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Abstract

This paper addresses the stochastic multi-
armed bandit problem with an undirected feed-
back graph. We devise a UCB-based al-
gorithm, UCB-NE, to provide a problem-
dependent regret bound that depends on a
clique covering. Our algorithm obtains re-
gret which provably scales linearly with the
clique covering number. Additionally, we pro-
vide problem-dependent regret bounds for a
Thompson Sampling-based algorithm, TS-N,
where again the bounds are linear in the clique
covering number. Finally, we present experi-
mental results to see how UCB-NE, TS-N, and
a few related algorithms perform practically.

1 INTRODUCTION

In the stochastic multi-armed bandit problem, a learning
agent sequentially decides to pull an arm in each of T
rounds in order to maximize its cumulative reward. Each
arm emits rewards that are i.i.d. according to a fixed but
unknown distribution specific to that arm, and in a given
round the agent only observes the reward of the arm it
pulled in that round. Naturally, the limited feedback as-
pect of this game creates a tension between exploration
— acquiring information to better estimate the mean re-
ward of an arm — and exploitation — pulling the arm
that empirically looks the best so far.

The standard notion of regret in this setting is the pseudo-
regret (hereafter referred to simply as “regret”), which
measures the difference between the agent’s expected cu-
mulative reward and the expected cumulative reward of
the arm with the highest mean reward. For simplicity
of this initial exposition, we consider the case of K arms
where one arm has a mean reward of µ and all other arms
have a mean reward of µ− ∆ for some ∆ > 0. While it

is known that a problem-independent regret bound of or-
der O(

√
TK) is possible (Audibert and Bubeck, 2009),

more refined, problem-dependent regret bounds that take
into account distributional information also exist (Auer
et al., 2002); (Garivier and Cappé, 2011); (Agrawal and
Goyal, 2017). These bounds grow only logarithmically
in T and take the form O

(
K log T

∆

)
or O

(
∆K log T

d(µ−∆,µ)

)
.1

A number of recent works have considered the online
learning with feedback graphs setting. This setting can
be viewed as an extension of the multi-armed bandit
setting where additional side observations are available
when pulling an arm, as specified by a feedback graph
G. When pulling an arm, one receives observations from
that arm and all of its neighbors in the feedback graph. A
concrete application is an online advertising/promotion
system in a social network. A merchant may give a spe-
cial discount to selected users to promote their items.
The merchant can then observe whether the selected
users like the advertised items or not. Meanwhile, the
selected users are likely to recommend the advertised
items to their friends via social networks. Therefore, the
merchant may also get additional observations from the
friends of the selected users.

Whereas the regret bounds in the standard multi-armed
bandit problem are inherently linear in the number of
arms, in the feedback graph setting it is possible to break
this dependence, replacing K by certain graph-theoretic
properties. For instance, in the case of undirected feed-
back graphs, Caron et al. (2012) developed an index-
style algorithm, UCB-N, that replaces K by the clique
covering number in the leading term of the regret bound
(the term depending on T); however, their regret bound
still has a constant term (the term not depending on T)
that is linear in K. For directed feedback graphs, Co-
hen et al. (2016) developed an arm elimination-style al-

1Here, d(p, q) = p log p
q + (1− p) log 1−p

1−q is the KL di-
vergence of a Bernoulli distribution with success probability p
from a Bernoulli distribution with success probability q.



gorithm which, remarkably, replaces K by α(G) log K
for the leading term (and also the constant term) in
a problem-dependent bound; here, α(G) is the inde-
pendence number of feedback graph G (where directed
edges are counted as undirected edges). However, as we
explain in Section 6, the additional log K factor is some-
times unnecessary and the algorithm does not perform
well in practice.

Thompson Sampling-based algorithms typically perform
the best, and this is also the case for the online learn-
ing with feedback graphs problem. Indeed, an algorithm
called TS-N (due to Liu et al. (2018a)) exhibits excellent
empirical performance in the case of feedback graphs.
However, whereas there are problem-dependent regret
bounds for Thompson Sampling in the case of standard
bandit feedback (Agrawal and Goyal, 2017; Kaufmann
et al., 2012), no problem-dependent regret bounds have
been shown for TS-N in the case of feedback graphs.
Existing bounds, due to Liu et al. (2018a); Liu et al.
(2018b), do depend on the clique covering number or
α(G) but are only on the Bayesian regret.

Our core contributions, all for undirected feedback
graphs, are as follows:

1. We devise a new upper confidence bound-based al-
gorithm, UCB-NE, for the stochastic N -armed ban-
dit problem with an undirected feedback graph. We
prove a problem-dependent regret bound for this al-
gorithm which, for any clique covering, is linear in
the size of the clique covering and logarithmic in the
size of the cliques, both with respect to the leading
and constant terms; the precise result can be found
in Theorem 1. UCB-NE does not depend on a clique
covering as input, instead only using degree informa-
tion to construct upper confidence bounds.2

2. For the TS-N algorithm of Liu et al. (2018a), we
give two problem-dependent regret bounds that, sim-
ilar to UCB-NE, depend only linearly on the size of
a clique covering and logarithmically on the size of
each clique. These are the first problem-dependent
regret bounds for any Thompson Sampling algorithm
that improve with properties of feedback graphs.
Both bounds involve a free parameter ε which al-
lows a tradeoff between the leading term and the con-
stant term, similar to previous bounds by Agrawal
and Goyal (2017); Kaufmann et al. (2012). The first
bound, Theorem 2, tends to optimize the leading term
and hides problem-dependent constants, again simi-

2We note in passing that Caron et al. (2012) introduced an
algorithm called UCB-MaxN that also attempted to improve
the constant term. However, as we explain in Section 3, the
regret analysis of this algorithm may not always realize such
an improvement.

lar to previous regret bounds by Agrawal and Goyal
(2017); Kaufmann et al. (2012) in the standard bandit
setting. This makes it difficult to assess the tradeoff
between the leading and constant terms, as is needed
to tune ε. We therefore give a second regret bound,
Theorem 3, that gives an explicit form for the con-
stant term, thereby enabling a user to suitably tune
ε. We note that our bounds also hold for the spe-
cial case of standard bandit feedback, in which case
our bounds represent the first fully explicit bounds for
Thompson Sampling; previous bounds did not explic-
itly control the constant term, which in some cases
may actually be larger than the leading term.

3. We present experimental results to practically study
how the regret grows for UCB-NE, TS-N, UCB-
N, the arm elimination-style algorithm of Cohen
et al. (2016), and another algorithm called TS-MaxN
(Tossou et al., 2017).

This paper are organized as follows. Section 2 formally
presents the stochastic multi-armed bandit problem with
undirected feedback graphs. Section 3 discusses related
work. Section 4 presents our algorithm, UCB-NE, along
with a problem-dependent regret bound, and Section 5
presents problem-dependent regret bounds for TS-N. Ex-
perimental results are provided in Section 6. Finally,
Section 7 concludes the paper. All proofs that do not
appear in this paper are in the supplementary material.

2 STOCHASTIC MULTI-ARMED
BANDITS WITH UNDIRECTED
FEEDBACK GRAPHS

We consider a stochastic N -armed bandit problem with
an undirected feedback graph. The learner plays this
game for T rounds. At the beginning of round t, the
environment generates random rewards in [0, 1] for all
arms independently3 from fixed but unknown distribu-
tions. Graph G := (N , E) denotes an undirected feed-
back graph that captures all the feedback relationships
over arm set N . An edge i ↔ j in E means that the
learner can get a side observation of arm j when pulling
arm i, and vice versa. Note that pulling arm i always lets
the learner observe the reward of arm i itself, i.e., E in-
cludes all self-loops. We assume that graph G does not
vary over time. For each i ∈ N , let set Ni collect arm
i and all its neighbors in G. In each round t, the learner
pulls an arm It ∈ N and then observes the reward of
each arm in NIt . The goal of the learner is to pull arms

3Actually, for UCB-NE, it is not required that the random
rewards of all arms be generated independently, i.e., they can
be generated from a joint distribution.



sequentially to maximize its expected cumulative reward
over T rounds.

Let µi denote the true mean of arm i’s reward. We
assume that the first arm is the unique best arm, i.e.,
µ1 > µi, ∀i 6= 1. It is possible to modify the analysis
if there are multiple best arms. Let ∆i := µ1 − µi for all
i ∈ N . Note that ∆1 = 0. To measure the quality of our
learning algorithms, we use the (pseudo-)regret R(T),
which is defined as

R(T) = E

[
T

∑
t=1

µ1 − µIt

]
. (1)

In this work, an arbitrary clique covering C is used to
derive our regret bound. C is a set of cliques such that⋃
C∈C

C = N where C ∈ C is a clique. A clique in G is a

subset of N such that all nodes are neighbors with each
other. Then the regretR(T) can be further expressed as

R(T) = ∑
i∈N

T
∑

t=1
E [1{It = i}] · ∆i

≤ ∑
C∈C

E[
T

∑
t=1

∑
i∈C

1{It = i} · ∆i︸ ︷︷ ︸
RC(T)

] , (2)

where RC(T) :=
T
∑

t=1
∑

i∈C
1{It = i} · ∆i denotes the

intra-clique regret, i.e., the regret of pulling any sub-
optimal arm in clique C. Note that we only need to
analyze the cliques that are not equal to {1}. For any
C 6= {1}, let µmax

C := max
i∈C\1

µi, ∆max
C := max

i∈C\1
∆i, and

∆min
C := min

i∈C\1
∆i.

