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Abstract

We make three contributions to the theory

of k-armed adversarial bandits. First, we

prove a first-order bound for a modified variant

of the INF strategy by Audibert and Bubeck

[2009], without sacrificing worst case opti-

mality or modifying the loss estimators.

Second, we provide a variance analysis

for algorithms based on follow the regu-

larised leader, showing that without adapta-

tion the variance of the regret is typically

Ω(n2) where n is the horizon. Finally,

we study bounds that depend on the degree

of separation of the arms, generalising the

results by Cowan and Katehakis [2015] from

the stochastic setting to the adversarial and

improving the result of Seldin and Slivkins

[2014] by a factor of log(n)/ log log(n).

1 INTRODUCTION

The k-armed adversarial bandit is a sequential game

played over n rounds. At the start of the game the

adversary secretly chooses a sequence of losses (ℓt)
n
t=1

with ℓt ∈ [0, 1]k. In each round t the learner chooses

a distribution Pt over the actions [k] = {1, 2, . . . , k}.

An action At ∈ [k] is sampled from Pt and the learner

observes the loss ℓtAt
. Like prior work we focus on

controlling the regret, which is

R̂n = max
i∈[k]

n
∑

t=1

(ℓtAt
− ℓti) .

This quantity is a random variable, so the standard

objective is to bound R̂n with high probability or its

expectation: Rn = E[R̂n].

We make three contributions, with the common objective

of furthering our understanding of the application of

follow the regularised leader (FTRL) to adversarial

bandit problems. Our first contribution is a modification

of the INF policy by Audibert and Bubeck [2009]

in order to prove first-order bounds (i.e. in terms

of the loss of the best action) without sacrificing

minimax optimality. Then we turn our attention

to the variance of algorithms based on FTRL. Here

we prove that using the standard importance-weighted

estimators and a large class of potentials leads to a

variance of Ω(n2), which is the worst possible for

bounded losses. Finally, we investigate the asymptotic

performance of algorithms when there is a linear

separation between the losses of the arms. We improve

the result by Seldin and Slivkins [2014] by a factor of

log(n)/ log log(n) and generalise known results in the

stochastic setting by Cowan and Katehakis [2015] to the

adversarial one by constructing an algorithm for which

the regret grows arbitrarily slowly almost surely.

Related work The literature on adversarial bandits is

enormous. See the books by Bubeck and Cesa-Bianchi

[2012] and Lattimore and Szepesvári [2019] for a

comprehensive account. The common thread in the

three components of our analysis is adaptivity for

algorithms based on follow the regularised leader.

The INF policy that underlies much of our analysis

was introduced by Audibert and Bubeck [2009]. The

connection to mirror descent and follow the regu-

larised leader came later [Audibert and Bubeck, 2010,

Bubeck and Cesa-Bianchi, 2012], which greatly simpli-

fied the analysis. The principle justification for intro-

ducing this algorithm was to prove bounds on the

minimax regret. Remarkably, it was recently shown that

by introducing a non-adaptive decaying learning rate, the

algorithm retains minimax optimality while simultane-

ously achieving a near-optimal logarithmic regret in the

stochastic setting [Zimmert and Seldin, 2019]. Despite

its simplicity, the algorithm improves on the state-of-

the-art for this problem Bubeck and Slivkins [2012],

Seldin and Slivkins [2014], Seldin and Lugosi [2017].
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See also the extension to the combinatorial semibandit

setting [Zimmert et al., 2019]. First-order bounds for

bandits were first given by Allenberg et al. [2006],

who analysed a modification of Exp3 [Auer et al.,

1995]. As far as we know, previous algorithms with

first order bounds have not been minimax optimal

(Rn = O(
√
kn)): the recent work by Neu [2015b]

achieved O(
√

kn(log(k) + 1)) expected regret, and

[Wei and Luo, 2018] had a O(
√
kn logn) bound. Both

papers used the idea of an adaptive learning rate similar

to our analysis. In the setting of gains rather than losses

Audibert and Bubeck [2010] have shown that by intro-

ducing biased estimators it is possible to prove a bound

of O(
√
kG∗) where G∗ is the maximum gain. Although

it is not obvious, we suspect the same idea could be

applied in our setting. We find it interesting nevertheless

that the same affect is possible without modifying the

loss estimators. The aforementioned work also assumes

knowledge of G∗. Possibly our adaptive learning rates

could be used to make this algorithm anytime without a

doubling trick.

Although it is well known that straightforward appli-

cations of follow the regularised leader or mirror

descent with importance-weighted estimators leads to

poor concentration of the regret, we suspect the severity

of the situation is not widely appreciated. As far as

we know, the quadratic variance of Exp3 was only

derived recently [Lattimore and Szepesvári, 2019, §11].

There are, however, a number of works modifying the

importance-weighted estimators to prove high proba-

bility bounds Auer et al. [1995], Abernethy and Rakhlin

[2009], Neu [2015a] with matching lower bounds

by Gerchinovitz and Lattimore [2016]. Finally, we

note there are many kinds of adaptivity beyond first-

order bounds. For example sparsity and variance

[Bubeck et al., 2018, Hazan and Kale, 2011, and others].

2 NOTATION

Given a vector x ∈ R
d let diag (x) ∈ R

d×d be the

diagonal matrix with x along the diagonal. The interior

of a topological space X is interior(X) and its boundary

is ∂X . The standard basis vectors are e1, . . . , ed. The

(d−1)-dimensional probability simplex is ∆d−1 = {x ∈
[0, 1]d : ‖x‖1 = 1}. A convex function F : Rd → R ∪
{∞} has domain dom(F ) = {x ∈ R

d : F (x) 6= ∞}.

The Bregman divergence with respect to a differentiable

F is a function DF : dom(F ) × dom(F ) → [0,∞]
defined by DF (x, y) = F (x)−F (y)−〈∇F (y), x− y〉.
The Fenchel dual of F is F ∗ : Rd → R ∪ {∞} defined

by F ∗(u) = supx∈Rd〈x, u〉 − F (x).

There are k arms and the horizon is n, which may or

may not be known. The losses are (ℓt)
n
t=1 with ℓt ∈

[0, 1]k. We let Lt =
∑t

s=1 ℓs. The importance-weighted

estimator of ℓt is ℓ̂t defined by ℓ̂ti = 1 {At = i} ℓti/Pti.

