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A Quantities’ Property Illustration

The illustrations comparing average domain discrepancy with multidomain within-class scatter, and average class
discrepancy with multidomain between-class scatter are given in Figure 1 and 2.
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Figure 1: Comparison Between Average Domain Discrepancy and Multidomain Within-class Scatter. Colors denote
classes and markers denote domains. (a) The distribution of data in the subspace Rq transformed from RKHSH using
W0. (b) By minimizing average domain discrepancy, the resulting transformation Wadd makes the means within
each class closer. (c) By minimizing multidomain within-class scatter, the resulting transformation Wmws makes
distribution of each class more compact towards the corresponding mean representation.
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Figure 2: Comparison Between Average Class Discrepancy and Multidomain Between-class Scatter. Colors denote
classes and markers denote domains. (a) The distribution of data in the subspace Rq transformed from RKHS H
using W0. (b) By maximizing average class discrepancy, the resulting transformation Wacd treats the distances
between each pair of mean representations equally and maximizes them; (c) By maximizing multidomain between-
class scatter, the resulting transformation Wmbs maximizes the average distance between the overall mean and the
mean representation of different classes. However, each distance is added a weight, which is proportional to the
number of instances in the corresponding class. As a result, it is approximate equivalent to the scheme where one
pools data of different domains of the same class together and trains classifier.

B Derivation of the Lagrangian

Since the objective

arg max
B

=
tr
(
BT (βF + (1− β)P) B

)
tr (BT (γG + αQ + K)B)

(1)

is invariant to re-scaling B→ δB, we rewrite (1) as a constrained optimization problem:

arg max
B

tr
(
BT (βF + (1− β)P) B

)
(2)

s.t. tr
(
BT (γG + αQ + K)B

)
= 1, (3)

which yields the Lagrangian

L = tr
(
BT (βF + (1− β)P) B

)
− tr

((
BT (γG + αQ + K)B− Iq

)
Γ
)
, (4)

where Γ is a diagonal matrix containing the Lagrange multipliers and Iq denotes the identity matrix of dimension
q. Setting the derivative with respect to B in the Lagrangian (4) to zero yields the following generalized eigenvalue
problem:

(βF + (1− β)P) B = (γG + αQ + K) BΓ. (5)

C Proof of Theorem 2

Theorem 1. Under assumptions 2 – 4, and further assuming that ‖f̂‖Hk̄ ≤ 1 and ‖f∗‖Hk̄ ≤ 1, where f̂ denotes the
empirical risk minimizer, f∗ denotes the expected risk minimizer, then with probability at least 1− δ there is

E[`(f̂(X̃tW), Y t)]− E[`(f∗(X̃tW), Y t)]

≤ 4L`LkγUk′xUkx

√
tr(BTKB)

n
+

√
2 log 2δ−1

n
, (6)

where the expectations are taken over the joint distribution of the test domain Pt(Xt, Y t), n is the number of training
samples, and K = ΦΦT .



Proof. First, we use the following result.

Theorem 2 (Generalization bound based on Rademacher complexity). Define A = {x 7→ `(f(x), y) : f ∈ H} to be
the loss class, the composition of the loss function with each of the hypotheses. With probability at least 1− δ:

L(f̂)− L(f∗) ≤ 4Rn(A) +

√
2 log 2

δ

n
, (7)

where L(f̂) denotes the expected test risk of the empirical risk minimizer, L(f̂) denotes the expected test risk of the
expected risk minimizer, Rn(A) denotes the Rademacher complexity of loss class A, and n denotes the number of
training points.

By applying theorem 2, with probability at least 1− δ there is

EPtX [`(f̂(X̃tW), Y t)]− EPtX [`(f∗(X̃tW), Y t)] ≤ 4Rn(A) +

√
2 log 2δ−1

n
, (8)

where A denotes the loss class {x 7→ `(f(P, x), y) : ‖f‖Hk̄ ≤ 1}, Rn(·) denotes the Rademacher complexity and n
is the number of training points.

Since the loss function ` is L`-Lipschitz in its first variable, there is

Rn(A) = Rn(` ◦ f) ≤ L`Rn(Hk̄). (9)

To obtain the Rademacher complexity ofHk̄, i.e. Rn(Hk̄), we adopt the following theorem.

Theorem 3 (Rademacher complexity of L2 ball). Let F = {z 7→ 〈w, z〉 : ‖w‖2 ≤ B2} (bound on weight vectors).
Assume EZ∼p∗

[
‖Z‖22

]
≤ C2

2 (bound on spread of data points). Then

Rn(F) ≤ B2C2√
n
, (10)

where n denotes the number of training points.

