Appendix

A Empirical Estimates

Lemma 1. As $|\mathcal{D}| \rightarrow \infty$, if $\mathcal{W}_{1}\left(p_{S}, p_{S_{\boldsymbol{a}}}\right)<\infty$ for all \boldsymbol{a}, the empirical barycenter satisfies $\lim \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \rightarrow$ $\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)$ almost surely ${ }^{7}$.

Proof. By triangle inequality:

$$
\begin{align*}
& \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right) \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \tag{4}\\
& \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \leq \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)+p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \tag{5}
\end{align*}
$$

Since $p_{\bar{S}}$ and $\hat{p}_{\bar{S}}$ are the weighted barycenters of $\left\{p_{S_{a}}\right\}$ and $\left\{\hat{p}_{S_{a}}\right\}$ respectively:

$$
\begin{align*}
& \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right) \leq \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right), \tag{6}\\
& \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) . \tag{7}
\end{align*}
$$

Combining Eqs. (4) and (6), and (5) and (7):

$$
\begin{aligned}
\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right) & \leq \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)+p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \\
& \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)+\left|\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)-p_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)\right|+p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \\
& \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)+\left|\hat{p}_{\boldsymbol{a}}-p_{\boldsymbol{a}}\right| \cdot\left|\mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right)\right|+p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \\
\sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) & \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \\
& \leq \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)+\left|p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)-\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)\right|+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \\
& \leq \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)+\left|p_{\boldsymbol{a}}-\hat{p}_{\boldsymbol{a}}\right| \cdot\left|\mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)\right|+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right)
\end{aligned}
$$

Therefore the following inequality holds almost surely:

$$
\begin{aligned}
\left|\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{a}}\right)-\sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{a}}\right)\right| & \leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, \hat{p}_{S_{a}}\right)+\left|p_{\boldsymbol{a}}-\hat{p}_{\boldsymbol{a}}\right| \cdot \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{a}}\right) \\
& \leq \sum_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, \hat{p}_{S_{a}}\right)+\left|p_{\boldsymbol{a}}-\hat{p}_{\boldsymbol{a}}\right| \cdot \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right) \\
& \leq \sum_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, \hat{p}_{S_{a}}\right)+\left|p_{\boldsymbol{a}}-\hat{p}_{\boldsymbol{a}}\right| \cdot \mathcal{W}_{1}\left(p_{S}, p_{S_{a}}\right)
\end{aligned}
$$

Since $\mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \rightarrow 0$ almost surely for all \boldsymbol{a} (see Weed and Bach (2017)), and $\hat{p}_{\boldsymbol{a}} \rightarrow p_{\boldsymbol{a}}$ almost surely (by the strong law of large numbers) and $\mathcal{W}_{1}\left(p_{S}, p_{S_{a}}\right)<\infty$ for all \boldsymbol{a}, the result follows:

$$
\lim \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}\right) \rightarrow \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}\right)
$$

almost surely.

[^0]
B Generalization

The following lemma addresses generalization of the Wasserstein-1 objective. Assume $\mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}\right) \leq L$ for all $\boldsymbol{a} \in \mathcal{A}$. Let $P_{S}, P_{S_{a}}$ and $P_{\bar{S}}$ be the cumulative density functions of S, S_{a} and \bar{S}. Assume these random variables all have domain $\Omega=[0,1]$ and that all $P \in\left\{P_{S}, P_{\bar{S}}\right\} \cup\left\{P_{S_{a}}\right\}_{\boldsymbol{a} \in \mathcal{A}}$ are continuous, then:
Lemma 5. For any $\epsilon, \delta>0$, if $\min \left[\bar{N}, \min _{\boldsymbol{a}}\left[N_{\boldsymbol{a}}\right]\right] \geq \frac{16 \log (2|\mathcal{A}| / \delta)|\mathcal{A}|^{2} \max [1, L]^{2}}{\epsilon^{2}}$, with probability $1-\delta$:

$$
\sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}\right) \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\epsilon
$$

In other words, provided access to sufficient samples, a low value of $\sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{a}}, \hat{p}_{\bar{S}}\right)$ implies a low value for $\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, p_{\bar{S}}\right)$ with high probability and therefore good performance at test time.