3 RELATED WORK

To fully exploit the feedback structure, previous works
have used either a clique covering C over all the nodes
in G or the independence number α(G) to derive regret
bounds. The independence number of a graph is defined
as the cardinality of the maximum independent set. The
first regret bound of a stochastic N -armed bandit prob-
lem with an undirected feedback graph was provided by
Caron et al. (2012). The authors devised two UCB-based
algorithms: UCB-N and UCB-MaxN. In UCB-N, just
like in previous work (Auer et al., 2002), the learner
pulls the arm with the highest upper confidence bound in
each round while in UCB-MaxN, the learner first locates
the arm with the highest upper confidence bound but
actually pulls the arm with the highest empirical mean
among the neighbors of the arm with the highest con-
fidence bound. Caron et al. (2012) exploited properties

of clique coverings to derive problem-dependent regret
bounds, i.e., pulling any arm within a clique C allows
the learner to obtain an observation of all the arms within

C. The leading term for UCB-N is O
(

∑
C∈C

∆max
C ln(T)
(∆min

C )2

)
while the constant term is O

(
∑

C∈C
|C|
)

= O(|N |).

Note that the learner does not need to know the feedback
graph in advance for UCB-N. Using the algorithm UCB-
MaxN, it seems to be possible to improve the problem-
dependent constant term to O(|C|) asymptotically under
an assumption, i.e., that the best sub-optimal arm within
each clique is unique and the gap δ between this best sub-
optimal arm and the second best sub-optimal arm (within
the same clique) is not arbitrarily small. However, as we
explain in the supplementary material, there appears to
be a subtle issue with proof of the regret bound for UCB-
MaxN. Our algorithm UCB-NE improves the constant
term in their regret bounds by avoiding dependence on
δ and provides a regret bound that holds for any clique
covering. Note that in UCB-NE, the learner only needs
to know the feedback graph instead of the knowledge of
clique coverings.

Cohen et al. (2016) devised an elimination-based algo-
rithm4 to exploit a directed feedback graph. Note that
an undirected feedback graph can treated as a special di-
rected feedback graph. They gave a problem-dependent
regret bound that scales with the independence number

α(G). Their regret bound is O

(
∑

v∈V′

ln(T)
∆v

)
, where V

′

is the set of O (α(G) ln(|N |)) arms with the smallest
gaps. Although the independence number α(G) is al-
ways no greater than the clique covering number, due to
the multiplicative interaction with ln(|N |), their regret
bound may not be always better than one which scales
with the clique covering number. Also, although this
elimination-based algorithm has good theoretical guar-
antees, it does not work well practically as shown by Liu
et al. (2018b) and further confirmed by our experiments
in Section 6. Additionally, the learner needs to know the
time horizon T in advance. Otherwise, the learner needs
to resort a “doubling trick” shown in (Auer and Ortner,
2010).

Liu et al. (2018a) and Liu et al. (2018b) devised
a Thompson Sampling-based algorithm, TS-N, to ex-
ploit an undirected feedback graph. They gave
regret bounds scaling with clique covering num-
ber (O

(√
|C|T ln(|N |)

)
) and independence number

(O
(√

α(G)T ln(|N |)
)

). However, they used Bayesian

4Their algorithm admits regret bounds even if G varies over
time.



regret instead of the pseudo-regret to measure the
quality of the algorithm, and their regret bounds are
problem-independent. We derive problem-dependent re-
gret bounds for TS-N that depend on a clique covering.

4 UCB-NE

In this section, we introduce UCB-NE and provide a
problem-dependent regret bound.

4.1 ALGORITHM

Algorithm 1 presents the UCB-NE (‘E’ stands for ex-
tra exploration). Let Oi(t) be the number of observa-
tions of arm i until the end of round t and µ̂i,Oi(t) be the
empirical mean of arm i until the end of round t. Let

µ̄i(t) := µ̂i,Oi(t−1) +

√
2 ln
(
|Ni |

1
4 ·t
)

Oi(t−1) be the upper con-
fidence bound of arm i at round t. Note that the sec-
ond term in the upper confidence bound is enlarged as

compared to the standard value of
√

2 ln(t)
Oi(t−1) . This en-

largement makes the algorithm explore more and, in the
regret analysis, enables us to get rid of the factor that
makes the constant term scale linearly with the clique
size. More specifically, the extra exploration allows the
constant term from each clique to be divided by some-
thing no smaller than the clique size. In every round t,
the learner pulls the arm with the highest upper confi-
dence bound, i.e., It ← arg max

i∈N
µ̄i(t). Then at the end

of round t, all the neighboring arms of the pulled arm
including itself, i.e., all i ∈ NIt will be observed and
the corresponding Oi(t) and µ̂i,Oi(t) will be updated. Let
Xi(t) ∈ [0, 1] be the random reward for arm i at round
t. Although UCB-NE does not depend on a clique cover-
ing as input, the algorithm needs the knowledge of graph
structure as the degree information for each arm is used
to construct the upper confidence bound.

Algorithm 1 UCB-NE

1: Set Oi ← 0, µ̂i,Oi ← 0, ∀i ∈ N
2: for t = 1 : T do

3: Set µ̄i(t) = µ̂i,Oi +

√
2 ln
(
|Ni |

1
4 ·t
)

Oi
, ∀i ∈ N

4: Pull arm It ← arg max
i∈N

µ̄i(t)

5: for i ∈ NIt do
6: Set Oi ← Oi + 1; Observe Xi(t)

7: Set µ̂i,Oi ←
µ̂i,Oi
·(Oi−1)+Xi(t)

Oi
8: end for
9: end for

4.2 REGRET ANALYSIS

Let NC := max
i∈C

{
|Ni|

1
4

}
.

Theorem 1. The regretR(T) of UCB-NE is at most

inf
C

 ∑
C∈C,C 6={1}

E [RC(T)]


≤ inf
C ∑

C∈C
C 6={1}

(
8∆max

C ln(NC · T)
(∆min

C )2
+

(
1 +

π2

3

)
∆max

C

)
.

Several remarks are in order. First, we discuss the case
where no side observations are available, i.e., a stan-
dard stochastic multi-armed bandit problem. We can
take a trivial clique covering C = {{i}, ∀i ∈ N} to
recover the regret bound of this classic setting. From
C = {{i}, ∀i ∈ N} we have ∆min

C = ∆max
C = ∆i and

NC = |Ni| = 1 for all C 6= {1}. Then our regret
bound is the same as the one for UCB1 in (Auer et al.,
2002). Next, we discuss the difference between UCB-
N in (Caron et al., 2012) and UCB-NE if side observa-
tions are available. Given the same feedback graph, the
leading term of UCB-NE and UCB-N is the same. With
respect to the constant term, UCB-N is O(|C|) while

UCB-NE improves to O
(

ln(NC)
∆

)
when the clique size

is large. However, when taking the trivial clique cover-
ing C = {{i}, ∀i ∈ N}, UCB-N boils down to the same
regret bound as UCB1 while UCB-NE needs to pay an
additional price of 2 ln(|Ni |)

∆i
for each sub-optimal arm i.

Similar to the analysis of UCB-N, to obtain our regret
bound, we also bound the total number of times that the
learner pulls any sub-optimal arm within each clique. For
each clique C, the regret can be decomposed into two
regimes, the under-sampled regime and the sufficiently
sampled regime. Specifically, we say that a clique C
is in the under-sampled regime if the total number of
times that the learner has pulled any arm in C is less

than a threshold LC :=
⌈

8 ln(NC ·T)
(∆min

C )
2

⌉
, where we recall

that NC = max
i∈C

{
|Ni|

1
4

}
. For the rounds when clique C

is in the under-sampled regime, the total regret is at most
LC · ∆max

C while for the rounds when clique C is in the
sufficiently sampled regime, we use a concentration in-
equality to bound the total regret contribution from this
regime by a constant not depending on the clique size.
Note that the term NC appearing in LC typically would
not be present in a standard UCB analysis or the analysis
of UCB-N. We use this term because, as explained ear-
lier, UCB-NE’s upper confidence bounds have an extra
exploration term |Ni|1/4 that is upper bounded by NC.



5 TS-N

In this section, we introduce the algorithm TS-N of
Liu et al. (2018a) and provide problem-dependent regret
bounds. Unlike the previous section, we now restrict to
the case of Bernoulli rewards.

