7 Appendix

7.1 Proof of Proposition 1

Proof. Suppose Algorithm 1 outputs " $|S| \geq s\left\lfloor 2^{j-3}\right\rfloor$ " but $|S|<s\left\lfloor 2^{j-3}\right\rfloor$. We will show that this happens with probability at most Δ. Let the iteration with $m=i$ be the final iteration where a break would have resulted in a correct output, i.e., $i=\arg \max _{i^{\prime}} s\left\lfloor 2^{i^{\prime}-3}\right\rfloor \leq|S|$. This means that $s\left\lfloor 2^{i-3}\right\rfloor \leq|S|<s\left\lfloor 2^{i-2}\right\rfloor$. Also note that $i \geq 2$ because of the floor operator. The algorithm outputs an incorrect bound if and only if the while-loop on m breaks with $m=j$ such that $j \geq i+1$. For this to happen, the while loop would not have been broken in all iterations with $m \leq i$. In particular, we would have observed $\sum_{t=1}^{T} w^{t} \geq s T / 2$ on iteration i. However, this is an unlikely event, as we now show. Observe that $S\left(h^{i}\right)=S \cap\left(h^{i}\right)^{-1}(b)$ by definition, and

$$
\mathbf{E}\left[\left|S\left(h^{i}\right)\right|\right]=\frac{|S|}{2^{i}}<\frac{s\left\lfloor 2^{i-2}\right\rfloor}{2^{i}} \leq \frac{s}{4} .
$$

This results in the inequalities

$$
\begin{align*}
\mathbf{E}\left[w^{t}\right] & =\mathbf{E}\left[\min \left\{s,\left|S\left(h^{i}\right)\right|\right\}\right] \\
& \leq \min \left\{\mathbf{E}[s], \mathbf{E}\left[\left|S\left(h^{i}\right)\right|\right]\right\} \leq s / 4 \tag{2}
\end{align*}
$$

Since $w^{t} \in[0, s]$, we can apply Hoeffding's inequality and use Equation 2 to obtain

$$
\begin{aligned}
\operatorname{Pr}\left[\frac{1}{T} \sum_{t=1}^{T} w^{t} \geq \frac{s}{2}\right] & \leq \exp \left(-\frac{2 T}{s^{2}}\left(\frac{s}{2}-\frac{s}{4}\right)^{2}\right) \\
& =\exp \left(-\frac{T}{8}\right)
\end{aligned}
$$

Setting $T=\left\lceil 8 \ln \frac{1}{\Delta}\right\rceil$, we have $\exp \left(-\frac{T}{8}\right) \leq \Delta$. Therefore, the probability of observing $\sum_{t=1}^{T} w^{t} \geq s T / 2$ in iteration i (making the output of Algorithm 1 incorrect) is bounded above by Δ.

7.2 Proof of Proposition 2

Proof. Suppose Algorithm 2 outputs " $|S| \geq s\left\lfloor 2^{j-3}\right\rfloor$ " but $|S|<s\left\lfloor 2^{j-3}\right\rfloor$. We will show that this happens with probability at most Δ. Let the iteration with $m=i$ be the final iteration where a break would have resulted in a correct output, i.e., $i=\arg \max _{i^{\prime}} s\left\lfloor 2^{i^{\prime}-3}\right\rfloor \leq|S|$. This means that $s\left\lfloor 2^{i-3}\right\rfloor \leq|S|<s\left\lfloor 2^{i-2}\right\rfloor$. Also note that $i \geq 2$ because of the floor operator.
The algorithm outputs an incorrect bound if and only if the while-loop on m breaks with $m=j$ such that $j \geq$ $i+1$. For this to happen, the while loop would not have been broken in all iterations with $m \leq i$. In particular, we would have observed $\sum_{t=1}^{T} w^{t} \geq s T / 2$ on iteration
i. However, this is an unlikely event, as we now show. Observe that $S\left(h^{i}\right)=S \cap\left(h^{i}\right)^{-1}(b)$ by definition, and

$$
\mathbf{E}\left[\left|S\left(h^{i}\right)\right|\right]=\frac{|S|}{2^{i}}<\frac{s\left\lfloor 2^{i-2}\right\rfloor}{2^{i}} \leq \frac{s}{4} .
$$

This property holds because b is chosen uniformly at random on line 8 of Algorithm 2. Crucially, this property holds regardless of how the matrices A_{m} are constructed on line 7.