Proof. We start with the case when $p_{\bar{S}}=p_{S}$. By the triangle inequality for Wasserstein- 1 distances, for all $\boldsymbol{a} \in \mathcal{A}$:

$$
\begin{equation*}
\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}\right) \leq \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, p_{\bar{S}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{\boldsymbol{a}}}\right) . \tag{8}
\end{equation*}
$$

Let \hat{P} for $P \in\left\{P_{S}, P_{\bar{S}}\right\} \cup\left\{P_{S_{a}}\right\}_{\boldsymbol{a} \in \mathcal{A}}$ denote the empirical CDF of P. Since their domain is restricted to $[0,1]$ and are one dimensional random variables:

$$
\begin{equation*}
\mathcal{W}_{1}\left(\hat{p}_{S_{*}}, p_{S_{*}}\right)=\int_{0}^{1}|\hat{P}(x)-P(x)| d x \tag{9}
\end{equation*}
$$

For $S_{*} \in\{S, \bar{S}\} \cup\left\{S_{\boldsymbol{a}}\right\}_{\boldsymbol{a} \in \mathcal{A}}$. Since $P \in\left\{P_{S}, P_{\bar{S}}\right\} \cup\left\{P_{S_{\boldsymbol{a}}}\right\}_{\boldsymbol{a} \in \mathcal{A}}$ are all continuous, the Dvorestky-Kiefer-Wolfowitz theorem (see main theorem in Massart (1990)) and the condition $\min \left[\bar{N}, \min _{\boldsymbol{a}}\left[N_{\boldsymbol{a}}\right]\right] \geq \frac{16 \log (2|\mathcal{A}| / \delta)|\mathcal{A}|^{2} \max [1, L]^{2}}{\epsilon^{2}}$ implies that:

$$
\mathbb{P}\left(\sup _{x \in[0,1]}|\hat{P}(x)-P(x)| \geq \frac{\epsilon}{4}\right) \leq \frac{\delta}{2|\mathcal{A}|}
$$

Since all the random variables have domain $[0,1]$ this in turn implies that for all $S_{*} \in\{S, \bar{S}\} \cup\left\{S_{a}\right\}_{\boldsymbol{a} \in \mathcal{A}}$:

$$
\mathbb{P}\left(\mathcal{W}_{1}\left(\hat{p}_{S_{*}}, p_{S_{*}}\right) \geq \frac{\epsilon}{4}\right) \leq \frac{\delta}{2|\mathcal{A}|}
$$

And therefore that with probability $\geq 1-\frac{\delta}{2}$ the following inequalities hold simultaneously for all $\boldsymbol{a} \in \mathcal{A}$:

$$
\begin{equation*}
\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{\bar{S}}, p_{\bar{S}}\right) \leq \frac{\hat{p}_{\boldsymbol{a}} \epsilon}{4}, \quad \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{\boldsymbol{a}}}\right) \leq \frac{\hat{p}_{\boldsymbol{a}} \epsilon}{4} \tag{10}
\end{equation*}
$$

Summing Eq. (8) over \boldsymbol{a} and applying the last observation yields

$$
\sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}\right) \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\frac{\epsilon}{2} .
$$

Recall that we assume $\forall \boldsymbol{a} \in \mathcal{A}$,

$$
\mathcal{W}_{1}\left(p_{S_{a}}, p_{\bar{S}}\right) \leq L
$$

By concentration of measure of Bernoulli random variables, with probability $\geq 1-\frac{\delta}{2}$ the following inequality holds simultaneously for all $a \in \mathcal{A}$:

$$
\begin{equation*}
\left|p_{\boldsymbol{a}}-\hat{p}_{\boldsymbol{a}}\right| \leq \frac{\epsilon}{4|\mathcal{A}| \max [L, 1]} \tag{11}
\end{equation*}
$$

Consequently the desired result holds:

$$
\sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}\right) \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\epsilon
$$

(a) Left side of Eq. (12)

(b) Right side of Eq. (12)

Figure 3: Integrating $\left|f^{-1}-g^{-1}\right|$ along the x axis (left) and integrating $|f-g|$ along the y axis (right) both compute the area of the same shaded region, thus the equality in Eq. (12).