5.1 ALGORITHM

Algorithm 2 presents TS-N in detail. Unlike the previ-
ous section, Oi(t) denotes the number of times that arm
i has been observed until the end of round t− 1. Qi(t)
denotes the number of times that the learner gets reward
equal to 1 among the Oi(t) observations, i.e., the number
of times that the Bernoulli trial succeeds until the end of
round t− 1. For each arm i ∈ N , let θi(t) denote a ran-
dom value independently generated from posterior dis-
tribution Beta(Qi(t) + 1, Oi(t) − Qi(t) + 1) at round
t, where Beta(α, β) denotes a beta distribution with pa-
rameter α, β. At the end of round t, all the neighboring
arms of the pulled arm including itself will be observed
and the parameters of the corresponding beta distribu-
tions will be updated. Let Xi(t) ∈ {0, 1} be the random
reward for arm i at round t. Note that TS-N does not de-
pend on a clique covering as input nor does the learner
need knowledge of the feedback graph.

Algorithm 2 TS-N (Liu et al., 2018a)

1: Set Oi ← 0, Qi ← 0, ∀i ∈ N
2: for t = 1 : T do
3: Sample θi(t) from Beta(Qi + 1, Oi − Qi +

1), ∀i ∈ N
4: Pull arm It ← arg max

i∈N
θi(t)

5: for i ∈ NIt do
6: Set Oi ← Oi + 1; Observe Xi(t)
7: Set Qi ← Qi + Xi(t)
8: end for
9: end for

5.2 REGRET ANALYSIS

Let NC := max
i∈C
|Ni| and, for a, b ∈ [0, 1], de-

fine d(a, b) := a ln( a
b ) + (1 − a) ln( 1−a

1−b ) to be the
Kullback-Leibler (KL) divergence of a Bernoulli distri-
bution with success probability a from a Bernoulli distri-
bution with success probability b.

Theorem 2. The regretR(T) of TS-N is at most

inf
C

 ∑
C∈C,C 6={1}

E [RC(T)]


≤ inf
C

 ∑
C∈C,C 6={1}

∆max
C (1+εC) ln(T)

d(µmax
C ,µ1)

+ O
(

ln(NC)+1
(εC)2

) ,

where εC can be any value in(
0, min

{
d(µmax

C ,µ1)

d(mC ,µ1)
− 1, 1

})
and mC ∈ (µmax

C , µ1)

is a unique clique-specific problem-dependent con-
stant. The Big-O notation in the constant term hides
problem-dependent constants.

Let us make a few remarks about this theorem. First, we
discuss the case where there is no feedback graph, i.e.,
a standard stochastic multi-armed bandit problem. We
compare our regret bound with Theorem 1 in (Agrawal
and Goyal, 2017). We can take a trivial clique covering
C = {{i}, ∀i ∈ N} to represent the case where there
is no feedback graph. Then we have µmax

C = µi and
NC = |Ni| = 1 for all C 6= {1}, and our regret bound
boils down to Theorem 1 in (Agrawal and Goyal, 2017)
with the only difference of the choice of εC. In (Agrawal
and Goyal, 2017), they have freedom to choose any εC ∈
(0, 1) while we may not have that freedom. During the
proof of our Theorem 2, more precisely, in Lemma 1, we
present the range of εC in our regret bound. We use εC to
control the problem-dependent constant term to make it
scale logarithmically with the clique size. It is important
to note that εC does not depend on the number of arms
within clique C. Instead, εC only depends on µ1 and
µmax

C (the mean reward of the best sub-optimal arm in
clique C). Next, we discuss the difference between TS-
N and UCB-NE. With respect to the leading term, TS-N
is better than UCB-NE while for the constant term, TS-
N may be worse than UCB-NE. However, the constant
terms for TS-N and UCB-NE both scale logarithmically
with the clique size instead of linearly.

With respect to the leading term, Theorem 2 provides a
good theoretical guarantee while for the constant term,
it hides many problem-dependent constants. The hidden
terms can be found in the proof. Also, there is a limita-
tion of the choice of εC for each clique C. Therefore, we
provide another theorem for which any ε ∈ (0, 1) is al-
lowed and the constant terms can be expressed explicitly.
The exposure of the previously-hidden constant term en-
ables us to achieve a good tradeoff between the leading
term and constant term by tuning ε properly.

Theorem 3. For any ε ∈ (0, 1), the regretR(T) of TS-N



is at most

inf
C

 ∑
C∈C,C 6={1}

E [RC(T)]


≤ inf
C


∑

C∈C,C 6={1}

(3+λC)
2∆max

C ln(T)
2(1−ε)2(∆min

C )2

+
(3+λC)

2∆max
C (ln(NC)+1)

2(1−ε)2(∆min
C )2 + O

(
∆max

C
ε4(∆min

C )4

)
 ,

where λC := log
(

µ1−ε∆min
C

µmax
C

)
.

In the supplementary material, we show that instead

of paying O
(

∆max
C

ε4(∆min
C )4

)
, an alternative is to pay

O
(

∆max
C ln(T·ε∆min

C )

ε2(∆min
C )2

)
.

Notation and definitions: Before presenting the anal-
ysis, we first introduce some important notation and def-

initions. Let Ti(t) :=
t−1
∑

s=1
1{Is = i} be the total number

of times that arm i has been pulled until the end of round
t − 1 and TC(t) be the total number of times that the
learner pulls any arm in clique C until the end of round

t− 1, i.e., TC(t) :=
t−1
∑

s=1
1{∃j ∈ C s.t. Is = j}. Different

from UCB-NE, in TS-N, µ̂i(t) = Qi(t)
Oi(t)+1 is defined as

the empirical mean of arm i at round t. Ft collects all the
history information until the end of round t sequentially,
which is Ft = {Is, Xi(s), ∀i ∈ NIs , s = 1, 2, · · · , t}.
Define F0 = {}, and note that F0 ⊆ F1 ⊆ · · · ⊆ FT−1
always holds. For each arm i, Oi(t), Qi(t), and µ̂i(t) are
determined byFt−1. Also, the distribution that generates
θi(t) is determined by Ft−1.

To prove Theorem 2, we first do a regret decomposition.
LC is a clique-specific positive integer that will be chosen
later, and tuning LC needs some novel techniques.

RC(T) =
T

∑
t=1

∑
i∈C

1{It = i} · ∆i

=
T

∑
t=1

∑
i∈C

1{It = i, TC(t) < LC} · ∆i︸ ︷︷ ︸
≤LC ·∆max

C

+
T

∑
t=1

∑
i∈C

1{It = i, TC(t) ≥ LC} · ∆i︸ ︷︷ ︸
Ψ

(3)

The first term in (3) is upper bounded by LC · ∆max
C by

bounding the indicator function directly. We show how
to choose LC properly via Lemma 1 and the discussions
following it.

Lemma 1. For clique C, we can always find xC ∈
(µmax

C , µ1), yC ∈ (µmax
C , µ1), and a sufficiently small

0 < εC < 1 such that the following hold simultane-
ously: (i) µmax

C < xC < yC < µ1; (ii) d(xC, µ1) =
1

1+εC
· d(µmax

C , µ1); (iii) d(xC, yC) =
1

1+εC
· d(xC, µ1);

(iv) d(xC, yC) ≥ d(xC, µmax
C ).

After fixing xC, yC, and εC that satisfy all the conditions
in Lemma 1, set LC := ln((NC)

ηC ·T)
d(xC ,yC)

+ 2, where NC =

max
i∈C
|Ni| and ηC := d(xC ,yC)

d(xC ,µmax
C )
≥ 1 (condition (iv) in

Lemma 1).

Several remarks are in order for Lemma 1 and the choice
of LC. Regarding the choice of xi, yi, and ε in the
standard Thompson Sampling analysis in (Agrawal and
Goyal, 2017), ε can be any value in (0, 1). They chose
to fix ε ∈ (0, 1) first, and then chose xi ∈ (µi, µ1) such
that d(xi, µ1) = d(µi ,µ1)

1+ε and yi ∈ (xi, µ1) such that

d(xi, yi) = d(xi ,µ1)
1+ε . However, in this paper, if we ex-

actly reuse the ideas in (Agrawal and Goyal, 2017) to
choose xC and yC, i.e., fixing εC ∈ (0, 1) first and then
choosing xC and yC only satisfying conditions (i), (ii),
and (iii) in Lemma 1, and then set LC = ln(T)

d(xC ,yC)
+ 2, to

the best of our knowledge, for each clique C, we can only
derive a problem-dependent regret bound for which the
constant term scales with the clique size instead of loga-
rithmically scaling with the clique size. To have a regret
bound for which the constant term scales logarithmically
with the clique size in a finite time horizon setting, we
may sacrifice some freedom of the choice of εC. How-
ever, εC can always be chosen as small as desired.

The second term Ψ in (3) can be further decom-
posed into Ψ1, Ψ2, and Ψ3 by introducing events

Eµ
C(t) :=

{
max
i∈C\1

µ̂i(t) ≤ xC

}
and Eθ

C(t) :={
max
i∈C\1

θi(t) ≤ yC

}
, which is shown in (4).