According to the function class we restricted, B2 in theorem 3 in our case is 1. For the bound of feature maps of data
inHk̄ (corresponds to C2), there is ∥∥∥k̄ (X̃tW, ·

)∥∥∥ (11)

= ‖γkγ
(
γ(Pt)

)
⊗ kX(Xt, ·)W‖ (12)

≤ Lkγ‖γ(Pt)‖‖kX(Xt, ·)W‖ (13)
≤ LkγUk′Uk‖W‖HS . (14)

Note that W = ΦTB and K = ΦΦT is invertible. It follows that tr(BTKB) defines a norm consistent with the
Hilbert-Schmidt norm ‖W‖HS . Therefore, by applying theorem 3, there is

Rn(A) ≤ L`LkγUk′Uk

√
tr(BTKB)

n
. (15)

Combining it with (8) gives the results.



D Proof of Theorem 3

Theorem 4. Under assumptions 2 – 4, and assuming that all source sample sets are of the same size, i.e. ns = n̄ for
s = 1, . . . ,m, then with probability at least 1− δ there is

sup
‖f‖H

k̄
≤1

∣∣∣∣∣ 1

m

m∑
s=1

1

ns

ns∑
i=1

`
(
f( ˆ̃Xs

i W), ysi

)
− E(f,∞)

∣∣∣∣∣
≤U`

((
log 2δ−1

2mn̄

) 1
2

+

(
log δ−1

2m

) 1
2

)
+
√

tr(BTKB)

(
c1

(
log 2δ−1m

n̄

) 1
2

+ c2

((
1

mn̄

) 1
2

+

(
1

m

) 1
2

))
(16)

where c1 = 2
√

2L`UkxLkγUk′x , c2 = 2L`UkxUkγ .

Proof. Follow the idea in Blanchard et al. [2011], the supremum of the generalization error bound can be decomposed
as

sup
‖f‖H

k̄
≤1

∣∣∣∣∣ 1

m

m∑
s=1

1

ns

ns∑
i=1

`
(
f( ˆ̃Xs

i W), ysi

)
− E(f,∞)

∣∣∣∣∣
≤ sup
‖f‖H

k̄
≤1

∣∣∣∣∣ 1

m

m∑
s=1

1

ns

ns∑
i=1

(
`
(
f( ˆ̃Xs

i W), ysi

)
− `
(
f(X̃s

i W), ysi

))∣∣∣∣∣ (17)

+ sup
‖f‖Hk̄≤1

∣∣∣∣∣ 1

m

m∑
s=1

1

ns

ns∑
i=1

`
(
f(X̃s

i W), ysi

)
− E(f,∞)

∣∣∣∣∣ (18)

:= (I) + (II), (19)

where ˆ̃Xs
i = (P̂s, xsi ), X̃s

i = (Ps, xsi ).

Bound of term (I)

According to the assumption that the loss ` is L` -Lipschitz in its first variable, we have

(I) ≤L` sup
‖f‖H

k̄
≤1

1

m

m∑
s=1

1

ns

ns∑
i=1

∣∣∣f( ˆ̃Xs
i W)− f(X̃s

i W)
∣∣∣ (20)

≤L` sup
‖f‖H

k̄
≤1

1

m

m∑
s=1

∥∥∥f ((P̂s, ·)W
)
− f ((Ps, ·)W)

∥∥∥
∞

(21)

For any x ∈ X and ‖f‖Hk̄ ≤ 1, using the reproducing property of the kernel k̄ and Cauchy-Schwarz inequality, we
have

∣∣∣f ((P̂s, x)W
)
− f ((Ps, x)W)

∣∣∣ =
∣∣∣〈k̄ ((P̂s, x)W, ·

)
− k̄ ((Ps, x)W, ·) , f

〉∣∣∣ (22)

≤ ‖f‖
∥∥∥k̄ ((P̂s, x)W, ·

)
− k̄ ((Ps, x)W, ·)

∥∥∥ (23)



According to the assumption, there is ‖f‖ ≤ 1. For the second term in (23) we have∥∥∥k̄ ((P̂s, x)W, ·
)
− k̄ ((Ps, x)W, ·)

∥∥∥ (24)

=
∥∥∥γkγ (γ(P̂s)

)
⊗ kX(x, ·)W − γkγ (γ(Ps))⊗ kX(x, ·)W

∥∥∥ (25)