All algorithms proposed here ensure that Pti > 0 for

all t and i, so this quantity is always well defined. Let

L̂t =
∑t

s=1 ℓ̂s. Expectations are with respect to the

randomness in the actions (At)
n
t=1. Of course the learner

can only choose Pt based on information available at

the start of round t. Let Ft = σ(A1, . . . , At). Then

Pt is Ft−1-measurable. Let Ati = 1 {At = i} and

Ti(t) =
∑t

s=1 Asi be the number of times arm i is

played in the first t rounds. Our standing assumption

is that the first arm is optimal. All our algorithms are

symmetric, so this is purely for notational convenience.

Assumption 2.1. Lt1 = mini∈[k] Lti.

3 FOLLOW THE REGULARISED

LEADER

Follow the regularized leader (FTRL) is a popular tool

for online optimization [Shalev-Shwartz, 2007, Hazan,

2016]. The basic algorithm depends on a sequence of

potential functions (Ft)
∞
t=1 where Ft : R

d → R ∪ {∞}
is convex and dom(Ft) ∩∆k−1 6= ∅. In each round the

algorithm chooses the distribution

Pt = argmin
p∈∆k−1

〈p, L̂t−1〉+ Ft(p) ,

which we assume exists. The action At ∈ [k] is sampled

from Pt. In many applications Ft = F is chosen in a

time independent way, with examples given in Table 1.

This has the disadvantage that F must be chosen in

advance in a way that depends on the horizon, which

may be unknown. This weakness can be overcome

by choosing Ft = F/ηt where (ηt)
∞
t=1 is a sequence

of learning rates, which may be chosen in advance or

adaptively in a data-dependent way.

A modification that will prove useful is to let (At)
∞
t=1 be

a sequence of subsets of ∆k−1 and define

Pt = argmin
p∈At

〈p, L̂t−1〉+ Ft(p) .

The restriction to a subset of ∆k−1 can be useful to

control the gradients of Ft(Pt), which is sometimes

crucial. The following theorem provides a generic bound

for FTRL with changing potentials and constraint sets.

The result is reminiscent of many previous bounds for

FTRL, but a reference for this result seems elusive. Most

related is the generic analysis by Joulani et al. [2017],

which also provides the most comprehensive literature

summary.

Theorem 3.1. Assume A1 ⊆ · · · ⊆ An+1 ⊆ ∆k−1

and (Ft)
n+1
t=1 is a sequence of convex functions with



Potential Definition Alg.

Negentropy 1

η

∑k

i=1
pi(log(pi)− 1) Exp3

1/2-Tsallis −
2

η

∑k

i=1

√
pi INF

Log barrier −
1

η

∑k

i=1
log(pi)

Table 1: Common potential functions

dom(Ft) ∩ At 6= ∅ for all t. Define

dt = max
y∈At+1

min
x∈At

‖x− y‖1 , gt = sup
x∈At

‖∇Ft(x)‖∞

and vn =

n
∑

t=1

dt(gt + (t− 1)) .

Then the regret of FTRL is bounded by

Rn ≤ vn + E

[

n
∑

t=1

〈

Pt − Pt+1, ℓ̂t

〉

−DFt
(Pt+1, Pt)

]

+ E

[

min
p∈An+1

(Fn+1(p) + n‖p− e1‖1)− F1(P1)

]

+ E

[

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

]

.

Proof. Let p ∈ An+1. Using the fact that ℓ̂t is unbiased,

Rn = E

[

n
∑

t=1

〈Pt − e1, ℓ̂t〉
]

= E

[

n
∑

t=1

〈Pt − p, ℓ̂t〉
]

+ E

[

n
∑

t=1

〈p− e1, ℓt〉
]

.

The second sum is the approximation error, and by

Holder’s inequality,

n
∑

t=1

〈p− e1, ℓt〉 ≤ ‖p− e1‖1
n
∑

t=1

‖ℓt‖∞ ≤ n‖p− e1‖1 .

Therefore,

Rn ≤ E

[

n
∑

t=1

〈Pt − Pt+1, ℓ̂t〉+
n
∑

t=1

〈Pt+1 − p, ℓ̂t〉
]

+ n‖p− e1‖1 .

Let Φt(q) = Ft(q) +
∑t−1

s=1〈q, ℓ̂s〉, which is chosen so

that Pt = argminq∈At
Φt(q). Then the second sum in

the above display equals

n
∑

t=1

(Φt+1(Pt+1)− Φt(Pt+1)− Ft+1(Pt+1) + Ft(Pt+1))

− Φn+1(p) + Fn+1(p)

=
n
∑

t=1

(Φt(Pt)− Φt(Pt+1))

+ Φn+1(Pn+1)− Φ1(P1)− Φn+1(p)

+ Fn+1(p) +

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

We can rewrite the Φ-differences as

Φt(Pt)− Φt(Pt+1)

= −DΦt
(Pt+1, Pt)− 〈∇Φt(Pt), Pt+1 − Pt〉 .

Let δt = Pt+1 − argminq∈At
‖q−Pt+1‖1. Then due to

first-order optimality condition for Pt on At,

E [〈∇Φt(Pt), (Pt+1 − δt)− Pt〉] ≥ 0,

therefore

E [〈∇Φt(Pt), Pt+1 − Pt〉] ≥ E [〈∇Φt(Pt), δt〉]

≥ E

[

〈∇Ft(Pt), δt〉+
t−1
∑

s=1

〈ℓ̂s, δt〉
]

≥ −E

[

‖δt‖1

(

‖∇Ft(Pt)‖∞ +

t−1
∑

s=1

‖ℓs‖∞

)]

≥ −dtgt − dt

t−1
∑

s=1

‖ℓs‖∞ ≥ −dt(gt + (t− 1)) ,

where we used Holder’s inequality, the definitions of dt
and gt, non-negativity of ℓ̂s and that E ℓ̂s = ℓs ∈ [0, 1].
It follows that

Φt(Pt)− Φt(Pt+1) ≤ dt(gt + k(t− 1))−DΦt
(Pt+1, Pt) .

Since p ∈ An+1 and Pn+1 is the minimiser of Φn+1 in

An+1, we have

Φn+1(Pn+1)− Φn+1(p) ≤ 0 .

Finally, noting that Φ1 = F1 and DΦt
(Pt+1, Pt) =

DFt
(Pt+1, Pt) we obtain

Rn ≤ n‖p− e1‖1 +
n
∑

t=1

dt(gt + (t− 1))

+ E

[

n
∑

t=1

〈Pt − Pt+1, ℓ̂t〉 −DFt
(Pt+1, Pt)

]

+ E [Fn+1(p)− F1(P1)]

+ E

[

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

]

,

from which the statement follows.