This results in the inequalities

$$
\begin{align*}
& \mathbf{E}\left[w_{k}\right]=\mathbf{E}\left[\min \left\{s K,\left|S\left(h^{j-1}\right)\right|\right\}\right] \leq s / 4 \\
& \mathbf{E}\left[\frac{1}{K} \sum_{k=1}^{K} w_{k}\right] \leq s / 4 \\
& \mathbf{E}\left[w^{t}\right]=\mathbf{E}\left[\min \left\{s, \frac{1}{K} \sum_{k=1}^{K} w_{k}\right\}\right] \leq s / 4 \tag{3}
\end{align*}
$$

Since $w^{t} \in[0, s]$, we can apply Hoeffding's inequality and use Equation 3 to obtain

$$
\begin{aligned}
\operatorname{Pr}\left[\frac{1}{T} \sum_{t=1}^{T} w^{t} \geq \frac{s}{2}\right] & \leq \exp \left(-\frac{2 T}{s^{2}}\left(\frac{s}{2}-\frac{s}{4}\right)^{2}\right) \\
& =\exp \left(-\frac{T}{8}\right)
\end{aligned}
$$

Setting $T=\left\lceil 8 \ln \frac{1}{\Delta}\right\rceil$, we have $\exp \left(-\frac{T}{8}\right) \leq \Delta$. Therefore, the probability of observing $\sum_{t=1}^{T} w^{t} \geq s T / 2$ in iteration i (making the output of Algorithm 1 incorrect) is bounded above by Δ.

7.3 Upper Bound

Proof. Suppose Algorithm 4 outputs " $|S| \leq s 2^{j+1}$ ", but this is incorrect, and $s 2^{j+2} \geq|S|>s 2^{j+1}$. That is, the output is the largest invalid upper bound. We will show that Algorithm 1 outputs this, or any other smaller invalid bound, with probability at most Δ. For the algorithm to output the smallest valid upper bound, 2^{j+2}, the iteration with $m=j+2$ would have resulted in breaking the while-loop on m. Thus, in every prior iteration $i \leq j+1$, we would have observed $\sum_{t=1}^{T} w^{t} \geq s T / 2$. We will use the union bound to upper bound the probability of observing $\sum_{t=1}^{T} w^{t}<s T / 2$ for some $i \leq j+1$.
Fix any $i \leq j+1$. Then, $\mathbf{E}\left[\left|S\left(h^{i}\right)\right|\right]=\mu_{i}=|S| / 2^{i}=$ $2^{j-i}|S| / 2^{j}>s 2^{j-i+1}$ by our assumption. Let the variance be $\operatorname{Var}\left[\left|S\left(h^{i}\right)\right|\right]=\sigma_{i}^{2}$. We first observe that the min operation with $s K$ on line 10 of Algorithm 1 serves only an optimization purpose, and does not alter the outcome of the algorithm (because of the subsequent min operation when computing w^{t}). Thus, for the sake of
analysis, we can let $w_{k}=\left|S\left(h^{i}\right)\right|$ without loss of generality.
For brevity of notation, let $\bar{w}_{K}=\frac{1}{K} \sum_{k=1}^{K} w_{k}$. Then, $\mathbf{E}\left[\bar{w}_{K}\right]=\mathbf{E}\left[\left|S\left(h^{i}\right)\right|\right]>s 2^{j-i+1}$ and $\operatorname{Var}\left[\bar{w}_{K}\right] \leq$ σ_{i}^{2} / K. Applying Cantelli's inequality:

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{w}_{K} \leq s\right] & =\operatorname{Pr}\left[\bar{w}_{K} \leq \mathbf{E}\left[\bar{w}_{K}\right]-\left(\mathbf{E}\left[\bar{w}_{K}\right]-s\right)\right] \\
& \leq \frac{\sigma_{i}^{2} / K}{\sigma_{i}^{2} / K+s^{2}\left(2^{j-i+1}-1\right)^{2}} \\
& \leq \frac{\sigma_{i}^{2} / K}{\sigma_{i}^{2} / K+s^{2} 4^{j-i}}
\end{aligned}
$$

Hence, $\operatorname{Pr}\left[\bar{w}_{K} \geq s\right] \geq \frac{s^{2} 4^{j-i}}{\sigma_{i}^{2} / K+s^{2} 4^{j-i}}$. \quad Since $w^{t}=$ $\min \left\{s, \bar{w}_{K}\right\}$, we also have $\operatorname{Pr}\left[w^{t} \geq s\right] \geq \frac{s^{2} 4^{j-i}}{\sigma_{i}^{2} / K+s^{2} 4^{j-i}}$.