Ψ =
T

∑
t=1

∑
i∈C

1{It = i, Eµ
C(t), TC(t) ≥ LC} · ∆i︸ ︷︷ ︸

Ψ1

+
T

∑
t=1

∑
i∈C

1{It = i, Eµ
C(t), Eθ

C(t), TC(t) ≥ LC} · ∆i︸ ︷︷ ︸
Ψ2

+
T

∑
t=1

∑
i∈C

1{It = i, Eµ
C(t), Eθ

C(t), TC(t) ≥ LC} · ∆i︸ ︷︷ ︸
Ψ3

(4)

After the aforementioned further regret decomposition,



we show5 (see Lemma 4) that E[Ψ1] ≤
∆max

C
d(xC ,µmax

C )
. The

key step in proving this result (see Lemma 3) is to show
that after a fixed arm i ∈ C \ 1 has been observed enough
times, i.e., Oi(t) ≥ LC, it is a rare event that its empiri-
cal mean µ̂i(t) is greater than xC. Next, we upper bound
E[Ψ2] by ∆max

C , which is accomplished by Lemma 6.
This lemma relies on a result, Lemma 5, which states
that after a fixed arm i ∈ C \ 1 has been observed enough
times, i.e., Oi(t) ≥ LC, and its empirical mean µ̂i(t) is
close enough to its true mean, i.e., µ̂i(t) ≤ xC, it is a rare
event that its posterior sampling value θi(t) is greater
than yC. Lemma 5 crucially relies on condition (iv) of
Lemma 1, i.e. that d(xC, yC) ≥ d(xC, µmax

C ), without
which we do not know if it is possible to obtain our de-
sired bound in Lemma 5. This control is important, as
Lemma 6 is proved roughly by taking a union bound over
all the arms in C, of which there are at most |C| ≤ NC.
Finally, we show that E[Ψ3] is O(1) in the sense that
it does not grow with T; here, the Big-O notation hides
problem-dependent constants. We do this via Lemma 8,
which is roughly analogous to Lemmas 2.9 and 2.10 of
Agrawal and Goyal (2017). We mention in passing that
Lemma 8 relies on another result, Lemma 7, which is
analogous to Lemma 2.8 of Agrawal and Goyal (2017).

Proof of Theorem 2. As we are analyzing the regret for
clique C, for ease of presentation, we drop the sub-

script C in εC. Let φC := ln
(

µ1(1−µmax
C )

µmax
C (1−µ1)

)
> 0,

∆
′
C := µ1 − yC, and DC := d(yC, µ1). Recall con-

ditions (i) to (iv) in Lemma 1 when choosing xC, yC,

and ε. From condition (ii), d(xC, µ1) =
d(µmax

C ,µ1)

(1+ε)
, we

have xC − µmax
C ≥ ε

ε+1
d(µmax

C ,µ1)
φC

due to the convex-
ity of function x 7→ d(x, µ1) when x ∈ [µmax

C , µ1].
Then from Pinsker’s inequality we have 1

d(xC ,µmax
C )

≤
1

2(xC−µmax
C )2 ≤

(1+ε)2φ2
C

2ε2(d(µmax
C ,µ1))2 . Putting together condi-

tion (ii) and condition (iii), i.e., d(xC, yC) = d(xC ,µ1)
1+ε

and d(xC, µ1) =
d(µmax

C ,µ1)
1+ε , we have d(xC, yC) =

d(µmax
C ,µ1)

(1+ε)2 .

Now, rewriting LC = ln(T)
d(xC ,yC)

+ ln(NC)
d(xC ,µmax

C )
+ 2 and

by applying 1
d(xC ,yC)

= (1+ε)2

d(µmax
C ,µ1)

and 1
d(xC ,µmax

C )
≤

(1+ε)2φ2
C

2ε2(d(µmax
C ,µ1))2 to LC, we have LC ≤ (1+ε)2 ln(T)

d(µmax
C ,µ1)

+

(1+ε)2φ2
C ln(NC)

2ε2(d(µmax
C ,µ1))2 + 2.

From (3) we have E[RC(T)] ≤ LC · ∆max
C + E[Ψ] and

by applying Lemmas 4, 6, and 8, and using the above

5Lemmas 3 through 8 are in the supplementary material.

rewrite of LC, we further have that E [RC(T)] is at most

LC · ∆max
C +

∆max
C

d(xC, µmax
C )︸ ︷︷ ︸

Lemma 4

+ ∆max
C︸ ︷︷ ︸

Lemma 6

+
24∆max

C

∆′2C
+ O

(
∆max

C

∆′2C
+

∆max
C

∆′CDC
+

∆max
C

∆′4C

)
︸ ︷︷ ︸

Lemma 8

≤
∆max

C (1 + ε)2 ln(T)
d(µmax

C , µ1)
+

∆max
C (1 + ε)2φ2

C(ln(NC) + 1)
2ε2(d(µmax

C , µ1))2︸ ︷︷ ︸
(LC−2)·∆max

C

+ 3∆max
C +

24∆max
C

∆′2C
+ O

(
∆max

C

∆′2C
+

∆max
C

∆′CDC
+

∆max
C

∆′4C

)
︸ ︷︷ ︸

O(1)

≤
∆max

C (1 + ε
′
) ln(T)

d(µmax
C , µ1)

+ O
(

ln(NC) + 1
ε
′2

)
+ O(1) ,

(5)
where ε

′
= 3ε and the Big-O notations in the last in-

equality hide problem-dependent constants.

Before presenting the proof of Theorem 3, we present a
new lemma that gives a novel way to choose xC and yC.
After fixing xC and yC, we prove Theorem 3 by exploit-
ing the properties of the squared Hellinger distance (Tsy-
bakov, 2009) and its link to the KL divergence d(a, b).
The squared Hellinger distance between two Bernoulli
distributions with success probabilities a and b is defined
as d2

H(a, b) := (
√

a−
√

b)2 + (
√

1− a−
√

1− b)2.

Lemma 2. For clique C and any ε ∈ (0, 1), we can
always find xC ∈ (µmax

C , µ1) and yC ∈ (µmax
C , µ1)

such that µmax
C < xC < yC < µ1 and d(xC, yC) =

d(xC, µmax
C ) hold simultaneously.

Proof of Lemma 2. Fix ε ∈ (0, 1) and then set yC =
µ1 − ε∆min

C . Clearly, yC ∈ (µmax
C , µ1) as ε ∈

(0, 1). Then we construct a monotonic function h(b) =
d(b, yC) − d(b, µmax

C ) where b ∈ [µmax
C , yC]. Note

that h(b) is strictly decreasing when b ∈ [µmax
C , yC]

since h′(b) = ln
(

µmax
C
yC

1−yC
1−µmax

C

)
< 0. Also,

we know that h(µmax
C ) = d(µmax

C , yC) > 0 and
h(yC) = −d(yC, µmax

C ) < 0. Therefore, there ex-
ists a unique m′ ∈ (µmax

C , yC) such that h(m′) =
d(m′, yC) − d(m′, µmax

C ) = 0 and m′ = µmax
C +

d(µmax
C ,yC)(1−ε)∆min

C
d(µmax

C ,yC)+d(yC ,µmax
C )

by using the linearity of the func-

tion h. Now, set xC = m′. Note that setting xC = m′

guarantees ηC = d(xC ,yC)
d(xC ,µmax

C )
= 1, concluding the proof.



Proof of Theorem 3. After fixing xC and yC that sat-
isfy the conditions in Lemma 2, all the proofs of Lem-
mas 3 through 8 still hold as only Lemma 5 needs
to use the condition ηC ≥ 1. Just as when prov-
ing Theorem 2, let LC = ln((NC)

ηC ·T)
d(xC ,yC)

+ 2, where

ηC = d(xC ,yC)
d(xC ,µmax

C )
= 1. Then we have 1

d(xC ,yC)
=

1
d(xC ,µmax

C )
≤

(
1+

d(yC ,µmax
C )

d(µmax
C ,yC)

)2

2(1−ε)2(∆min
C )2 =

(
1+

d(µ1−ε∆min
C ,µmax

C )

d(µmax
C ,µ1−ε∆min

C )

)2

2(1−ε)2(∆min
C )2

by using Pinsker’s inequality.

Let ζC :=

(
1+

d(µ1−ε∆min
C ,µmax

C )

d(µmax
C ,µ1−ε∆min

C )

)2

2(1−ε)2 . Now we upper

bound ζC. Let VC := µ1−ε∆min
C

µmax
C

> 1. From
Lemma 4 in (Yang and Barron, 1998) and the sym-
metric property of the squared Hellinger distance, we
have d(µ1− ε∆min

C , µmax
C ) ≤ (2+ log(VC)) · d2

H(µ1−
ε∆min

C , µmax
C ) = (2 + log(VC)) · d2

H(µ
max
C , µ1 −

ε∆min
C ) ≤ (2 + log(VC)) · d(µmax

C , µ1 − ε∆min
C ). Then

we have ζC ≤
(3+log(VC))

2

2(1−ε)2 .

