
APPENDIX

6.1 PROOF OF THEOREM 2

Here we show how all incoming messages from outside the patch can be subsumed into an effective local field.

Proof. First let us revisit the update equation from Xi to Xj : Xj ∈ Xi

µn+1
ij (xj) ∝

∑

xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈{∂(i)\Xj}

µn
ki(xi).

Now we group the incoming messages into two groups, i.e., messages coming from outside the patch and messages

coming from inside the patch so that

µn+1
ij (xj) ∝

∑

xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈∂(i)\{Xj∩Xi}

µn
ki(xi)

∏

Xk∈{Xi∩∂(i)\Xj}

µn
ki(xi).

Now we make use of the fact that we are only dealing with binary RVs for which µij(Xj = −1) = (1−µij(Xj = 1))
and express the message explicitly by

µn+1
ij (xj) ∝ exp(Jxj) exp(θi)

∏

Xk∈∂(i)\{Xj∩Xi}

µn
ki(Xi = 1)

∏

Xk∈{Xi∩∂(i)\Xj}

µn
ki(Xi = 1)

+ exp(−Jxj) exp(−θi)
∏

Xk∈∂(i)\{Xj∩Xi}

(1− µn
ki(Xi = 1))

∏

Xk∈{Xi∩∂(i)\Xj}

(1− µn
ki(Xi = 1)). (25)

We now want to get rid of the first product and absorb the influence of these messages into the local field. In particular

we aim to express it according to

exp
(

θ̃ixi) = Φ(xi)
∏

Xk∈∂(i)\{Xj∩Xi}

µn
ki(xi)

= exp
(

(θi + c)xi

)

· exp(g) (26)

In order to do so we take the logarithm of the product over all messages in (26) and put them into the exponent with

the local field so that for xi = +1

exp(θ̃i) = exp

(

θi +
∑

Xk∈∂(i)\{Xj∩Xi}

log
(

µki(Xi = 1)
)

)

= exp
(

θi +
∑

Xk∈∂(i)\{Xj∩Xi}

ci +
∑

Xk∈∂(i)\{Xj∩Xi}

gi
)

, (27)

and for xi = −1

exp(−θ̃i) = exp

(

− θi +
∑

Xk∈∂(i)\{Xj∩Xi}

log
(

1− (µki(Xi = 1)
)

)

= exp
(

− θi −
∑

Xk∈∂(i)\{Xj∩Xi}

ci +
∑

Xk∈∂(i)\{Xj∩Xi}

gi
)

. (28)

Equating the coefficients for ci and gi in (27) and (28) gives us the final results:

ci =
1

2

(

logµki(Xi = 1)− log
(

1− µki(Xi = 1)
)

)

,

c =
∑

Xk∈∂(i)\{Xj∩Xi}

atanh
(

2µki(Xi = 1)− 1
)

, (29)

g =
1

2
log

∏

Xk∈∂(i)\{Xj∩Xi}

(

µki(Xi = 1)− µki(Xi = 1)2
)

. (30)



Note that we can further express the message for the second state µij(Xj = −1) in a similar way, with the only

difference that the values of the pairwise potentials change. Consequently we get exactly the same result for g again;

this allows us to neglect the influence of g altogether, as it will be canceled out when normalizing the messages so that

the sum up to one.

6.2 PROOFS OF SECTION 5.3

The subsequent properties are a direct consequence of Definition 2, and are restricted to region (II). One crucial

ingredient in many arguments will be the fact that every attractive model with vanishing or unidirectional local field

has a stable unique or two stable fixed points (cf. Sec. 3).

6.2.1 PROOF OF THEOREM 3

We will first proof Thm. 3 that bounds the number of possible fixed point solutions inside (II).

Proof. First assume that a given patch Gi is flipped; then by the definition of the patch potential model (Def. 1) and by

Thm. 2 it follows that effective field θ̃ is aligned with the local field of the variables at any neighbor patch Gj so that

sgn(θ̃j) = sgn(θj), (31)

|θ̃j | > |θj |. (32)

Further let us recall the definition of (II) (Def. 2.2 in particular). It follows that the effective field stabilizes its

neighbor patch Gj , i.e., JA(Gj , θ̃) > JA(Gj , θ) so that, according to the definition J < JA(Gj , θ̃), and Gj admits only

a unique solution.