4 FIRST ORDER BOUNDS

We now introduce the modification of the INF strategy,

which takes inspiration from Wei and Luo [2018],

Zimmert and Seldin [2019], Zimmert et al. [2019]. The

new algorithm plays on the ‘chopped’ simplex, with the

magnitude of the cut dependent on the round,

At = ∆k−1 ∩ [1/t, 1]k . (1)

Then for a convex potential ft(p) with dom(ft)
k ∩

∆k−1 6= ∅ define a potential

Ft(p) =
1

ηt

k
∑

i=1

ft(pi) , (2)

where the learning rate ηt is given by

ηt =
η0

√

1 +
∑t−1

s=1 ℓ̂
2
sAs

(∇2(fs)(PsAs
))−1

, (3)

where η0 is positive constant to be tuned later.

The Hessian of the potential plays a fundamental role in

the regret, simplifying the derivation of a generic first-

order bound:

Theorem 4.1. Suppose that ∇2ft is decreasing on (0, 1)
and there exist B,C ≥ 0 such that

1

p2∇2ft(p)
≤ B, E

[

1

P 2
tAt

∇2ft(PtAt
)

]

≤ C ,

for all p ∈ (0, 1) and t ∈ [n]. Assume additionally

that there exist a non-negative constant h1 and a non-

negative function h2(n) such that

vn + min
p∈An+1

(Fn+1(p) + ‖p− e1‖1n)− F1(P1)

+
n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1)) ≤
h1

ηn+1
+ h2(n) ,

almost surely. Then the expected regret of FTRL with

η0 =
√
h1/2

1/4 simultaneously satisfies

Rn ≤
√
h1

25/4
B + h2(n) + 2

√
2Bh1 + 27/4

√

h1

×
√

1 +
BLn1

2
+

Bh2(n)

2
+B2

(√
h1

29/4
+

h1√
2

)

,

Rn ≤
√
h1

25/4
B + h2(n) + 27/4

√

h1

√

1 +
Cn

2
.

Remark 4.2. h1 and h2(n) reflect the approximation

error, non-stationarity of the potential ft and how

sensitive it is to the changes in At. In a simple case with

At = A, ft = f for all t, this is a standard bound for the

sum of the potential differences. h1 can be a function

of n when the horizon n is known, as we choose the

learning rate based on it.

As an application of this general first-order result, we

derive a worst-case optimal bound for a carefully chosen

mixture of the INF regularizer and the log-barrier:

Corollary 4.3. For η0 = k1/4
√

13
3
√
2
+ 3√

2q
and

ft(p) = −2
√
p− log p√

k log1+q max{3, t}
and any q > 0 and n ≥ 3, the regret grows with n as

Rn = O

(
√

kLn1 log
1+q(n) + k2 log2(1+q) n+ k log1+q(n)

)

,

with some constants proportional to 1/q.

Corollary 4.4. For q = 1, η0 = k1/4
√

22/(3
√
2),

Rn ≤ 19k2 + 22k log2(n) + 2k log(n) + 6.5 log(n)

×
√

kLn1 + 19k3 + 2k2 log(n) + 11.2k2 log2(n) .

In the worst-case scenario the regret satisfies

lim sup
n→∞

Rn√
kn

≤ 9.2.

Corollary 4.5. If the horizon n ≥ 3 is known in advance,

using At = ∆k−1 ∩ [1/n, 1]k, η0 = k1/4
√
3/21/4 and

ft(p) = −2
√
p− log p√

k logn

results in

Rn ≤ k + 9.1k logn

+ 4.2

√

kLn1 log(n) + 2
√
k + 6k2 log2(n) ,

lim sup
n→∞

Rn√
kn

≤ 5.9 .

The proof of the last corollary simply repeats previous

statements, also using the stationarity of the constraint

set and ft(p). See Appendix B for more details.

Remark 4.6. Theorem 4.1 with known n reproduces

the result of [Wei and Luo, 2018] (note that they used

a slightly different algorithm and the learning rate

schedule): for the log-barrier potential ft(p) = − log p
we have B = C = 1 and h1(n) ∝ k logn, such that the

worst-case regret is Rn = O(
√
kn logn).

The proof of Theorem 4.1 follows from Theorem 3.1 and

the following lemmas:

Lemma 4.7. For a potential of the form Eq. (2) with

∇2ft(p) that is monotonically decreasing on p ∈ (0, 1),

n
∑

t=1

〈

Pt − Pt+1, ℓ̂t

〉

−DFt
(Pt+1, Pt)

≤
n
∑

t=1

ηt
2

ℓ2tAt

P 2
tAt

∇2ft(PtAt
)
.



Proof. Let t ∈ [n] and suppose that Pt+1,At
> PtAt

.

Then using the fact that the loss estimators and Bregman

divergence are non-negative,

〈Pt − Pt+1, ℓ̂t〉 −DFt
(Pt+1, Pt) ≤ 〈Pt − Pt+1, ℓ̂t〉

= (PtAt
− Pt+1,At

)ℓ̂tAt
≤ 0 .

Now suppose that Pt+1,At
≤ PtAt

. By [Lattimore and Szepesvári,

2019, Theorem 26.5],

〈Pt − Pt+1, ℓ̂t〉 −DFt
(Pt+1, Pt) ≤

1

2
‖ℓ̂t‖2(∇2Ft(z))−1 ,

where z = αPt + (1 − α)Pt+1 for some α ∈ [0, 1].
By definition ∇2Ft(z) = diag (∇2ft(z))/ηt and since

ℓ̂ti = 0 for i 6= At,

1

2
‖ℓ̂t‖2∇2Ft(z)−1 =

ηtℓ̂
2
tAt

2∇2ft(zAt
)
≤ ηtℓ̂

2
tAt

2∇2ft(PtAt
)
,

where we used the fact that zAt
≤ PtAt

and that ∇2ft(p)
is decreasing. The result follows by substituting the

definition of ℓ̂tAt
and summing over t ∈ [n].

Lemma 4.8. Let (xt)
n
t=1 be a sequence with xt ∈ [0, B]

for all t. Then

n
∑

t=1

xt
√

1 +
∑t−1

s=1 xs

≤ 4

√

√

√

√1 +
1

2

n
∑

t=1

xt +B .

The proof follows from a comparison to an integral and

is given in Appendix A.

Proof of Theorem 4.1. Using the result of Theorem 3.1,

Lemma 4.7 and the assumption on the difference in the

potentials, we have

Rn ≤ h2(n) + E

[

h1

ηn+1
+

n
∑

t=1

ηt
2

ℓ2tAt

P 2
tAt

∇2ft(PtAt
)

]

.

