A PROOFS OF THEOREMS 1 AND 2

Theorem 1. The reduction from SSAT to POMDP guarantees that there exists a POMDP policy π for time steps 0 to |X|/2-1 and optimal action at time step |X|/2 with value function $V^{\pi} = \Pr(\phi)$ iff there exists a policy tree ϕ with satisfiability probability $\Pr(\phi)$.

Proof. Consider a POMDP policy π (for time steps 0 to |X|/2 - 1), which defines a policy tree ϕ . Each branch yields a final (unnormalized) belief with mass

$$\hat{b}_{o_{1:|X|/2}}^{\pi}(prob) = b_0(prob) \operatorname{Pr}(o_{1:|X|/2}|prob,\pi) \quad (1)$$

Based on the properties of the reward function, the optimal expected reward of each branch at the last time step |X|/2 is

$$R(\hat{b}_{o_{1:|X|/2}}^{\pi}) = \max_{a} \sum_{s} \hat{b}_{o_{1:|X|/2}}^{\pi}(s)R(s,a)$$
(2)

$$= \begin{cases} \Pr(o_{1:|X|/2}|prob,\pi) & \text{if branch is satisfying} \\ 0 & \text{otherwise} \end{cases}$$
(3)

Hence the value of a policy is

$$V^{\pi} = \sum_{o_{1:|X|/2}} R(\hat{b}^{\pi}_{o_{1:|X|/2}})$$
(4)

$$=\sum_{o_{1:|X|/2} \text{ is satisfying}} \Pr(o_{1:|X|/2}|prob,\pi) \quad (5)$$

$$= Pr(\phi) \tag{6}$$

The above equation shows that the value of a policy is equal to the probability of satisfying the Boolean formula with the corresponding policy tree ϕ .

Theorem 2. In the reduction of POMDP to SSAT, there exists a satisfiable policy tree, ϕ , with probability $Pr(\phi)$ iff there exists a POMDP policy, π , with value function $V^{\pi} = Pr(\phi)$.

Proof. Consider a base case policy tree of size 1. Let the policy tree be $\phi = \{x_a \equiv \hat{k}\}$ with clauses:

$$\bigwedge_{i \in \mathcal{S}} x_s \neq i \lor x_r \equiv \hat{k}|\mathcal{S}| + i \tag{7}$$

The probability of satisfiability of (7) is equivalent to

$$\Pr(\phi) = \sum_{i} \Pr(x_s \equiv i) \Pr(x_r \equiv \hat{k}|\mathcal{S}| + i)$$
$$= \sum_{i} b(i)r(i, \hat{k})$$
(8)

by using the distributions for the randomized variables: $Pr(x_s \equiv i) = b(i)$ and $Pr(x_r \equiv k|S| + i) =$ $r(i,k), \forall i, k$. However, (8) corresponds exactly to the policy that takes action $a_1 = \hat{k}$ and has a value of $V^{\pi} = \sum_i b(i)r(i,\hat{k})$.

For the general case, we give a proof by induction. Assume we have a policy tree ϕ_h , policy π_h , and we know $\Pr(\phi_h) = V^{\pi_h}$. Given ϕ_{h+1} and π_{h+1} show that $\Pr(\phi_{h+1}) = V^{\pi_{h+1}}$.

Since we are given the policy tree, all the actions are known. Therefore, if we simplify first by making the assignments in ϕ_{h+1} , then only the randomized variables will remain in the quantifier prefix. Any subset of variables can now be re-ordered freely. Based on the number of randomized variables we introduced for horizon h and h + 1, encoding the probability of satisfiability is:

 $\Pr(\phi_{h+1})$

$$= \sum_{v_1, \cdots, v_{h+1}}^{2} \sum_{z_1, \cdots, z_h}^{|\mathcal{O}|} \sum_{s_1, \cdots, s_{h+1}}^{|\mathcal{S}|} \prod_{l=1}^{h+1} \Pr(x_p^l = v_l, x_s^l = i, x_o^l = z_l, x_r^l)$$
$$\prod_{l=1}^{h} \Pr(x_{\Omega}^l, x_T^l | x_p^l = v_l, x_s^l = i, x_o^l = z_l)$$
(9)

To achieve Eq. 10, the distribution for x_p is just a uniform distribution that can be factored out as 2^{-h} . However, each x_p is controlling the length of the process, so it naturally controls how many terms contribute to the total sum if we re-arrange by horizon and then simplify. Note that given values for x_p , x_o , x_s the other variables are forced by unit propagation to a specific value.

$$= 2^{-(h+1)} \sum_{\hat{h}=1}^{h+1} \sum_{z_1, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_1, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \prod_{l=1}^{\hat{h}} \Pr(x_s^l = i, x_o^l = z_l, x_r^l)$$
$$\prod_{l=1}^{\hat{h}-1} \Pr(x_{\Omega}^l, x_T^l | x_p^l = v_l, x_s^l = i, x_o^l = z_l)$$
(10)

Similarly, for the distribution x_o the constant, $|O|^{h-1}$, can be factored out in front and its value is used in the conditional distribution x_{Ω} .