Second assume that Gi is not flipped; then it follows by Thm. 2 that θ̃i < θi for Xi on the boundary of the neighbor

patch Gj . This decrease in the local field reduces the threshold for the existence of two solutions to smaller values of

J (cf. Knoll and Pernkopf (2017)) so that

JA(Gj , θ̃) < JA(G, θ) < J. (33)

By Def. 2.1 it follows that the neighbor patch Gj has two fixed points now, and it depends on the initialization to which

one BP will converge.

Finally, we aim to show that the number of possible fixed points is bounded. Therefore we want to stress that the above

arguments show how patches can either be aligned with the local potential or be flipped; it is crucial that every patch

acts as one instance and that all variables belonging to one patch are aligned. Else the fixed point would be disordered

which we rule out precisely by Definition 2. This and the fact that we are considering binary random variables limits

the amount of possible solutions to

M ≤ 2|Gi|, (34)

where |Gi| denotes the overall number of patches.

6.2.2 PROOF OF THEOREM 4

Next, we will guarantee that all existing fixed points are stable inside (II).

Proof. The proof relies on the definition of (II) again: this implies that every patch is effectively in one of two

performance regions (cf. discussion in Sec. 5.3). We will discuss both performance regions one after another.

Either the neighbor patch Gj is flipped and stabilizes Gi, i.e., J < JA(Gi, θ̃) so that a unique fixed point exists; in

that case it is a well-established fact that the fixed point is stable (Knoll and Pernkopf, 2017; Watanabe and Fukumizu,

2009; Ihler et al., 2005).

If however the neighbor patch is not flipped we have J < JA(Gi, θ̃) in which case two stable fixed points exist (Knoll

and Pernkopf, 2017)



6.2.3 PROOF OF THEOREM 5

Proof. According to (15) we can express the exact solution by the convex combination of all fixed points. Conse-

quently, using symmetry properties of the binary random variables, the error is given by

EP (k) =
2

N
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(37)

where we first, bring everything on the same denominator so that the kth contribution cancels out subsequently.

6.2.4 EXPRESSING THE ERROR RATIO

We want to compare error of the state-preserving fixed point EP (p) to the error EP (q) of a fixed point that has all

marginals biased towards one state. We discuss the error-ratio in a general manner in Sec. 6.2.5 and provide a more

accessible proof for the special case of a model with two patches, i.e., for Example 1 in Sec. 6.2.6.

6.2.5 PROOF OF THEOREM 6

Proof. To show that, irrespective of the value of ZB ,
EP (p)
EP (q) < 1 we assume that the state preserving fixed point does

not minimize the Bethe free energy, i.e., Zq
B > Zp

B .

Without loss of generality we make some prior assumptions on the model:

First, we assume that the overall number of variables with a positive local field equals the number of variables with a

negative local field, i.e.,

|{Xi : θi = +θ}| = |{Xj : θi = −θ}|. (38)

Second, we assume that all patches are of equal size. And finally, we group all possible fixed points according to

their marginals and denote them as follows: The state-preserving fixed point is referred to as p; all fixed points that

have more patches biased towards Xi = +1 are referred to as s = 1, . . . , S, with q being the fixed point that has all

variables biased towards Xi = +1; all fixed points that have more patches biased towards Xi = −1 are referred to as

t = 1, . . . , T , with r being the fixed point that has all variables biased towards Xi = −1.

This has some implications that will ease the subsequent analysis significantly. Specifically, the number of fixed points

favoring one state equals the number of fixed points favoring the other state, i.e., S = T by (38) and by Theorem 3.

Another important consequence of incorporating the interactions between patches into an effective field is that the

number of variables that favor one state has an immediate influence on the value of the singleton marginals. It can be

shown that the effective field, if stronger than the local field – note that the effective field is stronger than the local

field whenever two neighboring patches are biased towards the same state – increases the bias of the variables. This

intuitive statement is a consequence of the the Griffiths-Hurst-Sherman inequality (Griffiths et al., 1970) that can be

extended to specific fixed points by straightforward manipulations (cf. Knoll et al. (2018a)). In essence this means that

for all variables Xi ∈ X we have

P̃
q
Xi

(Xi = 1) ≥ P̃ s
Xi

(Xi = 1) ≥ P̃
p
Xi

(Xi = 1) ≥ P̃ t
Xi

(Xi = 1) ≥ P̃ r
Xi

(Xi = 1). (39)

