A A SUPPLEMENTARY MATERIAL TO GENERAL IDENTIFIABILITY WITH ARBITRARY SURROGATE EXPERIMENTS

A. 1 DERIVATION

We derive an expression for Fig. 1a as follows

$$
\begin{aligned}
P_{x_{1}, x_{2}}(y) & =\sum_{w} P_{x_{1}, x_{2}}(y, w) \\
& =\sum_{w} P_{w, x_{1}, x_{2}}(y) P_{y, x_{1}, x_{2}}(w) \\
& =\sum_{w} P_{x_{2}, w, x_{1}}(y) P_{x_{1}}(w) \\
& =\sum_{w} P_{x_{2}, w}(y) P_{x_{1}}(w) \\
& =\sum_{w} P_{x_{2}}(y \mid w) P_{x_{1}}(w)
\end{aligned}
$$

The query $P_{x_{1}, x_{2}}(y)$ is rewritten as $\sum_{w} P_{x_{1}, x_{2}}(w, y)$ and factorized $\sum_{w} P_{w, x_{1}, x_{2}}(y) P_{y, x_{1}, x_{2}}(w)$ based on ccomponent form. For the first term, by Rule 3 and 2 of do-calculus, $P_{x_{2}, w, x_{1}}(y)=P_{x_{2}, w}(y)=P_{x_{2}}(y \mid w)$. For the second term, $P_{y, x_{1}, x_{2}}(w)=P_{x_{1}}(w)$ by Rule 3 of do-calculus. Hence, $P_{x_{1}, x_{2}}(y)=\sum_{w} P_{x_{2}}(y \mid w) P_{x_{1}}(w)$.
For Fig. 2a, it only requires a single application of Rule 3 of do-calculus. Simply put, intervened variables outside the ancestors of an outcome variable have no effect on the outcome variable. Hence, $P_{x_{1}, x_{2}}\left(y_{1}\right)=P_{x_{1}}\left(y_{1}\right)$ and $P_{x_{1}, x_{2}}\left(y_{2}\right)=P_{x_{2}}\left(y_{2}\right)$.

A. 2 NON-IDENTIFIABILITY MAPPING

Lemma 9. Let X, Y be disjoint sets of variables in \mathcal{G}. Let \mathcal{J} be a nonempty subgraph of \mathcal{G} with root set \mathbf{R}, where $\mathbf{R} \subseteq A n(\mathbf{Y})_{\mathcal{G}_{\mathbf{x}}}$. Let \mathcal{M}_{1} and \mathcal{M}_{2}, which are compatible with \mathcal{J}, satisfy

$$
\sum_{\mathbf{r} \mid \oplus \mathbf{r}=1} P_{\mathbf{x} \cap \mathcal{J}}^{1}(\mathbf{r}) \neq \sum_{\mathbf{r} \mid \oplus \mathbf{r}=1} P_{\mathbf{x} \cap \mathcal{J}}^{2}(\mathbf{r})
$$

for some \mathbf{x} where all variables in \mathbf{R} are binary. Then, there are two models \mathcal{M}_{1}^{\prime} and \mathcal{M}_{2}^{\prime} compatible with \mathcal{G} such that $P_{\mathbf{x}}^{\prime 1}(\mathbf{y}) \neq P_{\mathbf{x}}^{\prime 2}(\mathbf{y})$ for some \mathbf{y}.

Proof. Similar results appear in identifiability literature, e.g., [Shpitser and Pearl, 2006, Thm. 4]. We first employ their strategies in the proof, and discuss about some theoretical oversight. By the condition $A n(\mathbf{Y})_{\mathcal{G}_{\underline{\mathbf{x}}}}$, there exist directed downward paths from \mathbf{R} to \mathbf{Y} where no \mathbf{X} appear in-between and each node has at most one child. That is, one can parametrize each node (which is binary) in the

Figure 6: A causal graph \mathcal{G} with a hedge $\left\langle\mathcal{F}, \mathcal{F}^{\prime}\right\rangle$ for $P_{x}(y)$ where $\mathcal{F}=\mathcal{G} \backslash\{B\}$ with \mathcal{F}^{\prime} shown in red and variables in $\mathcal{F}^{\prime \prime}$ shown in green. Bit-parity of D and Y should be mapped to Y through B and C where C is in the top of the hedge.
paths as an exclusive-or of its observable parents. Then, the discrepancy in bit-parity for \mathbf{R} in \mathcal{M}_{1} and \mathcal{M}_{2} will also be happened at \mathbf{Y} in \mathcal{M}_{1}^{\prime} and \mathcal{M}_{2}^{\prime} under $d o(\mathbf{x})$ (n.b. values of \mathbf{x} outside \mathcal{J} are irrelevant to \mathbf{Y}).

A possible oversight is that the downward paths might cross \mathcal{J} without passing \mathbf{X} (see Fig. 6 for an example). The remedy is simple. For nodes appearing in the directed downward paths from \mathbf{R} to \mathbf{Y}, we can assign an additional bit to pass bit parity information from \mathbf{R} to \mathbf{Y}. Further, given a probability distribution $P_{\mathbf{w}}(\mathbf{z})$ on which \mathcal{M}_{1} and \mathcal{M}_{2} agree $(\mathbf{W}, \mathbf{Z} \subseteq \mathbf{V}(\mathcal{J})), \mathcal{M}_{1}^{\prime}$ and \mathcal{M}_{2}^{\prime} will also agree on $P_{\mathbf{w} \cup \mathbf{b}}(\mathbf{z})$ for any $\mathbf{b} \in \mathfrak{X}_{\mathbf{B}}$ where $\mathbf{B} \subseteq \mathbf{V}(\mathcal{G}) \backslash \mathbf{V}(\mathcal{J})$ for two reasons: Variables outside the paths from \mathbf{R} to \mathbf{Y} and \mathcal{J} are ignored. Both models \mathcal{M}_{1}^{\prime} and \mathcal{M}_{2}^{\prime} behave exactly the same for nodes between \mathbf{R} to \mathbf{Y}.