If $p_{\bar{S}}$ equals the weighted barycenter of the population level distributions $\left\{p_{S_{a}}\right\}$, then

$$
\sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, p_{\bar{S}}\right) \leq \sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, \hat{p}_{\bar{S}}\right)
$$

Since $\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right) \leq \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{a}}\right)$, with probability $1-\delta$:

$$
\begin{aligned}
\sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, p_{\bar{S}}\right) & \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(p_{S_{a}}, p_{\bar{S}}\right)+\frac{\epsilon}{2} \\
& \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{a}}\right)+\frac{\epsilon}{2} \\
& \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}\left(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}\right)+\epsilon
\end{aligned}
$$

The first inequality follows from Eq. (11), and the third one by Eq. (10). The result follows.

C Inverse CDFs

Lemma 6. Given two differentiable and invertible cumulative distribution functions f, g over the probability space $\Omega=[0,1]$, thus $f, g:[0,1] \rightarrow[0,1]$, we have

$$
\begin{equation*}
\int_{s=0}^{1}\left|f^{-1}(s)-g^{-1}(s)\right| d s=\int_{\tau=0}^{1}|f(\tau)-g(\tau)| d \tau \tag{12}
\end{equation*}
$$

Intuitively, we see that the left and right side of Eq. (12) correspond to two ways of computing the same shaded area in Figure 3. Here is a complete proof.

Proof. Invertible CDFs f, g are strictly increasing functions due to being bijective and non-decreasing. Furthermore, we have $f(0)=0, f(1)=1$ by definition of CDFs and $\Omega=[0,1]$, since $P(X \leq 0)=0, P(X \leq 1)=1$ where X is the corresponding random variable. The same holds for the function g. Given an interval $\left(x_{1}, x_{2}\right) \subset[0,1]$, let $y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right)$. Since f is differentiable, we have

$$
\begin{equation*}
\int_{x=x_{1}}^{x_{2}} f(x) d x+\int_{y=y_{1}}^{y_{2}} f^{-1}(y) d y=x_{2} y_{2}-x_{1} y_{1} \tag{13}
\end{equation*}
$$

The proof of Eq. (13) is the following (see also Laisant (1905)).

$$
\begin{array}{rlr}
& f^{-1}(f(x))=x \\
\Longrightarrow & f^{\prime}(x) f^{-1}(f(x))=f^{\prime}(x) x \\
\Longrightarrow & \int_{x=x_{1}}^{x_{2}} f^{\prime}(x) f^{-1}(f(x)) d x=\int_{x=x_{1}}^{x_{2}} f^{\prime}(x) x d x & \quad \text { (multiply both sides by } f^{\prime}(x) \text {) } \\
\Longrightarrow & \int_{y=y_{1}}^{y_{2}} f^{-1}(y) d y=\int_{x=x_{1}}^{x_{2}} f^{\prime}(x) x d x \quad \text { (integrate both sides) } \\
\Longrightarrow & \int_{y=y_{1}}^{y_{2}} f^{-1}(y) d y=\left.x f(x)\right|_{x=x_{1}} ^{x_{2}}-\int_{x=x_{1}}^{x_{2}} f(x) d x \quad \text { (apply change of variable } y=f(x) \text { on the left side) } \\
\Longrightarrow & \int_{y=y_{1}}^{y_{2}} f^{-1}(y) d y+\int_{x=x_{1}}^{x_{2}} f(x) d x=x_{2} y_{2}-x_{1} y_{1} .
\end{array}
$$

