A PROOFS OF THEOREMS 1 AND 2

Theorem 1. The reduction from SSAT to POMDP guarantees that there exists a POMDP policy π for time steps 0 to $|X| / 2-1$ and optimal action at time step $|X| / 2$ with value function $V^{\pi}=\operatorname{Pr}(\phi)$ iff there exists a policy tree ϕ with satisfiability probability $\operatorname{Pr}(\phi)$.

Proof. Consider a POMDP policy π (for time steps 0 to $|X| / 2-1)$, which defines a policy tree ϕ. Each branch yields a final (unnormalized) belief with mass

$$
\begin{equation*}
\hat{b}_{o_{1:|X| / 2}}^{\pi}(\text { prob })=b_{0}(\text { prob }) \operatorname{Pr}\left(o_{1:|X| / 2} \mid \text { prob }, \pi\right) \tag{1}
\end{equation*}
$$

Based on the properties of the reward function, the optimal expected reward of each branch at the last time step $|X| / 2$ is

$$
\begin{align*}
& R\left(\hat{b}_{o_{1:|X| / 2}}^{\pi}\right)=\max _{a} \sum_{s} \hat{b}_{o_{1:|X| / 2}}^{\pi}(s) R(s, a) \tag{2}\\
& = \begin{cases}\operatorname{Pr}\left(o_{1:|X| / 2} \mid \text { prob }, \pi\right) & \text { if branch is satisfying } \\
0 & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Hence the value of a policy is

$$
\begin{align*}
V^{\pi} & =\sum_{o_{1:|X| / 2}} R\left(\hat{b}_{o_{1:|X| / 2}}^{\pi}\right) \tag{4}\\
& =\sum_{o_{1:|X| / 2} \text { is satisfying }} \operatorname{Pr}\left(o_{1:|X| / 2} \mid p r o b, \pi\right) \tag{5}\\
& =\operatorname{Pr}(\phi) \tag{6}
\end{align*}
$$

The above equation shows that the value of a policy is equal to the probability of satisfying the Boolean formula with the corresponding policy tree ϕ.

Theorem 2. In the reduction of POMDP to SSAT, there exists a satisfiable policy tree, ϕ, with probability $\operatorname{Pr}(\phi)$ iff there exists a POMDP policy, π, with value function $V^{\pi}=\operatorname{Pr}(\phi)$.

Proof. Consider a base case policy tree of size 1. Let the policy tree be $\phi=\left\{x_{a} \equiv \hat{k}\right\}$ with clauses:

$$
\begin{equation*}
\bigwedge_{i \in \mathcal{S}} x_{s} \neq i \vee x_{r} \equiv \hat{k}|\mathcal{S}|+i \tag{7}
\end{equation*}
$$

The probability of satisfiability of (7) is equivalent to

$$
\begin{align*}
\operatorname{Pr}(\phi) & =\sum_{i} \operatorname{Pr}\left(x_{s} \equiv i\right) \operatorname{Pr}\left(x_{r} \equiv \hat{k}|\mathcal{S}|+i\right) \\
& =\sum_{i} b(i) r(i, \hat{k}) \tag{8}
\end{align*}
$$

by using the distributions for the randomized variables: $\operatorname{Pr}\left(x_{s} \equiv i\right)=b(i)$ and $\operatorname{Pr}\left(x_{r} \equiv k|\mathcal{S}|+i\right)=$
$r(i, k), \forall i, k$. However, (8) corresponds exactly to the policy that takes action $a_{1}=\hat{k}$ and has a value of $V^{\pi}=\sum_{i} b(i) r(i, \hat{k})$.