Recalling that ∆
′
C = µ1 − yC and DC = d(yC, µ1)

and by applying yC = µ1 − ε∆min
C to ∆

′
C and DC, we

have ∆
′
C = ε∆min

C and DC = d(µ1 − ε∆min
C , µ1) ≤

ε2(∆min
C )2. Now applying LC, Lemma 4, Lemma 6, and

Lemma 8 to (5), we have that E [RC(T)] is at most

LC · ∆max
C +

∆max
C

d(xC, µmax
C )︸ ︷︷ ︸

Lemma 4

+ ∆max
C︸ ︷︷ ︸

Lemma 6

+
24∆max

C
ε2(∆min

C )2
+ O

(
∆max

C
ε4(∆min

C )4

)
︸ ︷︷ ︸

Lemma 8

≤
(3 + log(VC))

2∆max
C ln(NC · T)

2(1− ε)2(∆min
C )2

+
(3 + log(VC))

2∆max
C

2(1− ε)2(∆min
C )2

+ O

(
∆max

C
ε4(∆min

C )4

)
,

where VC =
µ1−ε∆min

C
µmax

C
. As we explain at the end of the

proof of Lemma 8, instead of paying O
(

∆max
C

ε4(∆min
C )4

)
, an

alternative is to pay O
(

∆max
C ln(T·ε∆min

C )

(ε)2(∆min
C )2

)
.

6 EXPERIMENTAL RESULTS

We conducted experiments with fixed (i.e., not time-
varying) undirected feedback graphs with two equally-

sized cliques. The reward for each arm is generated
i.i.d. according to a Bernoulli distribution and the re-
wards of all the arms in a given round are independently
generated. In the experiments, there is only one opti-
mal arm, which means one clique can include the unique
optimal arm while the other clique only contains sub-
optimal arms. Also, we set all the sub-optimal arms with
the same mean reward (and hence the same gap) so as to
let ∆max

C = ∆min
C =: ∆, thereby removing other factors

that may impact the regret. Consequently, only the clique
size (which we vary over our experiments) impacts the
regret. In our experiments, we double the number of
arms in each clique to study the effect of clique size on
the regret. We start at 2 arms per clique (hence 4 arms to-
tal) until hitting 1024 arms per clique (2056 arms total).
Each experiment is run for T = 35, 000 rounds for each
run, and we take the average of 100 independent runs.

We compare the performance of UCB-NE, UCB-N,
TS-N, the elimination-based algorithm of Cohen et al.
(2016), and an algorithm called TS-MaxN devised by
Tossou et al. (2017). The reason that we do not compare
to UCB-MaxN is that it becomes equivalent to UCB-N
for our choice of feedback graphs. Algorithm 3 presents
the TS-MaxN algorithm. Compared to TS-N, instead
of pulling the arm with the highest posterior sampling
value, i.e., Jt ← arg max

i∈N
θi(t), in TS-MaxN the learner

pulls the arm with the highest empirical mean among all
the neighboring arms of Jt, i.e., It ← arg max

i∈NJt

µ̂i(t).

Note that the learner needs the knowledge of the feed-
back graph for TS-MaxN.

As can be seen from our experimental results (see Fig-
ure 2, the elimination-based algorithm does not per-
form well practically. Also, the regret bound of
the elimination-based algorithm is O

(
|C| ln(|N |)·ln(T)∆

)
while UCB-NE’s regret bound is O

(
|C| ln(T)+ln(|N |)

∆

)
.

Hence, our selected problem instances are ones for which
UCB-NE’s theoretical guarantee is better than that of
the elimination-based algorithm. Figure 1 shows the re-
gret of all the remaining algorithms except for the elim-
ination algorithm. We can see that although the num-
ber of arms per clique increases exponentially, the regret
grows almost linearly with respect to ln(|C|) for UCB-
NE and TS-N. Also, UCB-N always performs better than
UCB-NE, TS-N always performs better than UCB-N and
UCB-NE, and TS-MaxN performs better than TS-N.



Algorithm 3 TS-MaxN (Tossou et al., 2017)

1: Set Oi ← 0, Qi ← 0, ∀i ∈ N
2: for t = 1 : T do
3: Sample θi(t) from Beta(Qi + 1, Oi − Qi +

1), ∀i ∈ N
4: Locate arm Jt ← arg max

i∈N
θi(t)

5: Pull arm It ← arg max
i∈NJt

µ̂i(t)

6: for i ∈ NIt do
7: Set Oi ← Oi + 1; Observe Xi(t)
8: Set Qi ← Qi + Xi(t)
9: end for

10: end for
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Figure 1: Regret for UCB-NE, UCB-N, TS-N, and TS-
MaxN with different number of arms per clique.

7 CONCLUSION AND OPEN
PROBLEMS

In this work, we have shown new problem-dependent re-
gret bounds for the stochastic multi-armed bandit prob-
lem with feedback graphs. Our UCB-style algorithm,
UCB-NE, is the first algorithm of this type that provably
obtains regret that is linear in the size of a clique cover-
ing rather than linear in the total number of arms. Our re-
gret bounds for the Thompson Sampling-style algorithm
TS-N are the first problem-dependent regret bounds for
Thompson Sampling that improve with side observa-
tions. To ensure that the regret bound is linear in the size
of a clique covering rather than linear in the total number
of arms, we required important innovations to the previ-
ous analysis of Agrawal and Goyal (2017).

While UCB-NE achieves this by improving the constant

term (relative to UCB-N) to O

 ∑
C∈C

∆max
C ln

(
max
i∈C

Ni

)
(∆min

C )2

,

we still believe that a similar constant term can be
achieved for UCB-N without modifying the way of con-
structing upper confidence bounds. We make this con-
jecture due to the following facts: (i) Even without mod-
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Figure 2: Regret for elimination algorithm with different
number of arms per clique.

ifying TS-N to make it explore more, we were still able
to obtain regret bounds with a constant term that scales
logarithmically with the clique size. (ii) Our experimen-
tal results for UCB-N in Figure 1 show that the regret
increases roughly linearly as the clique size increases ex-
ponentially. Another open problem is whether we need

to pay the leading term 8∆max
C ln(T)
(∆min

C )2 for each clique. Our

conjecture is that it is possible to only pay a price of

O
(

ln(T)
∆min

C

)
for the leading term of each clique.

Regarding the elimination-based algorithm in (Cohen
et al., 2016), although the independence number is al-
ways no greater than clique covering number, their re-
gret bound’s leading term scales with the worst O(α(G) ·
ln(|N |)) arms. Instead, for regret bounds that depend
on clique coverings, for each clique we pay for its worst
arm once. If an undirected feedback graph satisfies
α(G) = |C|, the leading term of the elimination-based

algorithm is O
(
|C| ln(|N |)·ln(T)∆

)
while UCB-NE can

achieve O
(
|C| ln(T)∆

)
.

Just like the experimental results in Tossou et al. (2017),
our experimental results in Figure 1 also confirm that
TS-MaxN outperforms TS-N practically. Therefore, it is
desirable to have a problem-dependent regret bound for
TS-MaxN and we also believe that the constant term also
scales logarithmically with the clique size.
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A Proofs not appearing in the paper

A.1 Proof of Theorem 1

Proof of Theorem 1. To derive a regret bound of UCB-NE, let Ti(t) :=
t

∑
s=1

1{Is = i} be the total number of times

that arm i has been pulled until the end of round t and TC(t) be the total number of times that the learner pulls any

arm in clique C until the end of round t, i.e., TC(t) :=
t

∑
s=1

1{∃j ∈ C s.t. Is = j}. Recall that NC = max
i∈C

{
|Ni|

1
4

}
and LC =

⌈
8 ln(NC ·T)
(∆min

C )
2

⌉
. Then we have

E [RC(T)] = ∑
i∈C

T

∑
t=1

E [1{It = i}] · ∆i

= ∑
i∈C\1

T

∑
t=1

E [1{It = i}] · ∆i

≤
T

∑
t=1

E [1{∃i ∈ C\1 s.t. µ̄i(t) ≥ µ̄1(t), Ti(t) > Ti(t− 1), TC(t− 1) ≤ LC}] · ∆max
C

+
T

∑
t=1

E [1{∃i ∈ C\1 s.t. µ̄i(t) ≥ µ̄1(t), Ti(t) > Ti(t− 1), TC(t− 1) > LC}] · ∆max
C

≤ LC · ∆max
C +

T

∑
t=1

E [1{∃i ∈ C\1 s.t. µ̄i(t) ≥ µ̄1(t), Ti(t) > Ti(t− 1), TC(t− 1) > LC}]︸ ︷︷ ︸
(α)

·∆max
C .

