D2xlSM9SL3lT8z2snpn/lp1zGiUHJ5ov6iSAmItO/SY8rZEaMLaFMcXsrYUOqKDM2nYINwVt8eZk0zireecW7uyhVr7M48nAEx1AGDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBfwSNRg==</latexit>

(Hd)
<latexit sha1_base64="1kx7ioB1zbSfp86PPJbR1cheRtw=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lU0GPRS48V7Ae0oWw2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dtbWNza3tks75d29/YPDytFxR8epIrRNYh6rXoA15UzStmGG016iKBYBp91gcp/73SeqNIvlo5km1Bd4JFnECDa5VGuGF8NK1a27c6BV4hWkCgVaw8rXIIxJKqg0hGOt+56bGD/DyjDC6aw8SDVNMJngEe1bKrGg2s/mt87QuVVCFMXKljRorv6eyLDQeioC2ymwGetlLxf/8/qpiW79jMkkNVSSxaIo5cjEKH8chUxRYvjUEkwUs7ciMsYKE2PjKdsQvOWXV0nnsu5d1b2H62rjroijBKdwBjXw4AYa0IQWtIHAGJ7hFd4c4bw4787HonXNKWZO4A+czx8hBY2i</latexit>

(Hd)
<latexit sha1_base64="1kx7ioB1zbSfp86PPJbR1cheRtw=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lU0GPRS48V7Ae0oWw2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dtbWNza3tks75d29/YPDytFxR8epIrRNYh6rXoA15UzStmGG016iKBYBp91gcp/73SeqNIvlo5km1Bd4JFnECDa5VGuGF8NK1a27c6BV4hWkCgVaw8rXIIxJKqg0hGOt+56bGD/DyjDC6aw8SDVNMJngEe1bKrGg2s/mt87QuVVCFMXKljRorv6eyLDQeioC2ymwGetlLxf/8/qpiW79jMkkNVSSxaIo5cjEKH8chUxRYvjUEkwUs7ciMsYKE2PjKdsQvOWXV0nnsu5d1b2H62rjroijBKdwBjXw4AYa0IQWtIHAGJ7hFd4c4bw4787HonXNKWZO4A+czx8hBY2i</latexit>

Figure 1: At each column, different stages of the inference process on the image that generates median error
can be seen. It starts with generating k value image, adding noise following the model, generates best edge
based prediction, and minimize it with noisy ground truth; we also report its corresponding error, you can
also see the result and its error from majority algorithm.

18



5 REFERENCES

Boucheron, S., Lugosi, G., Massart, P., et al. Concentration inequalities using the entropy method. The
Annals of Probability, 31(3):1583–1614, 2003.

Brooks, R. L. On colouring the nodes of a network. Mathematical Proceedings of the Cambridge Philosophical
Society, 37(2):194197, 1941. doi: 10.1017/S030500410002168X.

Foster, D. J., Sridharan, K., and Reichman, D. Inference in sparse graphs with pairwise measurements and
side information. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11
April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1810–1818, 2018.

Giotis, I. and Guruswami, V. Correlation clustering with a fixed number of clusters. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1167–1176. Society for Industrial
and Applied Mathematics, 2006.

Globerson, A., Roughgarden, T., Sontag, D., and Yildirim, C. How hard is inference for structured prediction?
In International Conference on Machine Learning, pp. 2181–2190, 2015.

Griffin, G., Holub, A., and Perona, P. Caltech-256 object category dataset. 2007.

Ofer Meshi, Mehrdad Mahdavi, A. W. and Sontag, D. Train and test tightness of lp relaxations in structured
prediction. In Proceedings of The 33rd International Conference on Machine Learning, pp. 1776–1785,
2016.

19


	ANALYSIS FOR TREES
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Corollary 1
	Proof of Theorem 1
	Solving the Optimization Problem on Trees with Dynamic Programming

	ANALYSIS FOR GENERAL GRAPHS
	Approximation Correlation Clustering
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 2

	MIXTURE OF EDGES AND NODES INFORMATION
	EXPERIMENT RESULTS
	Details on Experimental Setup
	Additional Experiments on Grids

	REFERENCES