As ℓtAt
≤ 1, we can apply Lemma 4.8 with

xt =
ℓ2tAt

P 2
tAt

∇2ft(PtAt
)
≤ B .

It follows that ηt = η0/
√

1 +
∑t−1

s=1 xs, and thus

n
∑

t=1

ηt
2

ℓ2tAt

P 2
tAt

∇2ft(PtAt
)
≤

2η0

√

√

√

√1 +
1

2

n
∑

t=1

ℓ2tAt

P 2
tAt

∇2ft(PtAt
)
+

η0
2
B .

The first term in the last line is proportional to 1/ηn+1,

therefore using the definition of ηt, Jensen’s inequality

and ℓ2tAt
≤ ℓtAt

, the regret can be bounded as

Rn ≤ h2(n) +
η0
2
B +

(√
2h1

η0
+ 2η0

)

×

√

√

√

√1 +
1

2
E

[

n
∑

t=1

ℓtAt

P 2
tAt

∇2ft(PtAt
)

]

.

The first bound in the theorem follows from

E

[

n
∑

t=1

ℓtAt

P 2
tAt

∇2ft(PtAt
)

]

≤ BE

[

n
∑

t=1

(ℓtAt
− ℓt1 + ℓt1)

]

= BRn +BLn1

and then from choosing η0 =
√
h1/2

1/4 and solving the

resulting quadratic equation with respect to Rn.

For the second bound, we use ltAt
≤ 1 and the definition

of C, such that

E

[

n
∑

t=1

ℓtAt

P 2
tAt

∇2ft(PtAt
)

]

≤ Cn

2
.

To prove the corollaries, we need to bound h1, h2(n), B,
and C:

Lemma 4.9. The Hessian of the hybrid potential in

Corollary 4.3 is monotonically decreasing, and for n ≥ 3

1

p2∇2ft(p)
≤

√
k log1+q n, E

[

1

P 2
tAt

∇2ft(PtAt
)

]

≤ 2
√
k ,

Proof. For p ∈ interior(∆k−1),

∇2ft(p) =
1

2p3/2
+

1

p2
√
k log1+q max {3, t}

is a decreasing function of p. It follows that for n ≥ 3

1

p2∇2ft(p)
≤

√
k log1+q n .

Moreover,

sup
t,Pt∈At

E

[

1

P 2
tAt

∇2ft(PtAt
)

]

≤ sup
t,Pt∈∆k−1

E

[

2
√

PtAt

]

= 2
√
k .



Lemma 4.10. Under the conditions of Corollary 4.3,

vn ≤
√
k

ηn+1

(

4

3
+

2

q

)

+
5.5k

η0

√

1 + 9k3/2 log1+q(9k3/2)

+
3.7

√
k

η0

√

1 + 3
√
k log1+q 3 + 2k logn .

Proof. Due to the chopped simplex and the factorised

potential, we have (recall the definition in Theorem 3.1

and use Lemma A.1 for the last inequality)

vn =

n
∑

t=1

dt(gt + (t− 1))

≤
n
∑

t=1

2k

t2

(

1

ηt
sup

p∈[1/t,1]

|∇ft(p)|+ (t− 1)

)

≤
n
∑

t=1

2k

t2

(

1

ηt
sup

p∈[1/t,1]

|∇ft(p)|
)

+ 2k logn .

For p ∈ [1/t, 1] the gradient is bounded as

|∇ft(p)| ≤
1√
p
+

1

p
√
k log1+q max {3, t}

≤
√
t+

t√
k log1+q max {3, t}

.

Therefore, the corresponding sum in vn converges. By

a straightforward calculation (as shown in Lemma A.2),

the Hessian is bounded as in Lemma 4.9),

vn ≤
√
k

ηn+1

(

4

3
+

2

q

)

+
5.5k

η0

√

1 + 9k3/2 log1+q(9k3/2)

+
3.7

√
k

η0

√

1 + 3
√
k log1+q 3 + 2k logn .

Lemma 4.11. Under the conditions of Corollary 4.3,

min
p∈An+1

(Fn+1(p) + ‖p− e1‖1n)− F1(P1)

+

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

≤
√
k

ηn+1

(

3 +
1

q

)

+ k +

√
k

3η0

√

1 + 3
√
k log1+q 3 .

Proof. The potential is a mixture of the INF and the log-

barrier parts, Ft(p) = − 2
ηt

∑

i

√
pi − αt

ηt

∑

i log pi with

αt = 1/(
√
k log1+q max {3, t}).

To control the contribution of the INF term, first notice

that the INF part of Fn+1(p) is negative. Moreover,

(

− 2

ηt
+

2

ηt+1

) k
∑

i=1

√

Pt+1,i ≤ 2
√
k

(

1

ηt+1
− 1

ηt

)

.

Summing with the INF part of −F1(P1) and telescoping

shows that it contributes at most 2
√
k/ηn+1 to the sum.

For log-barrier, suppose αt/ηt ≤ αt+1/ηt+1. Then

(

−αt

ηt
+

αt+1

ηt+1

) k
∑

i=1

log(Pt+1,i) ≤ 0 .

Now suppose that αt/ηt > αt+1/ηt+1. For t ≥ 3, as

Pt+1 ∈ At+1,

(

−αt

ηt
+

αt+1

ηt+1

) k
∑

i=1

log(Pt+1,i)

≤
(

αt

ηt
− αt+1

ηt+1

)

k log(t+ 1)

≤ 1

ηt

(

log(t+ 1)

log1+q(t)
− 1

logq(t)

)√
k

≤
√
k

ηtt log
1+q t

.

Summing over t and noting that due to α1 = α2 = α3

the potential is unchanged,

n
∑

t=1

(

−αt

ηt
+

αt+1

ηt+1

) k
∑

i=1

logwt+1,i

≤
n
∑

t=3

√
k

ηtt log
1+q t

≤
√
k

ηn+1q
+

√
k

3η3
,

where the last inequality follows from Lemma A.1,

which essentially compares the sum to the integral of

1/(t log1+q t) and uses that 1/ logq t ≤ 1 for t ≥ 3. We

can further bound η3 as

1

η3
≤ 1

η0

√

1 + 3
√
k log1+q 3

by using the fact that the Hessian is bounded (see the

proof of Lemma 4.9).

Finally, the log-barrier part of −F1(P1) is negative. The

log-barrier part of Fn+1(p) is bounded by
√
k/ηn+1 as

p ∈ An+1. Thus,

min
p∈An+1

Fn+1(p) + n‖p− e1‖1

≤
√
k

ηn+1
+ min

p∈An+1

n‖p− e1‖1 =

√
k

ηn+1
+

kn

n+ 1
.