(6)

Now, we analyze term (α). We have

(α) = E [1{∃i ∈ C\1 s.t. µ̄i(t) ≥ µ̄1(t), Ti(t) > Ti(t− 1), TC(t− 1) > LC}]

≤ E

[
1
{

max
i∈C\1

µ̄i(t) ≥ µ̄1(t), Ti(t) > Ti(t− 1), TC(t− 1) > LC

}]

≤ E

[
1

{
max
i∈C\1

{
µ̂i,Oi(t−1) +

√
2 ln(|Ni |

1
4 ·t)

Oi(t−1)

}
≥ µ̂1,O1(t−1) +

√
2 ln(|N1|

1
4 ·t)

O1(t−1) , Ti(t) > Ti(t− 1), TC(t− 1) > LC

}]

≤ E

[
1

{
max

LC<OC<t
max
i∈C\1

{
µ̂i,OC +

√
2 ln(|Ni |

1
4 ·t)

OC

}
≥ min

0<O1<t
µ̂1,O1 +

√
2 ln(|N1|

1
4 ·t)

O1
, Ti(t) > Ti(t− 1)

}]

≤
t−1
∑

OC=LC

t−1
∑

O1=1
E

[
1

{
max
i∈C\1

{
µ̂i,OC +

√
2 ln(|Ni |

1
4 ·t)

OC

}
≥ µ̂1,O1 +

√
2 ln(|N1|

1
4 ·t)

O1
, Ti(t) > Ti(t− 1)

}]

≤
t−1
∑

OC=LC

t−1
∑

O1=1
E

1


max
i∈C\1

µ̂i,OC +

√
2 ln(NC · t)

OC

 ≥ µ̂1,O1 +

√
2 ln(|N1|

1
4 · t)

O1︸ ︷︷ ︸
(β)



 .

(7)



If (β) holds, it means at least one of the following three inequalities must hold:µ̂1,O1 ≤ µ1 −

√
2 ln(|N1|

1
4 · t)

O1

 , (8)

max
i∈C\1

µ̂i,OC ≥ µmax
C +

√
2 ln(NC · t)

OC

 , (9)

µ1 < µmax
C + 2

√
2 ln(NC · t)

OC

 . (10)

Note that when OC ≥ 8 ln(NC ·T)
(∆min

C )
2 , inequality

{
µ1 < µmax

C + 2
√

2 ln(NC ·t)
OC

}
cannot be true.

Then we have

(α) ≤
t−1
∑

OC=LC

t−1
∑

O1=1
E

[
1
{

max
i∈C\1

µ̂i,OC ≥ µmax
C +

√
2 ln(NC ·t)

OC

}
+ 1

{
µ̂1,O1 ≤ µ1 −

√
2 ln(|N1|

1
4 ·t)

O1

}]

=
t−1
∑

OC=LC

t−1
∑

O1=1

(
P

{
max
i∈C\1

µ̂i,OC ≥ µmax
C +

√
2 ln(NC ·t)

OC

}
+ P

{
µ̂1,O1 ≤ µ1 −

√
2 ln(|N1|

1
4 ·t)

O1

})
.

(11)

By applying Hoeffding’s inequality, we have

P

{
µ̂1,O1 ≤ µ1 −

√
2 ln(|N1|

1
4 ·t)

O1

}
≤ 1

t4 · 1
|N1|
≤ 1

t4 ,

(12)

and

P

{
max
i∈C\1

µ̂i,OC ≥ µmax
C +

√
2 ln(NC ·t)

OC

}
≤ ∑

i∈C\1
P

{
µ̂i,OC ≥ µmax

C +
√

2 ln(NC ·t)
OC

}
≤ ∑

i∈C\1
P

{
µ̂i,OC ≥ µi +

√
2 ln(NC ·t)

OC

}
≤ 1

t4 ·
|C|

(NC)4 ≤ 1
t4 .

(13)

By plugging (12) and (13) into (11) we have that (α) ≤ 2
t2 . Then by plugging the upper bound of term (α) and LC

into (6) we have
E[RC(T)] ≤ 8 ln(NC ·T)

(∆min
C )

2 ∆max
C +

(
1 + π2

3

)
∆max

C , (14)

where NC = max
i∈C

{
|Ni|

1
4

}
.

Then the regret of UCB-NE is at most

R(T) ≤ inf
C

{
∑

C∈C,C 6={1}

8∆max
C ln(NC ·T)
(∆min

C )2 +
(

1 + π2

3

)
∆max

C

}
,

where NC = max
i∈C

{
|Ni|

1
4

}
.



A.2 Proof of Theorem 2

Proof of Lemma 1. First we construct a monotonic function g(a) = d(a, µ1)− 2d(a, µmax
C ) where a ∈ [µmax

C , µ1].
Now we claim that g(a) is a strictly decreasing function when a ∈ [µmax

C , µ1]. It is trivial to prove this claim as

g′(a) = ln
(

(µmax
C )2

a·µ1
· (1−a)(1−µ1)

(1−µmax
C )2

)
< 0 when a ∈ [µmax

C , µ1]. Also, we know that g(µmax
C ) = d(µmax

C , µ1) > 0 and

g(µ1) = −2d(µ1, µmax
C ) < 0. There thus exists a unique mC ∈ (µmax

C , µ1) such that g(mC) = 0. Therefore, we
have g(a) ≥ 0 when a ∈ (µmax

C , mC] while g(a) < 0 when a ∈ (mC, µ1).

Now, we choose xC such that xC ∈ (µmax
C , mC] and d(xC, µ1) > 1

2 d(µmax
C , µ1) hold simultaneously. The guar-

antees that xC ∈ (µmax
C , mC] and d(xC, µ1) > 1

2 d(µmax
C , µ1) hold simultaneously implies ε can be any value in(

0, min
{

d(µmax
C ,µ1)

d(mC ,µ1)
− 1, 1

})
. As xC ∈ (µmax

C , mC], it means g(xC) = d(xC, µ1)− 2d(xC, µmax
C ) ≥ g(mC) = 0,

which guarantees d(xC, µ1) ≥ 2d(xC, µmax
C ). Then we can always find yC ∈ (xC, µ1) such that d(xC, yC) =

d(xC ,µ1)
1+ε .

After fixing xC and yC, it is trivial to prove condition (iv) since d(xC, yC)− d(xC, µmax
C ) = d(xC ,µ1)

1+ε − d(xC, µmax
C ) ≥

d(xC ,µmax
C )

1+ε − d(xC, µmax
C ) ≥ 0.

As there is no closed-form expression of mC, we give a lower bound of mC. From g′(a) = ln
(

(µmax
C )2

a·µ1
· (1−a)(1−µ1)

(1−µmax
C )2

)
we know g′′(a) < 0. Then from the concavity of g(a) we have mC ≥ µmax

C +
d(µmax

C ,µ1)·∆min
C

2d(µ1,µmax
C )+d(µmax

C ,µ1)
.

To analyze the first term in (4), i.e., term Ψ1, we prepare Lemma 3 and Lemma 4. Lemma 3 claims that after an arm
i ∈ C\1 has been observed enough times, i.e., Oi(t) ≥ LC, it is a rare event that its empirical mean µ̂i(t) is greater
than xC. Lemma 4 uses a union bound over all the arms in clique C based on Lemma 3.

Lemma 3. For i ∈ C\1 we have

T
∑

t=1
P{µ̂i(t) > xC, Oi(t + 1) > Oi(t), Oi(t) ≥ LC} ≤ 1

NC
· 1

d(xC ,µmax
C )

.

Proof of Lemma 3. The proof uses the fact that in each round, we can get at most one observation for any arm. Let
τk denote the time stamp when the k-th observation of arm i happens. Note that {Oi(t + 1) > Oi(t)} cannot happen
during the rounds when t ∈ {τk + 1, · · · , τk+1− 1} since no new update can be conducted at the end of these rounds.
Then we have

T
∑

t=1
P{µ̂i(t) > xC, Oi(t + 1) > Oi(t), Oi(t) ≥ LC}

≤ E

[
T
∑

k=LC

τk+1−1
∑

t=τk

1{µ̂i(t) > xC, Oi(t + 1) > Oi(t)}
]

= E

[
T
∑

k=LC

τk+1−1
∑

t=τk

1{µ̂i(t) > xC} · 1{Oi(t + 1) > Oi(t)}
]

= E

[
T
∑

k=LC

1{µ̂i(τk) > xC}
]

.

(15)

The first inequality in (15) uses the fact the number of observations starts from at least LC and increments to at most
T. All the T rounds are segmented into multiple intervals and in each interval, only one observation is obtained



except for the last time interval during which zero observation may be obtained. The last equality uses the fact that
1{Oi(t + 1) > Oi(t)} = 0 when t ∈ {τk + 1, · · · , τk+1 − 1} and 1{Oi(t + 1) > Oi(t)} = 1 only when t = τk.