≤
∥∥∥γkγ (γ(P̂s)

)
⊗ kX(x, ·)− γkγ (γ(Ps))⊗ kX(x, ·)

∥∥∥ ‖W‖HS (26)

= ‖W‖HS
(〈
k̄((P̂s, x), ·)− k̄((Ps, x), ·), k̄((P̂s, x), ·)− k̄((Ps, x), ·)

〉) 1
2

(27)

≤‖W‖HS k(x, x)
1
2

(
kγ(γ(Ps), γ(Ps)) + kγ(γ(P̂s), γ(P̂s))− 2kγ(γ(Ps), γ(P̂s))

) 1
2

(28)

≤Uk ‖W‖HS
∥∥∥γkγ (γ(Ps))− γkγ

(
γ(P̂s)

)∥∥∥ (29)

≤UkLkγ ‖W‖HS
∥∥∥γ(P̂s)− γ(Ps)

∥∥∥ . (30)

Combining (23), (30) and ‖f‖ ≤ 1, there is∣∣∣f ((P̂s, x)W
)
− f ((Ps, x)W)

∣∣∣ ≤ UkLkγ ‖W‖HS ∥∥∥γ(P̂s)− γ(Ps)
∥∥∥ . (31)

Now we derive the bound on
∥∥∥γ(P̂s)− γ(Ps)

∥∥∥. For independent real zero-mean random variables x1, . . . , xn such
that |xi| ≤ C for i = 1, . . . , n, Hoeffding’s inequality [Hoeffding, 1963] states that ∀ε > 0:

P

[∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− nε

2

2C2

)
. (32)

Set the δ = 2 exp
(
− nε2

2C2

)
, then with probability at least 1− δ:∣∣∣∣∣ 1n

n∑
i=1

xi

∣∣∣∣∣ < √2C

√
log 2δ−1

n
. (33)

Similar result holds for zero-mean independent random variables φ(x1), . . . , φ(xn) with values in a separable complex
Hilbert space and such that ‖φ(xi)‖ ≤ C, for i = 1, . . . , n [Rosasco et al., 2010]:∥∥∥∥∥ 1

n

n∑
i=1

φ(xi)

∥∥∥∥∥ < √2C

√
log 2δ−1

n
. (34)

For independent uncentered variables φ′(xi) with mean M , bounded by C. Let φ(xi) = φ′(xi) − M denote the
re-centered variables, now bounded at worst by 2C by the triangle inequality. Set δ = 2 exp

(
− nε2

8C2

)
, we obtain with

probability at least 1− δ that: ∥∥∥∥∥ 1

n

n∑
i=1

φ′(xi)−M

∥∥∥∥∥ < 2
√

2C

√
log 2δ−1

n
(35)

Based on the result of (35), we have

∥∥∥γ(P̂s)− γ(Ps)
∥∥∥ =

∥∥∥∥∥ 1

ns

n∑
i=1

φ′(xsi )− EX∼Ps [φ′(X)]

∥∥∥∥∥ ≤ 3Uk′

√
log 2δ−1

n̄
(36)



Combining (31) and (36) we have

sup
‖f‖Hk̄≤1

∥∥∥f ((P̂s, ·)W
)
− f ((Ps, ·)W)

∥∥∥
∞
≤ 2
√

2UkLkγUk′ ‖W‖HS

√
log 2δ−1

n̄
(37)

Conditionally to the draw of {Ps}1≤s≤m, we can apply (37) to each (Ps, P̂s) the the union bound over s = 1, . . . ,m
to get that with probability at least 1− δ:

(I) ≤ 2
√

2L`UkLkγUk′ ‖W‖HS

√
log 2δ−1 + logm

n̄
(38)

Bound of term (II)

This section follows the idea of Blanchard et al. [2011] so steps of proof that are largely unchanged are omitted. First,
we define the conditional (idealized) test error for a given test distribution PtXY as

E(f,∞|PtXY ) := E(Xt,Y t)∼PtXY

[
`
(
f(X̃tW), Y t

)]
, (39)

where X̃t = (P tX , X
t).