Combining the three bounds and using that kn/(n+1) ≤
k concludes the proof.

Proof of Corollary 4.3. From Lemma 4.9, Lemma 4.10



and Lemma 4.11, we find

B =
√
k log1+q n , C = 2

√
k , h1 =

√
k

(

13

3
+

3

q

)

,

h2(n) = 2k logn+
5.5.k

η0

√

1 + 9k3/2 log1+q(9k3/2)

+
4.1

η0

√
k

√

1 + 3
√
k log1+q 3 + k .

Now applying Theorem 4.1 with η0 = k1/4
√

13
3
√
2
+ 3√

2q

completes the proof. Note that in the big-O notation, we

only kept the leading terms that grow with n.

Proof of Corollary 4.4. Starting from the end of the

previous proof, choosing q = 1 and upper-bounding the

numerical coefficients, we obtain the corollary.

5 VARIANCE OF THE REGRET

The expected regret is just one measure of the

performance of an algorithm. Algorithms with small

expected regret may suffer from a large variance.

Since the adversarial model is often motivated on the

grounds of providing robustness, it would be unfortunate

if proposed algorithms suffered from high variance.

Recently, however, it was shown that the variance of

Exp3 without exploration is quadratic in the horizon

[Lattimore and Szepesvári, 2019, §11], and a similar

result holds for Thompson sampling in a Bayesian setting

[Bubeck and Sellke, 2019]. Here we generalise these

arguments to prove quadratic variance of the regret for

a class of algorithms based on FTRL with importance-

weighted loss estimators. This is the worst possible result

for bandits with bounded losses. The class of policies

covered by our theorem includes INF and Exp3, but not

FTRL with the log barrier. To keep things simple we

restrict ourselves to algorithms of the form

Pt = argmin
p∈∆k−1

〈p, L̂t−1〉+
1

ηn

k
∑

i=1

f(pi) ,

where f is convex and (ηn)
∞
n=1 is a sequence of learning

rates. Note that this corresponds to a sequence of

algorithms, each with a fixed learning rate.

Assumption 5.1. The number of actions is k = 2 and f
is Legendre with (0, 1) ⊆ dom(f) and 0 ∈ ∂ dom(f).

The assumption on the potential is satisfied by all

standard potentials for bandits on the probability

simplex, including those in Table 1. It allows us to write

Pt in a simple form. Let g(p) = f(p) + f(1− p), which

is convex and Legendre with dom(g) = (0, 1). Given

x ≥ 0,

argmin
p∈[0,1]

(px+ g(p)) = ∇g∗(−x) ,

where we used the fact that for Legendre functions the

gradient is invertible and (∇g)−1 = ∇g∗. That g
is Legendre with dom(g) = (0, 1) also ensures that

∇g∗ is nondecreasing and limx→−∞∇g∗(x) = 0 and

limx→∞ ∇g∗(x) = 1. By symmetry, we also have

∇g∗(0) = 1/2. The point is that by the definition of

FTRL, Pt1 = ∇g∗(ηn(L̂t−1,2 − L̂t−1,1)).

Theorem 5.2. Assume lim supn→∞ n∇g∗(−anηn) <
∞ for all a > 0. Then for all sufficiently large n there

exists a bandit for which P(R̂n ≥ n/4) ≥ c, where c > 0
is a constant that depends on the algorithm, but not the

horizon.

Corollary 5.3. Under the same conditions as Theorem 5.2

the variance of the regret is Var[R̂n] = Ω(n2).

Examples Suppose ηn = an−1/2 for some a > 0.

Then the conditions of the theorem are satisfied when

f is the negentropy. In this case ∇g∗ is the sigmoid

function and the corresponding algorithm is just Exp3.

When f(p) = −2
√
p and x ≤ 0, then

∇g∗(x) =
1

2



1−

√

1 +
4
(

2
√
1 + x2 − 2− x2

)

x4



 ,

which satisfies lim supn→∞ ∇g∗(−a
√
n)n = 1/a2. In

this sense 1/2-Tsallis entropy with ηn = Θ(n−1/2)
just barely satisfies the conditions. The consequence

is that the minimax optimal INF policy proposed by

Audibert and Bubeck [2009] has quadratic variance. The

log barrier does not satisfy the conditions and we

speculate it is more stable.

Proof of Theorem 5.2. Assume for simplicity that 4 is a

factor of n. Let αn ∈ [0, 1/2] be a constant to be tuned

subsequently and consider a bandit defined by

ℓt1 =

{

αn if t ≤ n/2

0 otherwise .
ℓt2 =

{

0 if t ≤ n/2

1 otherwise .

Clearly the first arm is optimal. Let c1 > 0 be a

constant such that for all sufficiently large n it holds

that ∇g∗(−nηn) ≤ c1/n, which is guaranteed to exist

by the assumptions in the theorem. Then define events

Ft = ∩t
s=n/2+1{As = 2, Ps1 ≤ c1/n}. On the event

Fn the random regret satisfies

R̂n ≥ n

2
− αnn

2
≥ n

4
. (4)



The theorem follows by proving that P (Fn) ≥ c for all

sufficiently large n and constant c > 0. The idea is to

show that the estimated loss for the optimal arm after the

first n/2 rounds is large enough that the algorithm never

plays the optimal arm in the second half of the game with

constant probability.

First half dynamics The choice of αn determines the

dynamics of the interaction between the algorithm and

environment in the first n/2 rounds. Before the main

proof we establish some facts about this. Let α ∈ [0, 1/2]
and define (ps(α))

n
s=0 inductively by p0(α) = 1/2 and

ps+1(α) = ∇g∗
(

−ηn

s
∑

u=0

α

pu(α)

)

,

which is chosen so that Pt+1,1 = ps(α) whenever

t + 1 ≤ n/2 and T1(t) = s. Here we used the fact that

L̂t2 = 0 for t ≤ n/2, which follows from the definition

of the bandit. Let Qs(α) =
∑s−1

u=0 α/pu(α). Clearly

Q2(1/2) > 0 and Qs(0) = 0 for all s. Furthermore,

Qs(α) is increasing in both α and s and continuous in

α. Therefore there exists an α◦ ∈ (0, 1/2) such that

Q2(1/2) ≥ Q3(α◦). Now suppose that Qs(1/2) ≥
Qs+1(α◦). Using the fact that ∇g∗ is increasing,

Qs+1(1/2) = Qs(1/2) +
1

2
∇g∗ (−ηnQs(1/2))

−1

≥ Qs+1(α◦) + α◦∇g∗ (−ηnQs+1(α◦))
−1

= Qs+2(α◦) ,

which by induction means that Qs(1/2) ≥ Qs+1(α◦) for

all s ≥ 2. Notice that L̂t1 = Qs(αn) when T1(t−1) = s.