Define a function $h:=f-g$ on $[0,1]$. Then h is differentiable and thus continuous. Define the set of roots $A:=\{x \in[0,1] \mid h(x)=0\}$. Define the set of open intervals on which either $h>0$ or $h<0$ by $B:=\{(a, b) \mid b=$ $\inf \{s \in A \mid a<s\}, 0 \leq a<b \leq 1, a \in A\}$. By continuity of h, for any $(a, b) \in B$, we have $b \in A$, i.e. b is also a root of h. Since there are no other roots of h in (a, b), by continuity of h, we must have either $h>0$ or $h<0$ on (a, b). For any two elements $(a, b),(c, d) \in B$, we argue that they must be disjoint intervals. Without loss of generality, we assume $a<c$. Since $b=\inf \{s \in A \mid a<s\} \leq c$, i.e. $b \leq c$, then $(a, b) \cap(c, d)=\emptyset$. For any open interval $(a, b) \in B$, there exists a rational number $q \in \mathbb{Q}$ such that $a<q<b$. We pick such a rational number and call it $q_{(a, b)}$. Since all elements of B are disjoint, for any two intervals $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right)$ containing $q_{\left(a_{0}, b_{0}\right)}, q_{\left(a_{1}, b_{1}\right)} \in \mathbb{Q}$ respectively, we must have $q_{\left(a_{0}, b_{0}\right)} \neq q_{\left(a_{1}, b_{1}\right)}$. We define the set $Q_{B}:=\left\{q_{(a, b)} \in \mathbb{Q} \mid(a, b) \in B\right\}$. Then $Q_{B} \subset \mathbb{Q}$ and $\left|Q_{B}\right|=|B|$. Since the set of rational numbers \mathbb{Q} is countable, the set B must also be countable. Let $B=\left\{\left(a_{i}, b_{i}\right)\right\}_{i=0}^{N}$ where $N \in \mathbb{N}$ or $N=\infty$. Recall that $h=f-g$ on $[0,1], h\left(a_{i}\right)=0, h\left(b_{i}\right)=0$ and either $h<0$ or $h>0$ on $\left(a_{i}, b_{i}\right)$ for $\forall i>0$.

Consider the interval $\left(a_{i}, b_{i}\right)$ for some $i>0$, by Eq. 13 we have

$$
\begin{aligned}
& \int_{\tau=a_{i}}^{b_{i}} f(\tau) d \tau+\int_{s=f\left(a_{i}\right)}^{f\left(b_{i}\right)} f^{-1}(s) d s=b_{i} f\left(b_{i}\right)-a_{i} f\left(a_{i}\right) \\
& =b_{i} g\left(b_{i}\right)-a_{i} g\left(a_{i}\right)=\int_{\tau=a_{i}}^{b_{i}} g(\tau) d \tau+\int_{s=g\left(a_{i}\right)}^{g\left(b_{i}\right)} g^{-1}(s) d s .
\end{aligned}
$$

Thus

$$
\int_{\tau=a_{i}}^{b_{i}} f(\tau)-g(\tau) d \tau=\int_{s=f\left(a_{i}\right)}^{f\left(b_{i}\right)} g^{-1}(s)-f^{-1}(s) d s
$$

Notice that if $f>g$ on $\left[a_{i}, b_{i}\right]$, then $f^{-1}<g^{-1}$ on $\left[f\left(a_{i}\right), f\left(b_{i}\right)\right]$. This is due to the following. Given any $y \in$ $\left[f\left(a_{i}\right), f\left(b_{i}\right)\right]=\left[g\left(a_{i}\right), g\left(b_{i}\right)\right]$, we have $g^{-1}(y) \in\left[a_{i}, b_{i}\right]$ and $f\left(g^{-1}(y)\right)>g\left(g^{-1}(y)\right)=y=f\left(f^{-1}(y)\right)$. Thus $g^{-1}>f^{-1}$ since f is strictly increasing. The contrary holds by the same reasoning, i.e. if $f<g$ on $\left[a_{i}, b_{i}\right]$, then $f^{-1}>g^{-1}$ on $\left[f\left(a_{i}\right), f\left(b_{i}\right)\right]$. Therefore,

$$
\int_{\tau=a_{i}}^{b_{i}}|f(\tau)-g(\tau)| d \tau=\int_{s=f\left(a_{i}\right)}^{f\left(b_{i}\right)}\left|g^{-1}(s)-f^{-1}(s)\right| d s
$$

which holds for all intervals $\left(a_{i}, b_{i}\right)$. Summing over i on both sides, we have

$$
\sum_{i=0}^{N} \int_{\tau=a_{i}}^{b_{i}}|f(\tau)-g(\tau)| d \tau=\sum_{i=0}^{N} \int_{s=f\left(a_{i}\right)}^{f\left(b_{i}\right)}\left|g^{-1}(s)-f^{-1}(s)\right| d s
$$

or equivalently,

$$
\int_{s=0}^{1}\left|f^{-1}(s)-g^{-1}(s)\right| d s=\int_{\tau=0}^{1}|f(\tau)-g(\tau)| d \tau
$$

[^0]: ${ }^{7}$ See Klenke (2013) for a formal definition of almost sure convergence of random variables.