Let y^{t} denote a $0-1$ indicator variable that is 1 when $w^{t} \geq s$. Then $y^{t} \leq w^{t}$ and $\mathbf{E}\left[y^{t}\right] \geq \frac{s^{2} 4^{j-i}}{\sigma_{i}^{2} / K+s^{2} 4^{j-i}}$. By a precondition of the theorem, $s^{2} 4^{j-i} \geq \mu_{i}^{2} / 16>\sigma_{i}^{2} / K$, which implies $\mathbf{E}\left[y^{t}\right]>1 / 2$, making it unlikely to observe the sum of T_{i} such y^{t} variables to be smaller than $T_{i} / 2$. We thus have:

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{t=1}^{T_{i}} w^{t}<\frac{s T_{i}}{2}\right] \leq \operatorname{Pr}\left[\sum_{t=1}^{T_{i}} y^{t}<\frac{T_{i}}{2}\right] \\
& \leq \exp \left(-\frac{2}{T_{i}}\left(\mathbf{E}\left[\sum_{t=1}^{T_{i}} y^{t}\right]-\frac{T_{i}}{2}\right)^{2}\right) \\
& \leq \exp \left(-\frac{2}{T_{i}}\left(\frac{s^{2} 4^{j-i} T_{i}}{\sigma_{i}^{2} / K+s^{2} 4^{j-i}}-\frac{T_{i}}{2}\right)^{2}\right) \\
& =\exp \left(-\frac{T_{i}}{2}\left(\frac{s^{2} 4^{j-i}-\sigma_{i}^{2} / K}{s^{2} 4^{j-i}+\sigma_{i}^{2} / K}\right)^{2}\right) \\
& \leq \exp \left(-\frac{T_{i}}{2}\left(\frac{\mu_{i}^{2} / 16-\sigma_{i}^{2} / K}{\mu_{i}^{2} / 16+\sigma_{i}^{2} / K}\right)^{2}\right) \\
& =\exp \left(-\frac{T_{i}}{2}\left(\frac{1-16 \gamma_{i}^{2} / K}{1+16 \gamma_{i}^{2} / K}\right)^{2}\right)^{2}
\end{aligned}
$$

where the second inequality follows from Hoeffding's inequality and the last inequality follows because $s^{2} 4^{j-i} \geq$ $\mu_{i}^{2} / 16$. This expression is at most Δ / n because T_{i} is set to $\left\lceil 2\left(\frac{1+16 \gamma_{i}^{2} / K}{1-16 \gamma_{i}^{2} / K}\right)^{2} \ln \frac{n}{\Delta}\right\rceil$ in line 4 of Algorithm 4. Applying the union bound over all $i \leq j+1$, the probability of observing $\sum_{t=1}^{T_{i}} w^{t}<s T_{i} / 2$ in any iteration $i \leq j+1$, and thus possibly outputting an incorrect upper bound, is bounded above by Δ.

When the linear search in Algorithm 4 is replaced with more efficient search procedures, the definition of T_{i} can be modified to achieve the desired probability of correctness.

Algorithm 4 Upper Bound with Variance Reduction
Inputs: K : Number of repetitions per trial
s : Solution cutoff
Δ : Failure probability
\mathcal{O}_{S} : A SAT oracle
$\left\{\mathcal{A}^{m}\right\}_{m=1}^{n}$: For each $m \in[1, n]$, a distribution over parity matrices with known variance bounds that satisfy $16 \sigma_{m}^{2}<K \mu_{m}^{2}$, where $\operatorname{Var}\left[\left|S\left(h^{m}\right)\right|\right] \leq \sigma_{m}^{2}$ and $\mu_{m}=\mathbf{E}\left[\left|S\left(h^{m}\right)\right|\right]$

Output: A probabilistic upper bound on $|S|$

```
    \(m=1\)
    while \(m \leq n\) do
        \(\gamma_{m}^{2}=\sigma_{m}^{2} / \mu_{m}^{2}\)
        \(T_{m}=\left\lceil 2\left(\frac{1+16 \gamma_{m}^{2} / K}{1-16 \gamma_{m}^{2} / K}\right)^{2} \ln \frac{n}{\Delta}\right\rceil\)
        for \(t=1, \cdots, T\) do
            for \(k=1, \cdots, K\) do
                Sample \(A^{m} \sim \mathcal{A}^{m}\), denote \(h^{m}(x)=A^{m} x\)
                Sample \(b \sim \operatorname{Uniform}\left(\mathbb{F}_{2}^{m}\right)\)
                \(w_{k} \leftarrow \min \left\{s K,\left|S \cap\left(h^{m}\right)^{-1}(b)\right|\right\}\{\) Invoke
                oracle \(\mathcal{O}_{S}\) up to \(s K\) times to check whether
                the input formula with additional constraints
                \(A^{m} x=b\) has at least \(s K\) distinct solutions \(\}\)
            \(w^{t} \leftarrow \min \left\{s, \frac{1}{K} \sum_{k=1}^{K} w_{k}\right\}\)
        if \(\sum_{t=1}^{T} w^{t}<s T / 2\) then
            break
        \(m=m+1\)
    Output " \(|S| \leq s 2^{m+1}\) "
```

