A A SUPPLEMENTARY MATERIAL TO GENERAL IDENTIFIABILITY WITH ARBITRARY SURROGATE EXPERIMENTS

A.1 DERIVATION

We derive an expression for Fig. 1a as follows

$$P_{x_1,x_2}(y) = \sum_{w} P_{x_1,x_2}(y,w)$$

= $\sum_{w} P_{w,x_1,x_2}(y)P_{y,x_1,x_2}(w)$
= $\sum_{w} P_{x_2,w,x_1}(y)P_{x_1}(w)$
= $\sum_{w} P_{x_2,w}(y)P_{x_1}(w)$
= $\sum_{w} P_{x_2}(y|w)P_{x_1}(w)$

The query $P_{x_1,x_2}(y)$ is rewritten as $\sum_w P_{x_1,x_2}(w, y)$ and factorized $\sum_w P_{w,x_1,x_2}(y)P_{y,x_1,x_2}(w)$ based on ccomponent form. For the first term, by Rule 3 and 2 of do-calculus, $P_{x_2,w,x_1}(y) = P_{x_2,w}(y) = P_{x_2}(y|w)$. For the second term, $P_{y,x_1,x_2}(w) = P_{x_1}(w)$ by Rule 3 of do-calculus. Hence, $P_{x_1,x_2}(y) = \sum_w P_{x_2}(y|w)P_{x_1}(w)$.

For Fig. 2a, it only requires a single application of Rule 3 of do-calculus. Simply put, intervened variables outside the ancestors of an outcome variable have no effect on the outcome variable. Hence, $P_{x_1,x_2}(y_1) = P_{x_1}(y_1)$ and $P_{x_1,x_2}(y_2) = P_{x_2}(y_2)$.

A.2 NON-IDENTIFIABILITY MAPPING

Lemma 9. Let \mathbf{X} , \mathbf{Y} be disjoint sets of variables in \mathcal{G} . Let \mathcal{J} be a nonempty subgraph of \mathcal{G} with root set \mathbf{R} , where $\mathbf{R} \subseteq An(\mathbf{Y})_{\mathcal{G}_{\mathbf{X}}}$. Let \mathcal{M}_1 and \mathcal{M}_2 , which are compatible with \mathcal{J} , satisfy

$$\sum_{\mathbf{r}|\bigoplus\mathbf{r}=1} P^{1}_{\mathbf{x}\cap\mathcal{J}}(\mathbf{r}) \neq \sum_{\mathbf{r}|\bigoplus\mathbf{r}=1} P^{2}_{\mathbf{x}\cap\mathcal{J}}(\mathbf{r})$$

for some \mathbf{x} where all variables in \mathbf{R} are binary. Then, there are two models \mathcal{M}'_1 and \mathcal{M}'_2 compatible with \mathcal{G} such that $P'^{1}_{\mathbf{x}}(\mathbf{y}) \neq P'^{2}_{\mathbf{x}}(\mathbf{y})$ for some \mathbf{y} .

Proof. Similar results appear in identifiability literature, e.g., [Shpitser and Pearl, 2006, Thm. 4]. We first employ their strategies in the proof, and discuss about some theoretical oversight. By the condition $An(\mathbf{Y})_{\mathcal{G}_{\underline{X}}}$, there exist directed downward paths from **R** to **Y** where no **X** appear in-between and each node has at most one child. That is, one can parametrize each node (which is binary) in the

Figure 6: A causal graph \mathcal{G} with a hedge $\langle \mathcal{F}, \mathcal{F}' \rangle$ for $P_x(y)$ where $\mathcal{F} = \mathcal{G} \setminus \{B\}$ with \mathcal{F}' shown in red and variables in \mathcal{F}'' shown in green. Bit-parity of D and Y should be mapped to Y through B and C where C is in the top of the hedge.

paths as an exclusive-or of its observable parents. Then, the discrepancy in bit-parity for \mathbf{R} in \mathcal{M}_1 and \mathcal{M}_2 will also be happened at \mathbf{Y} in \mathcal{M}'_1 and \mathcal{M}'_2 under $do(\mathbf{x})$ (n.b. values of \mathbf{x} outside \mathcal{J} are irrelevant to \mathbf{Y}).

A possible oversight is that the downward paths might cross \mathcal{J} without passing \mathbf{X} (see Fig. 6 for an example). The remedy is simple. For nodes appearing in the directed downward paths from \mathbf{R} to \mathbf{Y} , we can assign an additional bit to pass bit parity information from \mathbf{R} to \mathbf{Y} . Further, given a probability distribution $P_{\mathbf{w}}(\mathbf{z})$ on which \mathcal{M}_1 and \mathcal{M}_2 agree ($\mathbf{W}, \mathbf{Z} \subseteq \mathbf{V}(\mathcal{J})$), \mathcal{M}'_1 and \mathcal{M}'_2 will also agree on $P_{\mathbf{w}\cup\mathbf{b}}(\mathbf{z})$ for any $\mathbf{b} \in \mathfrak{X}_{\mathbf{B}}$ where $\mathbf{B} \subseteq \mathbf{V}(\mathcal{G}) \setminus \mathbf{V}(\mathcal{J})$ for two reasons: Variables outside the paths from \mathbf{R} to \mathbf{Y} and \mathcal{J} are ignored. Both models \mathcal{M}'_1 and \mathcal{M}'_2 behave exactly the same for nodes between \mathbf{R} to \mathbf{Y} .