Then we can use the definition of µ̂i(τk) and further have

E

[
T
∑

k=LC

1{µ̂i(τk) > xC}
]

=
T
∑

k=LC

P{µ̂i(τk) > xC}

=
T
∑

k=LC

P{ Qi(τk)
k−1+1 > xC}

<
T
∑

k=LC

P{Qi(τk)
k−1 > xC}

≤
T
∑

k=LC

e−(k−1)·d(xC ,µi)

< e−(LC−2)·d(xC ,µi)

d(xC ,µi)

≤ e
− ln((NC)

ηC ·T)·
d(xC ,µmax

C )

d(xC ,yC) · 1
d(xC ,µmax

C )

= ( 1
(NC)

ηC ·T )
d(xC ,µmax

C )

d(xC ,yC) · 1
d(xC ,µmax

C )

= 1
NC
· 1

d(xC ,µmax
C )
· ( 1

T )
d(xC ,µmax

C )

d(xC ,yC)

≤ 1
NC
· 1

d(xC ,µmax
C )

.

(16)

The first inequality in (16) uses the definition of µ̂i(τk), the empirical mean of k− 1 observations. Note that although
τk is the time stamp when the k-th observation happens, Oi(t) and Qi(t) will only be updated at the end of round τk.
This is why we only have k − 1 observations at round τk. The third inequality uses the Chernoff-Hoeffding bound
(Fact 1 in (Agrawal and Goyal, 2017)). Note that this lemma does not need to use ηC ≥ 1 during the proof.



Lemma 4. For any C we have

E[
T
∑

t=1
∑

i∈C
1{It = i, Eµ

C(t), TC(t) ≥ LC}] · ∆i ≤
∆max

C
d(xC ,µmax

C )
.

Proof of Lemma 4. For clique C we have

E

[
T
∑

t=1
∑

i∈C
1{It = i, Eµ

C(t), TC(t) ≥ LC}
]
· ∆i

= E

[
T
∑

t=1
∑

i∈C\1
1{It = i, Eµ

C(t), TC(t) ≥ LC}
]
· ∆i

≤ E

[
T
∑

t=1
1{∃i ∈ C\1 s. t. It = i, Eµ

C(t), TC(t) ≥ LC}
]
· ∆max

C

= E

[
T
∑

t=1
1{∃i ∈ C\1 s. t. It = i, max

j∈C\1
µ̂j(t) > xC, TC(t) ≥ LC}

]
· ∆max

C

(Use the definition of Eµ
C(t) =

{
max
j∈C\1

µ̂j(t) ≤ xC

}
and then the union bound)

≤ ∑
j∈C\1

E

[
T
∑

t=1
1{∃i ∈ C\1 s. t. It = i, µ̂j(t) > xC, TC(t) ≥ LC}

]
· ∆max

C

= ∑
j∈C\1

T
∑

t=1
P{∃i ∈ C\1 s. t. It = i, µ̂j(t) > xC, TC(t) ≥ LC} · ∆max

C

(Pulling any arm in clique C makes arm j observed )

≤ ∑
j∈C\1

T

∑
t=1

P{µ̂j(t) > xC, Oj(t + 1) > Oj(t), Oj(t) ≥ LC}︸ ︷︷ ︸
Lemma 3

·∆max
C

≤ ∑
j∈C\1

1
NC
· 1

d(xC ,µmax
C )
· ∆max

C

≤ ∆max
C

d(xC ,µmax
C )

.

(17)



To analyze the second term in (4), i.e., term Ψ2, we prepare Lemma 5 and Lemma 6. Lemma 5 claims that after an
arm i ∈ C\1 has been observed enough times, i.e., Oi(t) ≥ LC, and its empirical mean µ̂i(t) is close enough to its
true mean, i.e., µ̂i(t) ≤ xC, it is a rare event that its posterior sampling value θi(t) is greater than yC. Lemma 6 uses
a union bound over all the arms within clique C based on Lemma 5.

Lemma 5. For i ∈ C\1 we have

T
∑

t=1
P{µ̂i(t) ≤ xC, θi(t) > yC, Oi(t) ≥ LC} ≤ 1

NC
.

Proof of Lemma 5. For any sub-optimal arm i ∈ C we have

T
∑

t=1
P{µ̂i(t) ≤ xC, θi(t) > yC, Oi(t) ≥ LC}

= E

[
T
∑

t=1
1{µ̂i(t) ≤ xC, θi(t) > yC, Oi(t) ≥ LC}

]

= E

[
T
∑

t=1
E [1{µ̂i(t) ≤ xC, θi(t) > yC, Oi(t) ≥ LC}|Ft−1]

]

= E[
T
∑

t=1
1{µ̂i(t) ≤ xC, Oi(t) ≥ LC|Ft−1}︸ ︷︷ ︸

ω(t)

·P{θi(t) > yC|Ft−1}︸ ︷︷ ︸
υ(t)

] .

(18)

Let Fbeta
α,β (·) denote the CDF of Beta(α, β) and FB

n,p(·) denote the CDF of binomial distribution with parameter n, p.
We categorize all the instantiations of Ft−1 into two types based on whether a specific instantiation Ft−1 can make the
indicator function ω(t) return 1 or not. Let γ(t) := ω(t) · υ(t). In each round t, for the instantiation Ft−1 of Ft−1
that makes ω(t) = 0, we have γ(t) = 0, while for the instantiation Ft−1 of Ft−1 that makes ω(t) = 1, i.e., both
events µ̂i(t) ≤ xC and Oi(t) ≥ LC are true, we only need to analyze υ(t) = P{θi(t) > yC|Ft−1 = Ft−1}. Note
that θi(t) is sampled from Beta(Qi(t) + 1, Oi(t)−Qi(t) + 1). Then we have

P{θi(t) > yC|Ft−1 = Ft−1}

= 1− Fbeta
Qi(t)+1,Oi(t)−Qi(t)+1(yC)

= 1− Fbeta
µ̂i(t)(Oi(t)+1)+1,(1−µ̂i(t))(Oi(t)+1)(yC)

≤ 1− Fbeta
xC(Oi(t)+1)+1,(1−xC)(Oi(t)+1)(yC)

= FB
Oi(t)+1,yC

(xC(Oi(t) + 1))

≤ e−(Oi(t)+1)d(xC ,yC) ≤ e−LC ·d(xC ,yC)

≤ e
− ln((NC)ηC ·T)

d(xC ,yC)
·d(xC ,yC)

= 1
(NC)

ηC ·T

≤ 1
NC ·T .

(19)

The third equality uses Fbeta
α,β (y) = 1− FB

α+β−1,y(α − 1) (Fact 3 in (Agrawal and Goyal, 2017)) and the inequality
followed by this equality uses the Chernoff-Hoeffding bound again. The last inequality uses ηC ≥ 1. Note that without



the condition ηC ≥ 1, it is not easy to make the clique size scale logarithmically with the clique size. Applying
υ(t) = P{θi(t) > yC|Ft−1 = Ft−1} ≤ 1

NC ·T to (18) concludes the proof.

Lemma 6. For any C we have

E[
T
∑

t=1
∑

i∈C
1{It = i, Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}] · ∆i ≤ ∆max

C .

Proof of Lemma 6. For clique C we have

E

[
T
∑

t=1
∑

i∈C
1{It = i, Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}

]
· ∆i

= E

[
T
∑

t=1
∑

i∈C\1
1{It = i, Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}

]
· ∆i

≤ E

[
T
∑

t=1
1{∃i ∈ C\1 s. t. It = i, Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}

]
· ∆max

C

(Remove {∃i ∈ C\1 s. t. It = i} from indicator function)

≤ E

[
T
∑

t=1
1{Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}

]
· ∆max

C

= E

[
T
∑

t=1
1{Eµ

C(t), max
j∈C\1

θj(t) > yC, TC(t) ≥ LC}
]
· ∆max

C

(Use the definition Eθ
C(t) =

{
max
j∈C\1

θj(t) ≤ yC

}
and then the union bound)

≤ ∑
j∈C\1

E

[
T
∑

t=1
1{Eµ

C(t), θj(t) > yC, TC(t) ≥ LC}
]
· ∆max

C

(Use the definition Eµ
C(t) := {max

k∈C\1
µ̂k(t) ≤ xC})

= ∑
j∈C\1

E

[
T
∑

t=1
1{max

k∈C\1
µ̂k(t) ≤ xC, θj(t) > yC, TC(t) ≥ LC}

]
· ∆max

C

≤ ∑
j∈C\1

E

[
T
∑

t=1
1{µ̂j(t) ≤ xC, θj(t) > yC, TC(t) ≥ LC}

]
· ∆max

C

≤ ∑
j∈C\1

E

[
T
∑

t=1
1{µ̂j(t) ≤ xC, θj(t) > yC, Oj(t) ≥ LC}

]
· ∆max

C

= ∑
j∈C\1

T

∑
t=1

P{µ̂j(t) ≤ xC, θj(t) > yC, Oj(t) ≥ LC}︸ ︷︷ ︸
Lemma 5

·∆max
C

≤ |C|
NC
· ∆max

C

≤ ∆max
C .