Moreover, as all patches have equal size and because Jij = J as well as θi ∈ {−θ, θ} every fixed point s has a

symmetric fixed point t that has the same value for the approximate partition function (cf. Proof of Theorem 7). That

is, except for the state-preserving fixed point p all fixed points come in couples that satisfy

Zs
B = Zt

B . (40)



We will further utilize the properties of the mismatch Qi(k, l); in particular the symmetry property

Qi(k, l) = −Qi(l, k), (41)

and the expansion property

Qi(k, l) = Qi(k,m) +Qi(m, l). (42)

Finally, we express the error ration between the state-preserving fixed point p and the biased fixed point q according

to Cor. 5.1 so that

EP (p)

EP (q)
=

∑

Xi
|
∑

m\p Zm
B Qi(m, p)|2

∑

Xi
|
∑

m\q Zm
B Qi(m, q)|2 (43)

(a)
=

∑

Xi
|
∑

s Zs
BQi(s, p) +

∑

t Zt
BQi(t, p)|2

∑

Xi
|
∑

s\q Zs
BQi(s, q) +

∑

t Zt
BQi(t, q) + Zp

BQi(p, q)|2
(44)

(b)
=

∑

Xi
|
∑

s\q Zs
B

(

Qi(s, p) +Qi(t, p)
)

+ Zq
B

(

Qi(q, p) +Qi(r, p)
)

|2
∑

Xi
|
∑

s\q Zs
B

(

Qi(s, q) +Qi(t, q)
)

+ Zq
BQi(r, q) + Zp

BQi(p, q)|2
, (45)

where (a) follows from splitting the sum into the fixed points s that are more biased towards Xi = 1 and into the fixed

points t that are more biased towards Xi = −1. Note that the state-preserving fixed point p does not belong to either

set and is consequently expressed explicitly in the denominator. For (b) we make use of (40) and arrange the terms

by making the dependence on q and r explicit so that the sum goes over the same terms in the numerator and in the

denominator.

We can further express the error ratio and bound it using Jensen’s inequality according to

EP (p)

EP (q)

(a)
=

∑

Xi
|
∑
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B
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)
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B

(
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)
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≤
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)2 (46)

where separating the norm does not change the result in (a) because of (39), which implies Qi(m, q) < 0 for all fixed

points m 6= q.

For completing the proof we make use of the symmetry property (41) and the expansion property (42) in order to

rearrange the terms; in particular note that Qi(q, s) +Qi(q, t) = Qi(q, s) + Qi(q, s) +Qi(s, p) + Qi(p, t), and that

Qi(q, r) = Qi(q, p) +Qi(p, r) so that

EP (p)

EP (q)
≤

∑

Xi

(

∑

s\q Zs
B

∣

∣

(

Qi(s, p)−Qi(p, t)
)∣

∣+ Zq
B

∣

∣

(

Qi(q, p)−Qi(p, r)
)∣

∣

)2

∑

Xi

(

∑

s\q Zs
B

∣

∣

(

Qi(s, p) +Qi(p, t) +Qi(q, s) +Qi(q, s)
)
∣

∣+ Zq
B

∣

∣Qi(q, p) +Qi(p, r)
∣

∣+ Zp
B

∣

∣Qi(q, p)
∣

∣

)2 .

Note that we have applied (41) so that every mismatch-term is strictly positive. It is thus straightforward to see, by

comparing all terms, that the numerator is strictly smaller than the denominator for every variable Xi ∈ X so that

EP (p)

EP (q)
< 1. (47)



6.2.6 PROOF OF COROLLARY 6.1

Although Cor.6.1 is an immediate consequence of Thm. 6 we illustrate the proof that admits some intuitive arguments

Proof. For a symmetric model with two equal-sized patches we evaluate the error ratio between the state-preserving

fixed point p and one of the fixed points that have all marginals biased towards one state, these are q and r and have

symmetric marginals. Further assume that the fixed points q and r minimize the Bethe free energy, i.e.,

Fq
B = Fr

B < Fp
B (48)

Zq
B = Zr

B > Zp
B . (49)

Then we want to show that (49) does not imply that EP (q) < EP (p), i.e., we want to show that
EP (p)
EP (q) < 1 despite (49);

therefore, we express the ratio of the marginal errors according to

EP (p)