Second half dynamics Define threshold λn by

λn = n+ n2/(2(n− c1)) ≤ 2n ,

where the latter inequality holds for all sufficiently large

n. Let E be the event E = {L̂n/2,1 ≥ λn}. We claim

that P (Fn |E) ≥ exp(−c1/2). Suppose that t > n/2
and E ∩ Ft occurs. Then

L̂t2 =

t
∑

s=n/2+1

1

Ps2
≤

t
∑

s=n/2+1

1

1− c1/n
≤ n2

2(n− c1)
,

where the first inequality follows from the definition of

Ft. Therefore, since L̂t1 ≥ L̂n/2,1 ≥ λn,

Pt+1,1 = ∇g∗(ηn(L̂t2 − L̂t1))

≤ ∇g∗
(

ηn

(

n2

2(n− c1)
− λn

))

≤ c1
n

. (5)

Hence P (Ft+1 |Ft, E) ≥ 1 − c1/n. Noting that Eq. (5)

implies that Pn/2+1,1 ≤ c1/n shows that E ⊆ Fn/2+1

and hence by induction

P (Fn |E) ≥
(

1− c1
n

)n/2

≥ exp(−c1/2) . (6)

Lower bounding P (E) By Eqs. (4) and (6) it suffices

to prove that P (E) is larger than a constant for

sufficiently large n. Let s = min{u : Qu(1/2) ≥ λn},

which by our assumptions on ∇g∗ for sufficiently large

n is at least s > 2 and at most s ≤ n/2. Then Qs(α◦) ≤
Qs−1(1/2) < λn ≤ Qs(1/2). By the intermediate

value theorem and the continuity of α 7→ Qs(α) we may

choose αn ∈ (α◦, 1/2] such that Qs(αn) = λn. Now

introduce a sequence of independent geometric random

variables (Gu)
s
u=0 with Gu ∈ {1, 2, . . .} and E[Gu] =

1/pu(α). Then by construction,

P (T1(n/2) ≥ s) = P

(

s−1
∑

u=0

Gu ≤ n

2

)

. (7)

You should think of Gu as the number of rounds before

the algorithm plays action 1 for the uth time. Let

κ = min

{

m :

s−m−1
∑

u=0

1

pu(αn)
≤ n

8

}

.

Then either
∑s−κ−1

u=0 1/pu(αn) ≤ n/16 in which case

1/ps−κ(αn) ≥ n/16 or
∑s−κ−1

u=0 1/pu(αn) ≥ n/16.

Then there exists a constant c2 ≥ 0 such that for

sufficiently large n,

ps−κ(αn) = ∇g∗(−ηnQs−κ−1(αn))

= ∇g∗
(

−ηn

s−κ−1
∑

u=0

αn

pu(αn)

)

≤ ∇g∗
(

−α◦nηn
16

)

≤ c2
n

.

Combining the two cases and choosing c2 ≥ 16
guarantees that ps−κ(αn) ≤ c2/n for sufficiently large

n. Using the fact that s 7→ ps(αn) is decreasing,

2n ≥ λn =

s−1
∑

u=0

αn

pu(αn)
≥

s−1
∑

u=s−κ

α◦n

c2
=

κα◦n

c2
.

Rearranging shows that κ is less than a constant that is

independent of n. By Markov’s inequality

P

(

s−κ−1
∑

u=0

Gu ≥ n

4

)

≤ P

(

s−κ−1
∑

u=0

Gu ≥ 2

s−κ−1
∑

u=0

1

pu(αn)

)

≤ 1

2
.

Hence

P

(

s−κ−1
∑

u=0

Gu <
n

4

)

≥ 1

2
. (8)



Furthermore,

α◦
ps−1(αn)

≤ αn

ps−1(αn)
≤

s−1
∑

u=0

αn

pu(αn)

= Qs(αn) = λn ≤ 2n .

Therefore, using again that s 7→ ps(α) is decreasing,

P

(

s−1
∑

u=s−κ

Gu ≤ n

4

)

≥
(

n/4

κ

)

ps−1(αn)
κ (1− ps−κ(αn))

n/4−κ

≥
(

n/4

κ

)

(α◦
2n

)κ (

1− c2
n

)n/4−κ

,

which for sufficiently large n is larger than a strictly

positive constant and the result follows by combining the

above with Eqs. (7) and (8).

Remark 5.4. We believe the result continues to hold

for adaptive learning rates under the assumption that

lim supt→∞ t∇g∗(−atηt) < ∞ for all a > 0. The proof

becomes significantly more delicate, however.

6 LINEARLY SEPARABLE BANDITS

In this section we consider the case where the adversary

chooses an infinite sequence of loss vectors (ℓt)
∞
t=1. The

main objective is to prove logarithmic (or better) regret

under the following assumption.

Assumption 6.1. There is a linear separation between

the optimal and suboptimal arms:

∆i = lim inf
n→∞

(Lni − Ln1)/n > 0 for all i > 1 .

Note that if (ℓt)
∞
t=1 are independent and identically

distributed random vectors, then the above holds

almost surely whenever there is a unique optimal

arm. We provide two results in this setting. The

first generalises a known result from stochastic bandits

that there exist algorithms for which the asymptotic

random regret grows arbitrarily slowly almost surely

[Cowan and Katehakis, 2015].

Theorem 6.2. For any nondecreasing function f : N →
N with limn→∞ f(n) = ∞ there exists an algorithm

such that lim supn→∞ R̂n/f(n) < ∞ almost surely.

The algorithm realising the bound in Theorem 6.2

explores uniformly at random on a set E for which

lim supn→∞ |E ∩ [n]|/f(n) ≤ 1 almost surely. The

reader is warned that the constants hidden by the

asymptotics are potentially quite enormous.

Of course this result says nothing about the expected

regret, which must be logarithmic for consistent

algorithms [Lai and Robbins, 1985]. The following

theorem improves on a result by Seldin and Slivkins

[2014] by a factor of log(n)/ log log(n).

Theorem 6.3. There exists an algorithm such that for

any adversarial bandit Rn = O(
√
kn). Furthermore,

under Assumption 6.1 it holds that

lim sup
n→∞

Rn

log(n)2 log log(n)
< ∞ .

The algorithm is INF with enough forced exploration

that the loss estimators are guaranteed to be sufficiently

accurate to detect a linear separation. The proofs

of Theorems 6.2 and 6.3 use standard concentration

results and are given in Appendix C and Appendix D

respectively.