(20)

To analyze the third term in (4), i.e., term Ψ3, we prepare Lemma 7 and Lemma 8. The key techniques in these two
lemmas use the ideas in (Agrawal and Goyal, 2017) with slight modifications.



For C 6= {1}, define pc,t := P{θ1(t) > yC|Ft−1} and recall that ∆
′
C = µ1 − yC and DC = d(yC, µ1).

Lemma 7. For i ∈ C\1 we have

P{∃i ∈ C\1 s. t. It = i, Eµ
C(t), Eθ

C(t)|Ft−1} ≤
1−pc,t

pc,t
·P{It = 1, Eµ

C(t), Eθ
C(t)|Ft−1} .

Proof of Lemma 7. Recall that pc,t = P{θ1(t) > yC|Ft−1}. The proof uses a similar idea as when proving Lemma
2.8 in (Agrawal and Goyal, 2017). The key idea behind the proof is to exploit the feature that θi(t) for all i ∈ N are
generated independently in each round t and, given Ft−1, the distribution that generates θi(t) is determined. Recall
that whether Eµ

C(t) is true or not is determined by an instantiation Ft−1 of Ft−1. If the instantiation Ft−1 is the one
that makes event Eµ

C(t) false, it is trivial to prove since both sides in Lemma 7 are 0. If the instantiation Ft−1 is the
one that makes event Eµ

C(t) true, then it suffices to prove that for all such instantiations Ft−1 we have

P{∃i ∈ C\1 s. t. It = i|Eθ
C(t),Ft−1 = Ft−1}︸ ︷︷ ︸

ω

≤ 1−pc,t
pc,t
·P{It = 1|Eθ

C(t),Ft−1 = Ft−1}︸ ︷︷ ︸
γ

.
(21)

For clique C, recall that Eθ
C(t) =

{
max
i∈C\1

θi(t) ≤ yC

}
.

Now, we analyze term ω in (21) and have

ω = P{∃i ∈ C\1 s. t. It = i|Eθ
C(t),Ft−1 = Ft−1}

≤ P{θj(t) ≤ yC, ∀j ∈ N |Eθ
C(t),Ft−1 = Ft−1}

= P{θ1(t) ≤ yC|Eθ
C(t),Ft−1 = Ft−1} ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}
= P{θ1(t) ≤ yC|Ft−1 = Ft−1} ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}
= (1− pc,t) ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}︸ ︷︷ ︸
β

.

Now, we analyze term γ in (21) and have

γ = P{It = 1|Eθ
C(t),Ft−1 = Ft−1}

≥ P{θ1(t) > yC ≥ θj(t), ∀j ∈ N\1|Eθ
C(t),Ft−1 = Ft−1}

= P{θ1(t) > yC|Eθ
C(t),Ft−1 = Ft−1} ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}
= P{θ1(t) > yC|Ft−1 = Ft−1} ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}
= pc,t ·P{θj(t) ≤ yC, ∀j ∈ N\1|Eθ

C(t),Ft−1 = Ft−1}︸ ︷︷ ︸
β

.

Then we have

P{∃i ∈ C\1 s. t. It = i|Eθ
C(t),Ft−1 = Ft−1} · 1

1−pc,t
≤ β ≤ P{It = 1|Eθ

C(t),Ft−1 = Ft−1} · 1
pc,t

,

which concludes the proof.

Lemma 8. For any C we have

E[
T
∑

t=1
∑

i∈C
1{It = i, Eµ

C(t), Eθ
C(t), TC(t) ≥ LC}] · ∆i ≤

24∆max
C

∆′2C
+ O

(
∆max

C
∆′2C

+
∆max

C
∆′C DC

+
∆max

C
∆′4C

)
.



Proof of Lemma 8. The proof uses the ideas that pulling arm 1 means it must be observed. Also, in each round t, the
learner can get at most one observation of arm 1. Let τk be the time stamp where arm 1 gets the k-th observation and
set τ0 = 0. Note that pc,t cannot change during the rounds when t ∈ {τk + 1, · · · , τk+1} since the beta distribution
that generates θ1(t) does not change.

For clique C we have

E

[
T

∑
t=1

∑
i∈C

1{It = i, Eµ
C(t), Eθ

C(t), TC(t) ≥ LC}
]
· ∆i

= E

 T

∑
t=1

∑
i∈C\1

1{It = i, Eµ
C(t), Eθ

C(t), TC(t) ≥ LC}

 · ∆i

(Remove {TC(t) ≥ LC} from the indicator function)

≤ E

[
T

∑
t=1

1{∃i ∈ C\1 s. t. It = i, Eµ
C(t), Eθ

C(t)}
]
· ∆max

C

=
T

∑
t=1

P{∃i ∈ C\1 s. t. It = i, Eµ
C(t), Eθ

C(t)} · ∆max
C

=
T

∑
t=1

E
[
P{∃i ∈ C\1 s. t. It = i, Eµ

C(t), Eθ
C(t)|Ft−1}

]
· ∆max

C

(By using Lemma 7 we can get the following)

≤
T

∑
t=1

E

[
1− pc,t

pc,t
P{It = 1, Eµ

C(t), Eθ
C(t)|Ft−1}

]
· ∆max

C

=
T

∑
t=1

E

[
1− pc,t

pc,t
1{It = 1, Eµ

C(t), Eθ
C(t)}

]
· ∆max

C

≤
T

∑
t=1

E

[
1− pc,t

pc,t
1{O1(t + 1) > O1(t), Eµ

C(t), Eθ
C(t)}

]
· ∆max

C

≤
T

∑
k=0

τk+1

∑
t=τk+1

E

[
1− pc,t

pc,t
· 1{O1(t + 1) > O1(t), Eµ

C(t), Eθ
C(t)}

]
· ∆max

C

(Use the fact that {O1(t + 1) > O1(t)} cannot be true when t ∈ {τk + 1, · · · , τk+1 − 1})

≤
T

∑
k=0

E

[
1− pc,τk+1

pc,τk+1

]
· ∆max

C

(Use the fact that pc,t does not change when t ∈ {τk + 1, · · · , τk+1})

=
T

∑
k=0

E

[
1− pc,τk+1

pc,τk+1

]
︸ ︷︷ ︸ ·∆

max
C

(Slightly modify Lemma 2.9 in (Agrawal and Goyal, 2017) we can get)

≤

8
∆
′
C

∑
k=0

3∆max
C

∆′C
+

T

∑
k≥ 8

∆
′
C

O

(
∆max

C

e∆′2C k/2
+

∆max
C

(k + 1)∆′2C ekDC
+

∆max
C

e∆′2C k/4 − 1

)

≤
24∆max

C

∆′2C
+ O

(
∆max

C

∆′2C
+

∆max
C

∆′CDC
+

∆max
C

∆′4C

)
.

The modification is only at the beginning of the proof of Lemma 2.9 in (Agrawal and Goyal, 2017). More specifically,
we only need to modify the following: Let Oi(t) = j and Qi(t) = s. Let y = yC. Then we use pc,t := P{θ1(t) >



y|Ft−1} instead of their pi,t during the proof. Another modification is to let τj + 1 be the time stamp after the j-th
observation of arm 1 instead of the time stamp after the j-th pull of arm 1.

For the second term in Big-O notation in the last inequality, in (Agrawal and Goyal, 2017), it is Θ
(

∆max
C

∆′2C DC

)
originally

but it can be improved to O
(

∆max
C

∆′C DC

)
. Also, an alternative way is to pay O

(
∆max

C ln(T∆
′
C)

(∆′C)
2

)
. For the last term in Big-O

notation, instead of paying O
(

∆max
C

∆′4C

)
, an alternative way is to pay O

(
∆max

C ln(T∆
′
C)

(∆′C)
2

)
.



B UCB-MaxN

In this section, we provide more details about the issues with the proof of the regret bound for UCB-MaxN (Caron
et al., 2012). In the analysis of Theorem 3 of Caron et al. (2012) (the regret bound for UCB-MaxN), one of the
steps of the proof appears to be problematic. Specifically, there seems to be an issue with the second inequality
below inequality (3) (the first inequality just after “The first summation can be bounded using the Chernoff-Hoeffding
inequality as before:”). In our understanding, pulling arm kC, the best sub-optimal arm within clique C, does not mean
its upper confidence bound must be greater than that of the globally best arm. An example is that arm kC may have
a neighboring arm j, not belonging to clique C, which has the highest upper confidence bound while, simultaneously,
arm kC has the highest empirical mean among all the neighbors of arm j. In this example, arm kC is pulled but its
upper confidence bound is not necessarily greater than or equal to that of the globally best arm. It is important to note
that arm kC might be collecting observations from pulls of its neighbors that are not neighbors of j. Therefore, it is
possible that the upper confidence bound of arm kC is no greater than that of arm j while simultaneously, the empirical
mean of arm kC is no smaller than that of arm j.
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