Then (II) is further decomposed as

(II) ≤ 1

m

m∑
s=1

1

ns

ns∑
i=1

(
`
(
f(X̃s

i W), ysi

)
− E(f,∞|PsXY )

)
+

1

m

m∑
s=1

(E(f,∞|PsXY )− E(f,∞)) (40)

:=(IIa) + (IIb) (41)

Bound of term (IIa)

In the case where conditioning on {PsXY }1≤s≤m, the observations inD = {(xsi , ysi )}
m,ns

s=1,i=1 are now independent (but
not identically distributed) for this conditional distribution. We can thus apply the McDiarmid inequality [McDiarmid,
1989] to the function

ζ (D) := sup
‖f‖H

k̄
≤1

1

m

m∑
s=1

1

ns

ns∑
i=1

(
`
(
f(X̃s

i W), ysi

)
− E(f,∞|PsXY )

)
. (42)

When ns = ns
′

= n̄ for all s, s′, that with probability 1− δ over the draw of D, it holds

|ζ − E [ζ|{PsXY }1≤s≤m]| ≤ Ul

√
log 2δ−1

2mn̄
. (43)

Then by the standard symmetrization technique, E [ζ|{PsXY }1≤s≤m] can be bounded via Rademacher complexity as:

E [ζ|{PsXY }1≤s≤m] ≤ 2

m
E(xsi ,y

s
i )E(εsi )

[
sup

‖f‖H
k̄
≤1

m∑
s=1

1

ns

ns∑
i=1

εsi

(
`
(
f(X̃s

i W), ysi

))
|{PsXY }1≤s≤m

]
(44)

≤2L`UkUkγ ‖W‖HS

√
1

mn̄
, (45)

where the last inequality is from the bound of the Rademacher complexity of the loss class ` ◦ f .

Bound of term (IIb)

Since the {PsXY }1≤s≤m are i.i.d., the McDiarmid inequality can be applied to the function

ξ ({PsXY }1≤s≤m) := sup
‖f‖H

k̄
≤1

1

m

m∑
s=1

(E(f,∞|PsXY )− E(f,∞)) , (46)



then one obtains that with probability 1− δ over the draw of {PsXY }1≤s≤m, it holds

|ξ − E[ξ]| ≤ U`

√
log δ−1

2m
. (47)

Similarly, by the standard symmetrization technique, E[ξ] is bounded as

E[ξ] ≤ 2

m
E{PsXY }1≤s≤mE(Xs,Y s)1≤s≤mE(εs)1≤s≤m

[
sup

‖f‖H
k̄
≤1

m∑
s=1

εs`
(
f(X̃sW), Y s

)]
(48)

≤2L`UkUkγ ‖W‖HS

√
1

m
, (49)

where the last inequality is again from the bound of the Rademacher complexity of the loss class ` ◦ f .

Finally, W = ΦTB and K = ΦΦT is invertible. It follows that tr(BTKB) defines a norm consistent with the
Hilbert-Schmidt norm ‖W‖HS . By combining the above results we obtain the announced result.

E Experimental Configurations

Due to the difference in techniques adopted in different methods, there is/are different hyper-parameter(s) in each
method require tuning in the experiments.

• 1NN: since there is no hyper-parameter to be determined in 1NN, instances in source domains are directly com-
bined for training. Then we apply the trained model on target domains and report the test accuracy.

• SVM: the regularization coefficient C requires tuning in SVM. C ∈ {0.1, 0.5, 1.0, 2.0, 5.0, 10.0} are validated in
the experiments.

• KPCA and KFD: the kernel width σk requires tuning. σk ∈ {0.1dM , 0.2dM , 0.5dM , dM , 2dM , 5dM}, where
dM = median

(
‖xi − xj‖22

)
,∀xi,xj ∈ D, are validated.

• E-SVM: four hyper-parameters (λ1, λ2, C1, C2) require tuning. λ1 ∈ {0.1, 1, 10}, λ2 ∈ {0.5λ1, 1λ1, 2λ1}, and
C1, C2 ∈ {0.1, 1, 10} are validated.

• CCSA: two hyper-parameters (lr, α) require tuning. learning rate lr ∈ {0.5, 1.0, 1.5} and α ∈ {0.1, 0.25, 0.4}
are validated.

• DICA: Two parameters (λ, ε) require tuning. λ ∈ {1e−3, 1e−2, 1e−1, 1.0, 1e1, 1e2, 1e3}
and ε ∈ {1e−3, 1e−2, 1e−1, 1.0, 1e1, 1e2, 1e3} were validated.

• SCA: Two parameters (β, δ) require tuning. β ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
δ ∈ {1e−3, 1e−2, 1e−1, 1.0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6} were validated.

• CIDG: Three hyper-parameters (β, α, γ) require tuning. β ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
γ ∈ {1e−3, 1e−2, 1e−1, 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}, and
α ∈ {1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9}, were validated.