7 OPEN QUESTIONS

Despite the relatively long history and extensive

research, many open questions exist about k-armed

adversarial bandits. Perhaps the most exciting ques-

tion is the existence/nature of a genuinely instance-

optimal algorithm. The work by Zimmert and Seldin

[2019] suggests the possibility of an algorithm for which

Rn = O(
√
kn) and Rn = O(

∑

i:∆i>0 log(n)/∆i),

where ∆i = 1
n

∑n
t=1(ℓti − ℓt1) is the empirical gap

between the arms. In fact, one could hope for a little

more. For stochastic Bernoulli bandits with means

(θi)
k
i=1, the KL-UCB algorithm by Cappé et al. [2013]

satisfies Rn = O(
∑

i:∆i>0 ∆i log(n)/d(θi, θ
∗)) where

d(θi, θ1) is the relative entropy between Bernoulli distri-

butions with bias θi and θ1 respectively. We are not

aware of a lower bound proving that such a result is not

possible for adversarial bandits with θi = 1
n

∑n
t=1 ℓti.

At present it is not clear whether or not our modi-

fied algorithm from Corollary 4.3 retains the logarithmic

regret in the stochastic setting, both because we use an

adaptive learning rate and a hybrid potential. Finally,

it is known that sub-exponential tail bounds are incom-

patible with logarithmic regret in the stochastic setting

[Audibert et al., 2009], but by appropriately tuning the

confidence intervals it is straightforward to prove the

variance is linear in n, which is optimal. Missing is

an adaptation of INF that enjoys (a) minimax regret, (b)

logarithmic regret in the stochastic setting and (c) linear

variance.
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A TECHNICAL INEQUALITIES

Proof of Lemma 4.8. The result is immediate if
∑n

t=1 xt <

B. Otherwise let t◦ = min{t :∑t−1
s=1 xs ≥ B}. Then

n
∑

t=1

xt
√

1 +
∑t−1

s=1 xs

≤ B +

n
∑

t=t◦

xt
√

1 + 1
2

∑t
s=1 xs

.

Next let f(t) = x⌈t⌉ and F (t) =
∫ t

0
f(s)ds. Then

n
∑

t=t◦

xt
√

1 + 1
2

∑t
s=1 xs

≤
∫ n

0

f(t)
√

1 + F (t)/2
dt

≤ 4
√

1 + F (n)/2 = 4

√

√

√

√1 +
1

2

n
∑

t=1

xt .

The result follows from the previous two displays.

Lemma A.1. Let (xt)
∞
t=t◦ be a sequence of positive

non-decreasing elements, and f(x) be a continuous non-

increasing functions such that f(t) = xt, t ≥ t◦. Then

n
∑

t=t◦

xt ≤ xt◦ +

∫ n

t◦

f(t)dt.

Proof. Follows from the geometric definition of the

Riemann integral.

Lemma A.2. If a non-increasing learning rate ηt is such

that 1/ηt ≤
√

1 + t
√
k log1+q t/η0, then

n
∑

t=1

2k

ηtt2

(√
t+

t√
k log1+q max {3, t}

)

≤
√
k

ηn+1

(

4

3
+

2

q

)

+
5.5k

η0

√

1 + 9k3/2 log1+q(9k3/2)

+
3.7

√
k

η0

√

1 + 3
√
k log1+q 3 .

Proof. Consider the first part of the sum. Splitting it at

t◦ = 9k, applying Lemma A.1 and using
∑∞

t=1 1/t
3/2 ≤

2.7,

n
∑

t=1

2k

ηtt3/2
≤

t◦
∑

t=1

2k

ηt◦t
3/2

+

n
∑

t=t◦

2k

ηtt3/2

≤ 5.4k

ηt◦
+

2k

ηt◦t
3/2
◦

+
4k

ηn+1t
1/2
◦

≤ 5.5k

η0

√

1 + 9k3/2 log1+q(9k3/2) +
4
√
k

3ηn+1
.

For the second sum, using the integral of 1/(x log1+q x)
from t◦ = 3 to ∞ in Lemma A.1 and logn ≥ log 3 > 1,

n
∑

t=1

2
√
k

ηtt log
1+q max {3, t}

≤ 2
√
k

η3

(

1 +
1

2
+

1

3

)

+

∫ n

t=3

2
√
k

ηn+1t log
1+q max {3, t}

≤ 3.7
√
k

η3
+

2
√
k

ηn+1q
.

Combining the two completes the proof.

B PROOF OF COROLLARY 4.5

Proof of Corollary 4.5. First, we repeat the proof of

Theorem 3.1 and note that for a time-independent At we



have vn = 0. Therefore, the regret is bounded as

Rn ≤ E

[

n
∑

t=1

〈

Pt − Pt+1, ℓ̂t

〉

−DFt
(Pt+1, Pt)

]

+ E

[

min
p∈An+1

Fn+1(p) + k − F1(P1)

]

+ E

[

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

]

.

Now we repeat the proof of Lemma 4.10 to find

h1, h2(n). The argument for the INF term in the

regularizer is unchanged.

For the log-barrier term, due to the non-decreasing

learning rate, at each step
(

1√
kηt logn

− 1√
kηt+1 logn

)

(− logPti) ≤ 0.

Therefore, the only contribution from the log-barrier is

from Fn+1(p̃) ≤
√
k/ηn+1.

Consequently,

Fn+1(p̃)− F1(P1) +

n
∑

t=1

(Ft(Pt+1)− Ft+1(Pt+1))

≤ 3
√
k

ηn+1
,

and thus h1 = 3
√
k, h2 = k.

Repeating the calculation for the Hessian (essentially for

q = 0), we have that B =
√
k logn and C = 2

√
k.

Now using the general bound developed in Theorem 4.1

with η0 = k1/4
√
3/21/4, we obtain the statement of the

corollary.

C PROOF OF THEOREM 6.2

Define τ(m) = min{t : f(t) = m}. We assume

without loss of generality that f(1) = 1 and that f grows

sufficiently slowly so that

∞
∑

m=1

∞
∑

j=m+1

τ(m)

τ(j)
< ∞ , (9)

Then let (Em)∞m=1 be an infinite sequence of

random variables with Em uniformly distributed on

{1, . . . , τ(m)} \ {E1, . . . , Em−1}. Let E = {E1, . . .}
be the set of steps on which exploration occurs and

θ̂mi =
k

m

m
∑

j=1

ℓEjiAEji .

Then in rounds t ∈ E the algorithm explores uniformly

over all actions. In rounds t /∈ E the algorithm chooses

At = argmin
i∈[k]

θ̂if(t−1) .