$$= 2^{-(h+1)} |O|^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_1, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_1, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \prod_{l=1}^{\hat{h}} \Pr(x_s^l = i, x_r^l)$$
$$\prod_{l=1}^{\hat{h}-1} \Pr(x_{\Omega}^l, x_T^l | x_p^l = v_l, x_s^l = i, x_o^l = z_l)$$
(11)

the next variable x_s^l has uniform distribution for all l > 1and the initial belief when l = 1. Therefore, we can simplify the equation by pulling out the constant factors again.

$$= 2^{-(h+1)} (|O| \cdot |S|) |^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_1, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_1, \cdots, s_{\hat{h}}}^{|S|} \Pr(x_s^1 = i)$$
$$\prod_{l=1}^{\hat{h}} \Pr(x_r^l) \prod_{l=1}^{\hat{h}-1} \Pr(x_{\Omega}^l, x_T^l | x_p^l = v_l, x_s^l = i, x_o^l = z_l)$$
(12)

According to the distribution x_p , rewards x_r will only be given at the end of the process for each \hat{h} .

$$= 2^{-(h+1)} (|O| \cdot |S|)^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_1, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_1, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \Pr(x_s^1 = i) \Pr(x_r^{\hat{h}})$$
$$\prod_{l=1}^{\hat{h}-1} \Pr(x_{\Omega}^l, x_T^l | x_p^l = v_l, x_s^l = i, x_o^l = z_l)$$
(13)

If we replace the distributions below with their definitions and replace constants with the proportional relation, we obtain

$$=\sum_{s_1}^{|\mathcal{S}|} b(s_1) \left(r(s_1, a_1) + \sum_{s_1}^{|\mathcal{O}|} \sum_{s_2}^{|\mathcal{O}|} \Omega_{s_2, s_1}^{a_1} T_{s_1, s_2}^{a_1} \operatorname{Pr}(\phi_h) \right)$$
(15)

where
$$\Pr(\phi_h) = r(s, a) + \sum_{z}^{|\mathcal{O}|} \sum_{s'}^{|\mathcal{S}|} \Omega^a_{s', z} T^a_{s, s'} \Pr(\phi_{h-1})$$

Now consider the reverse. Given a policy, π_{h+1} , with value function $V^{\pi_{h+1}}$ there exists a satisfiable policy tree, ϕ_{h+1} , with satisfiability probability $\Pr(\phi_{h+1})$ such that $V^{\pi_{h+1}} = \Pr(\phi_{h+1})$. First, Bellman's equation for a h+1 horizon policy is:

$$V^{\pi h+1} = \sum_{s} b^{h+1}(s) \left(r(s,a) + \sum_{o} \sum_{s'} \Omega^{a}_{s'o} T^{a}_{ss'} V^{\pi h}(b^{a}_{o}) \right), \ a = \pi(b)$$
(16)

However, any h + 1 horizon policy can be written as a linear combination of h horizon policies. Since we know $Pr(\phi_h) = V_h^{\pi}$ by the inductive step, we conclude, that (15) and (16) are equal. Therefore, the probability of satisfying a h + 1 depth policy tree corresponds to the value function of a h + 1 step policy.

B PROBLEM STATISTICS

We test the improvements to the watch literal rule on a variety of problems from 3 different benchmark types as shown in Table 1. The POMDP problems are from Cassandra's repository [?] and consist of two easy and two hard problems that have quite a large number of literals per clause and variable cardinality. The inference problems are from a prior probabilistic inference competition [?] and tend to be highly structured and contain a large number of variables and clauses.

Finally, the random benchmarks consist of a series of variables with alternating quantifiers in 3-SAT and 10-SAT forms that were generated by a procedure. Assume we are given V the number of variables, C the number of clauses, k the number of literals in a clause, t the number

of values for each variable and p the probability for each variable to be existentially quantified (1 - p) is the probability for each variable to be randomly quantified). We can generate a problem by first sampling the quantifier for each variable $Q(v_i)$ and if randomly quantified, draw its distribution from a uniform Dirichlet with dimension t. For each clause c_i where $i \in \{0, ..., C - 1\}$ a variable is sampled uniformly from $\{1, ..., V\}$ and a value is sampled uniformly from $\{0, ..., t - 1\}$ repeatedly to generate k literals for each clause.

Benchmark	Problem	#var	#clause	avg #value	avg #literal
RANDOM	fail-learn1	50	120	2.00	3.00
	pure1	50	120	2.00	3.00
	big1	30	450	2.00	10.00
	big2	15	60	4.00	10.00
POMDP	tiger.95_H10	157	304	2.31	5.60
	ejs7_H10	121	212	2.16	4.58
	query.s4_H2	657	27,868	42.68	160.40
	aloha.10_H3	1,094	18,637	17.14	64.39
INFERENCE	mastermind_04_08	6,319	14,670	2.00	2.90
	fs-29	327,787	803,068	2.00	2.74

Table 1: Basic information for each benchmark problem.