EP (q)
=

∑

Xi
|
∑

m\p Zm
B Qi(m, p)|2

∑

Xi
|
∑

m\q Zm
B Qi(m, q)|2

=

∑

Xi
|Zq

BQi(q, p) + Zr
BQi(r, p)|2

∑

Xi
|Zq

BQi(r, q) + Zp
BQi(p, q)|2

(50)

Note that because of (49) we have

EP (p)

EP (q)
=

∑

Xi
|Zq

B

(

Qi(q, p) +Qi(r, p)
)

|2
∑

Xi
|Zq
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BQi(p, q)|2

(51)

(a)
=

∑

Xi
|Zq

B

(

Qi(q, p) +Qi(r, p)
)

|2
∑

Xi

(

Zq
BQi(q, r) + Zp

BQi(q, p)
)2 (52)

where (a) follows from the fact that Qi(r, q) < 0, Qi(p, q) < 0, and the symmetry property (41). We further denote

the constant difference between the biased fixed points by

0 < Qi(q, r) = d < 1. (53)

We can use the expansion property (42) to bound the numerator as |Qi(q, p) +Qi(r, p)|2 < Qi(q, r)
2 = d2 so that

EP (p)

EP (q)
<

∑

Xi
Zq

Bd
2

∑

Xi

(

Zq
Bd+ Zp

BQi(q, p)
)2 . (54)

Which completes the proof as Qi(q, p) > 0

6.2.7 PROOF OF THEOREM 7

Minimum of FB . Let us consider three different stationary points Fp
B (state-preserving), Fq

B (biased to one state), and

Fm
B that has some patches flipped. Note that we consider Fq

B as a limiting case for Fm
B . We will denote the number

of variables that are aligned with the local field Nc and the number of flipped variables Nf .

The set of boundary edges that connects two patches is denoted by

EP = {(i, j) ∈ E : Xi ∈ Xi, Xj ∈ Xj 6= Xi}, (55)

and the set of edges that connects two patches that have their variables not aligned is denoted by

EC = {(i, j) ∈ E : Xi ∈ Xi, Xj ∈ Xj 6= Xi, sgn
(

P̃Xi
(Xi = 1)− 0.5

)

6= sgn
(

P̃Xj
(Xj = 1)− 0.5

)

}. (56)

Note that EP is constant for a specified model, whereas EC depends on the specific fixed point. We consequently

have EC ≤ EP with equality for the state preserving fixed point p.



Our analysis is restricted to (θ, J) ∈ (II) per definition: one crucial consequence is that J > JA(θ) and that most

marginals either have P̃Xi
(xi) ≈ 1 or P̃Xi

(xi) ≈ 0. We will exploit this fact and express all marginals according to

P̃Xi
(xi) ∈ {0, 1} which allows us to simplify FB , as defined in Sec. 2.3, according to

Fp
B = −Nθ −

(

|E| − 2|EP |
)

J − S
p
B (57)

Fm
B = −

(

Nc −Nf

)

θ −
(

|E| − 2|EC |
)

J − Sm
B . (58)

Let ∆SB = S
p
B − Sm

B be the difference in the entropy, then we can express the conditions for the state-preserving

fixed point to have a lower value Fp
B ≤ Fm

B according to

−Nθ −
(

|E| − 2|EP |
)

J ≤ −
(

Nc −Nf

)

θ −
(

|E| − 2|EC |
)

J +∆SB

2J(−|EC |+ |EP |) ≤ θ(N −Nc +Nf ) + ∆SB (59)

Now let us express (59) for the fixed points that has all variables biased to one state, i.e., |EC | = 0. Then, the

state-preserving fixed point has a lower value Fp
B < Fq

B if

2J |EP | ≤ θ(N −Nc +Nf ) + ∆SB (60)

6.2.8 COROLLARY 7.1

Proof. For the specific case of a grid graph with two equal-sized patches (Example 1) we can further simplify the

condition from Thm. 7. Therefore, note that for Fp
B < Fq

B to be satisfied, we have Nc = Nf and |EP | =
√
N so

that (60) reduces to

2J
√
N ≤ θN +∆SB . (61)

The definition of (II) requires strong interactions J so that the entropy terms in the free energy vanish. We can

consequently approximate (61) by

2J
√
N ≤ θN. (62)