For the general case, we give a proof by induction. Assume we have a policy tree ϕ_{h}, policy π_{h}, and we know $\operatorname{Pr}\left(\phi_{h}\right)=V^{\pi_{h}}$. Given ϕ_{h+1} and π_{h+1} show that $\operatorname{Pr}\left(\phi_{h+1}\right)=V^{\pi_{h+1}}$.
Since we are given the policy tree, all the actions are known. Therefore, if we simplify first by making the assignments in ϕ_{h+1}, then only the randomized variables will remain in the quantifier prefix. Any subset of variables can now be re-ordered freely. Based on the number of randomized variables we introduced for horizon h and $h+1$, encoding the probability of satisfiability is:

$$
\begin{align*}
& =\sum_{v_{1}, \cdots, v_{h+1}}^{2} \sum_{z_{1}, \ldots, z_{h}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s_{h+1}}^{|\mathcal{S}|} \prod_{l=1}^{h+1} \operatorname{Pr}\left(x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}, x_{r}^{l}\right) \\
& \quad \prod_{l=1}^{h} \operatorname{Pr}\left(x_{\Omega}^{l}, x_{T}^{l} \mid x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}\right)
\end{align*}
$$

To achieve Eq. 10, the distribution for x_{p} is just a uniform distribution that can be factored out as 2^{-h}. However, each x_{p} is controlling the length of the process, so it naturally controls how many terms contribute to the total sum if we re-arrange by horizon and then simplify. Note that given values for x_{p}, x_{o}, x_{s} the other variables are forced by unit propagation to a specific value.

$$
\begin{gather*}
=2^{-(h+1)} \sum_{\hat{h}=1}^{h+1} \sum_{z_{1}, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \prod_{l=1}^{\hat{h}} \operatorname{Pr}\left(x_{s}^{l}=i, x_{o}^{l}=z_{l}, x_{r}^{l}\right) \\
\prod_{l=1}^{\hat{h}-1} \operatorname{Pr}\left(x_{\Omega}^{l}, x_{T}^{l} \mid x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}\right) \tag{10}
\end{gather*}
$$

Similarly, for the distribution x_{o} the constant, $|O|^{h-1}$, can be factored out in front and its value is used in the conditional distribution x_{Ω}.

$$
\begin{gather*}
=2^{-(h+1)}|O|^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_{1}, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \prod_{l=1}^{\hat{h}} \operatorname{Pr}\left(x_{s}^{l}=i, x_{r}^{l}\right) \\
\prod_{l=1}^{\hat{h}-1} \operatorname{Pr}\left(x_{\Omega}^{l}, x_{T}^{l} \mid x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}\right) \tag{11}
\end{gather*}
$$

the next variable x_{s}^{l} has uniform distribution for all $l>1$ and the initial belief when $l=1$. Therefore, we can simplify the equation by pulling out the constant factors again.

$$
\begin{array}{r}
=\left.2^{-(h+1)}(|O| \cdot|S|)\right|^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_{1}, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s \hat{h}}^{|\mathcal{S}|} \operatorname{Pr}\left(x_{s}^{1}=i\right) \\
\prod_{l=1}^{\hat{h}} \operatorname{Pr}\left(x_{r}^{l}\right) \prod_{l=1}^{\hat{h}-1} \operatorname{Pr}\left(x_{\Omega}^{l}, x_{T}^{l} \mid x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}\right) \tag{12}
\end{array}
$$

According to the distribution x_{p}, rewards x_{r} will only be given at the end of the process for each \hat{h}.

$$
\begin{gather*}
=2^{-(h+1)}(|O| \cdot|S|)^{-h} \sum_{\hat{h}=1}^{h+1} \sum_{z_{1}, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} \operatorname{Pr}\left(x_{s}^{1}=i\right) \operatorname{Pr}\left(x_{r}^{\hat{h}}\right) \\
\prod_{l=1}^{\hat{h}-1} \operatorname{Pr}\left(x_{\Omega}^{l}, x_{T}^{l} \mid x_{p}^{l}=v_{l}, x_{s}^{l}=i, x_{o}^{l}=z_{l}\right) \tag{13}
\end{gather*}
$$