• MDA: Three hyper-parameters (β, α, γ) require tuning. β ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
γ ∈ {1e−3, 1e−2, 1e−1, 1.0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}, and
α ∈ {1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9}, were validated.

For feature extraction methods (i.e., KPCA and KFD) and kernel-based DG methods (i.e., DICA, SCA, CIDG, and
MDA), in real data experiments, different number of leading eigenvectors (corresponds to the dimension of the trans-
formed subspace) that contribute to certain proportions (i.e. {0.2, 0.4, 0.6, 0.8, 0.92, 0.94, 0.96, 0.98}) of the sum of
all eigenvalues are tested and the highest accuracies are reported for each method.



F Synthetic Experimental Results Visualization

In this section, we show the data distribution of source domains in the transformed domain-invariant subspace Rq
of the synthetic experiment for kernel-based DG methods: SCA, CIDG, MDA, which are proposed for classification
problems. The results are given in Figure 3 and 4.

We observe from the results that: 1) the transformation learned from MDA performs the best in terms of the separation
of different classes of target domains; 2) the overlapped region in source domains(green and red classes) is handled
slightly better in MDA than in CIDG; 3) SCA has difficulty in separating instances of different classes in part of the
cases.
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Figure 3: Visualization of transformed data in Rq of cases (2a, 2a), (2b, 2a), (2c, 2a), (2d, 2a), (2e, 2a). Each row
corresponds to a case of class-prior distributions. Each column corresponds to a DG methods. The first column shows
the distribution of the raw data. Different colors denote different classes. Circle marker denotes the data of source
domain and cross marker denotes the data of target domain.
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Figure 4: Visualization of transformed data in Rq of cases (2a, 2b), (2a, 2c), (2a, 2d), (2a, 2e). Each row corresponds to
a case of class-prior distributions. Each column corresponds to a DG methods. The first column shows the distribution
of the raw data. Different colors denote different classes. Circle marker denotes the data of source domain and cross
marker denotes the data of target domain.



G Related Work

Compared with domain adaptation, domain generalization is a younger line of research. Blanchard et al. [2011] are the
first to formalize the domain generalization of classification tasks. Motivated by automatic gating of flow cytometry
data, they adopted kernel-based methods and derived the dual of a kind of cost-sensitive SVM to solve for the optimal
decision function. A feature projection-based method called Domain Invariant Component Analysis (DICA; [Muandet
et al., 2013]) was then proposed in 2013. DICA was the first to bring the idea of learning a shared subspace into domain
generalization. It finds a transformation to a subspace in which the differences between marginal distributions P(X)
over domains are minimized while preserving the functional relationship between Y and X .

Along this line, subsequent feature projection-based methods have been proposed. Scatter Component Analysis (SCA;
[Ghifary et al., 2017]) is the first unified framework for both domain adaptation and domain generalization. It combines
domain scatter, kernel principal component analysis and kernel Fisher discriminant analysis into an objective and
trades between them to learn the transformation. Unlike previous works, the authors of Conditional Invariant Domain
Generalization (CIDG; [Li et al., 2018b]) are the first to analyze domain generalization of classification tasks from
causal perspective and thus consider more general cases where both P(Y |X) and P(X) vary across domains. They
combine total scatter of class-conditional distributions, scatter of class prior-normalized marginal distributions, and
kernel Fisher discriminant analysis to achieve the goal of domain generalization.

Besides the aforementioned methods in general, domain generalization problem also attracted extensive attention of
computer vision community. Khosla et al. [2012] proposed a max-margin framework (Undo-Bias) in which each
domain is assumed to be controlled by the sum of the visual world and a bias. A modified SVM-based method is
adopted for solving the weights and biases in the model. Unbiased Metric Learning (UML; [Fang et al., 2013]),
which is based on a learning-to-rank framework, first learns a set of distance metrics and then validate to select the
one with best generalization ability. Xu et al. [2014] adopted exemplar-SVM and introduced a nuclear norm based
regularizer into the objective to learn a set of more robust examplar-SVMs for domain generalization purpose. Ghifary
et al. [2015] introduced Multi-task Autoencoder (MTAE), a feature learning algorithm that uses a multi-task strategy
to learn unbiased object features, where the task is the data reconstruction. More recently, domain generalization
methods based on deep neural networks [Motiian et al., 2017, Li et al., 2017, 2018a,c] were proposed to cope with the
problem induced by distribution shift.
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