Let κ = max{t : θ̂m1 ≥ mini>1 θ̂mi}. Then the regret

can be decomposed by

R̂n =
n
∑

t=1

(ℓtAt
− ℓt1) ≤ κ+

n
∑

t=1

1 {t ∈ E} .

The result follows by showing that κ is almost surely

finite and that

lim sup
n→∞

1

f(n)

n
∑

t=1

1 {t ∈ E} ≤ 1 a.s. (10)

To show Eq. (10),

P





τ(m)
∑

t=1

1 {t ∈ E} ≥ m+ 1





≤
∞
∑

j=m+1

P (Ej ≤ τ(m)) ≤
∞
∑

j=m+1

τ(m)

τ(j)
.

By Borel-Cantelli and Eq. (9),

lim sup
m→∞

1

m

τ(m)
∑

t=1

1 {t ∈ E} ≤ 1 a.s.

Therefore

lim sup
n→∞

1

f(n)

n
∑

t=1

1 {t ∈ E}

≤ lim sup
n→∞

∑τ(f(n)+1)
t=1 1 {t ∈ E}

f(τ(f(n) + 1))− 1
≤ 1 a.s.

For the first part let Xmi = kAEmiℓEmi and Gm =
σ(E1, . . . , Em). Then

E[Xmi | Gm−1] = E
[

kAEmiℓEmAEm
| Gm−1

]

=
1

τ(m) −m+ 1

τ(m)
∑

t=1

ℓti1 {t /∈ E1, . . . , Em−1}

=
1

τ(m)

τ(m)
∑

t=1

ℓti +O

(

m

τ(m)

)

.

Now fix an i > 1 and let ∆̂m = Xmi − Xm1. By the

previous display, limm→∞ E[∆̂m | Gm−1] = ∆i almost

surely. Since ∆̂m is bounded, Chow’s strong law of large

numbers for martingales [Chow, 1967] shows that

lim
m→∞

(θ̂mi − θ̂m1) = lim
m→∞

1

m

m
∑

j=1

∆̂j

= ∆i + lim
m→∞

1

m

m
∑

j=1

(∆̂j − E[∆̂j | Gj−1]) = ∆i a.s.



The result follows because ∆i > 0 by assumption.

D PROOF OF THEOREM 6.3

Let F (p) = −2
∑k

i=1

√
pi and consider the modification

of INF that chooses

P̃t = argmin
p∈∆k−1

〈p, L̂t−1〉+
F (p)

ηt

and Pt = (1−γt)P̃t+γt1/k where (γt)
∞
t=1 and (ηt)

∞
t=1

are appropriately tuned sequences of exploration and

learning rates. Define

g(n) =
1

n2

n
∑

t=1

1

γt
.

Lemma D.1. Suppose that L̂t−1,i > L̂t−1,1. Then

P̃ti ≤
1

η2t (Lt−1,i − Lt−1,1)2
.

Proof. Straightforward calculus shows that

P̃ti =
1

η2t (λ+ L̂t−1,i)2
,

where λ ∈ R is the unique value such that P̃t ∈ ∆k−1.

Clearly λ > −L̂t−1,1 and the result follows.

Lemma D.2. Suppose that g(n) = o(1/ log(n)) and let

τi = max{t : L̂ti − L̂t1 ≤ t∆i/2} .

Then E[τi] < ∞.

Proof. Define sequence of random variables by

Mt = L̂ti − Lti + Lt1 − L̂t1 ,

which is a martingale adapted to (Ft)
∞
t=1 with M0 = 0

and

E[(Mt+1 −Mt)
2 | Ft] ≤ 2E

[

ℓ̂2t+1,i + ℓ̂2t+1,1

∣

∣

∣

∣

Ft

]

≤ 4

γt
.

By a finite-time version of the law of the iterated

logarithm [Balsubramani, 2014] it holds with probability

at least 1− δ that

|Mt|
t

≤ c

√

g(t) log

(

log(t)

δ

)

. (11)

Then define random variable Λ to be the smallest value

such that Λ ≥ 1 and

|Mt|
t

≤ c
√

g(t) log (Λ log(t)) for all t .

By Eq. (11), P (Λ ≥ x) ≤ 1/x for all x ≥ 1. Let

h : R → R be a strictly decreasing function such that

g(n) ≤ h(n) and h(n) = o(log(n)−1). Using the

definition of Mt, Assumption 6.1 and by inverting the

above display,

τi ≤ h−1

(

c1
log(Λ)

)

+ c2 ,

where c1, c2 are constants that depend on the loss

sequence, but not the horizon. Hence

E[τi] ≤
∫ ∞

0

P

(

h−1

(

c1
log(Λ)

)

≥ x− c2

)

dx

=

∫ ∞

0

P (Λ ≥ exp(c1h(x− c2))) dx

≤
∫ ∞

0

min{1, exp(−c1h(x− c2))}dx

< ∞ .

Proof of Theorem 6.3. Suppose that ηt and γt are

defined by

ηt =
√

1/t γt =
log(t) log log(t)

t
.

That Rn = O(
√
nk) follows from the standard analysis

of INF with adaptive learning rates [Zimmert and Seldin,

2019] and the observation that the exploration only

contributes a lower order term of order
n
∑

t=1

γt = o(
√
n) .

For the second part. Given i > 1 define random time

τi = max{t : L̂t−1,i − L̂t−1,1 ≤ t∆i/2} .
Then let τ = maxi>1 τi. By Lemma D.1, for t ≥ τ the

definition of the algorithm ensures that Pti ≤ 4/(t∆2
i )

for all i > 1. Decomposing the regret,

Rn = E

[

n
∑

t=1

(ℓtAt
− ℓt1)

]

= E

[

n
∑

t=1

〈Pt − e1, ℓt〉
]

= E

[

n
∑

t=1

〈P̃t − e1, ℓt〉
]

+ E

[

n
∑

t=1

γt〈1/k − P̃t, ℓt〉
]

≤ E

[

n
∑

t=1

〈P̃t − e1, ℓt〉
]

+
n
∑

t=1

γt

≤ E

[

n
∑

t=τ+1

〈P̃t − e1, ℓt〉
]

+ E[τ ] +

n
∑

t=1

γt

≤ E[τ ] +

n
∑

t=1

γt +O(log(n))

≤
k
∑

i=2

E[τi] +

n
∑

t=1

γt +O(log(n)) .



The result follows from Lemma D.2 and the fact that

n
∑

t=1

γt = O
(

log(n)2 log log(n)
)

.
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