If we replace the distributions below with their definitions and replace constants with the proportional relation, we obtain
$\propto \sum_{\hat{h}=1}^{h+1} \sum_{z_{1}, \cdots, z_{\hat{h}-1}}^{|\mathcal{O}|} \sum_{s_{1}, \cdots, s_{\hat{h}}}^{|\mathcal{S}|} b\left(s_{1}\right) \prod_{l=1}^{\hat{h}-1} \Omega_{s_{l+1}, z_{l}}^{a_{l}} T_{s_{l}, s_{l+1}}^{a_{l}} r\left(s_{\hat{h}}, a_{\hat{h}}\right)$
$=\sum_{s_{1}}^{|\mathcal{S}|} b\left(s_{1}\right)\left(r\left(s_{1}, a_{1}\right)+\sum_{z_{1}}^{|\mathcal{O}|} \sum_{s_{2}}^{|\mathcal{S}|} \Omega_{s_{2}, z_{1}}^{a_{1}} T_{s_{1}, s_{2}}^{a_{1}} \operatorname{Pr}\left(\phi_{h}\right)\right)$
where $\operatorname{Pr}\left(\phi_{h}\right)=r(s, a)+\sum_{z}^{|\mathcal{O}|} \sum_{s^{\prime}}^{|\mathcal{S}|} \Omega_{s^{\prime}, z}^{a} T_{s, s^{\prime}}^{a} \operatorname{Pr}\left(\phi_{h-1}\right)$
Now consider the reverse. Given a policy, π_{h+1}, with value function $V^{\pi_{h+1}}$ there exists a satisfiable policy tree, ϕ_{h+1}, with satisfiability probability $\operatorname{Pr}\left(\phi_{h+1}\right)$ such that $V^{\pi_{h+1}}=\operatorname{Pr}\left(\phi_{h+1}\right)$. First, Bellman's equation for a $h+1$ horizon policy is:
$V^{\pi h+1}=\sum_{s} b^{h+1}(s)\left(r(s, a)+\sum_{o} \sum_{s^{\prime}} \Omega_{s^{\prime} o}^{a} T_{s s^{\prime}}^{a} V^{\pi} h\left(b_{o}^{a}\right)\right), a=\pi(b)$

However, any $h+1$ horizon policy can be written as a linear combination of h horizon policies. Since we know $\operatorname{Pr}\left(\phi_{h}\right)=V_{h}^{\pi}$ by the inductive step, we conclude, that (15) and (16) are equal. Therefore, the probability of satisfying a $h+1$ depth policy tree corresponds to the value function of a $h+1$ step policy.

B PROBLEM STATISTICS

We test the improvements to the watch literal rule on a variety of problems from 3 different benchmark types as shown in Table 1. The POMDP problems are from Cassandra's repository [?] and consist of two easy and two hard problems that have quite a large number of literals per clause and variable cardinality. The inference problems are from a prior probabilistic inference competition [?] and tend to be highly structured and contain a large number of variables and clauses.

Finally, the random benchmarks consist of a series of variables with alternating quantifiers in 3-SAT and 10SAT forms that were generated by a procedure. Assume we are given V the number of variables, C the number of clauses, k the number of literals in a clause, t the number
of values for each variable and p the probability for each variable to be existentially quantified ($1-p$ is the probability for each variable to be randomly quantified). We can generate a problem by first sampling the quantifier for each variable $Q\left(v_{i}\right)$ and if randomly quantified, draw its distribution from a uniform Dirichlet with dimension t. For each clause c_{i} where $i \in\{0, \ldots, C-1\}$ a variable is sampled uniformly from $\{1, \ldots, V\}$ and a value is sampled uniformly from $\{0, \ldots, t-1\}$ repeatedly to generate k literals for each clause.

Benchmark	Problem	\#var	\#clause	avg \#value	avg \#literal
RANDOM	fail-learn1	50	120	2.00	3.00
	pure1	big1	30	120	2.00
	big2	tiger.95_H10	15	450	2.00
	ejs7_H10	157	304	4.00	10.00
	query.S4_H2	121	212	2.31	5.00
	aloha.10_H3	657	27,868	42.16	4.58
INFERENCE	mastermind_04_08	6,094	18,637	17.14	160.40
	fs-29	327,787	14,670	2.03	2.90
			2.068	2.00	2.74

Table 1: Basic information for each benchmark problem.

