
A PROOFS OF THEOREMS 1 AND 2

Theorem 1. The reduction from SSAT to POMDP guar-
antees that there exists a POMDP policy π for time steps
0 to |X|/2−1 and optimal action at time step |X|/2 with
value function V π = Pr(φ) iff there exists a policy tree
φ with satisfiability probability Pr(φ).

Proof. Consider a POMDP policy π (for time steps 0 to
|X|/2 − 1), which defines a policy tree φ. Each branch
yields a final (unnormalized) belief with mass

b̂πo1:|X|/2
(prob) = b0(prob) Pr(o1:|X|/2|prob, π) (1)

Based on the properties of the reward function, the opti-
mal expected reward of each branch at the last time step
|X|/2 is

R(b̂πo1:|X|/2
) = max

a

∑
s

b̂πo1:|X|/2
(s)R(s, a) (2)

=

{
Pr(o1:|X|/2|prob, π) if branch is satisfying
0 otherwise

(3)

Hence the value of a policy is

V π =
∑

o1:|X|/2

R(b̂πo1:|X|/2
) (4)

=
∑

o1:|X|/2 is satisfying

Pr(o1:|X|/2|prob, π) (5)

= Pr(φ) (6)

The above equation shows that the value of a policy is
equal to the probability of satisfying the Boolean formula
with the corresponding policy tree φ.

Theorem 2. In the reduction of POMDP to SSAT, there
exists a satisfiable policy tree, φ, with probability Pr(φ)
iff there exists a POMDP policy, π, with value function
V π = Pr(φ).

Proof. Consider a base case policy tree of size 1. Let the
policy tree be φ = {xa ≡ k̂} with clauses:∧

i∈S
xs 6= i ∨ xr ≡ k̂|S|+ i (7)

The probability of satisfiability of (7) is equivalent to

Pr(φ) =
∑
i

Pr(xs ≡ i) Pr(xr ≡ k̂|S|+ i)

=
∑
i

b(i)r(i, k̂) (8)

by using the distributions for the randomized variables:
Pr(xs ≡ i) = b(i) and Pr(xr ≡ k|S| + i) =

r(i, k),∀i, k. However, (8) corresponds exactly to the
policy that takes action a1 = k̂ and has a value of
V π =

∑
i b(i)r(i, k̂).

For the general case, we give a proof by induction.
Assume we have a policy tree φh, policy πh, and we
know Pr(φh) = V πh . Given φh+1 and πh+1 show that
Pr(φh+1) = V πh+1 .

Since we are given the policy tree, all the actions are
known. Therefore, if we simplify first by making the as-
signments in φh+1, then only the randomized variables
will remain in the quantifier prefix. Any subset of vari-
ables can now be re-ordered freely. Based on the number
of randomized variables we introduced for horizon h and
h+ 1, encoding the probability of satisfiability is:

Pr(φh+1)

=

2∑
v1,··· ,vh+1

|O|∑
z1,··· ,zh

|S|∑
s1,··· ,sh+1

h+1∏
l=1

Pr(x
l
p = vl, x

l
s = i, x

l
o = zl, x

l
r)

h∏
l=1

Pr(x
l
Ω, x

l
T |x

l
p = vl, x

l
s = i, x

l
o = zl) (9)

To achieve Eq. 10, the distribution for xp is just a uni-
form distribution that can be factored out as 2−h. How-
ever, each xp is controlling the length of the process, so it
naturally controls how many terms contribute to the total
sum if we re-arrange by horizon and then simplify. Note
that given values for xp, xo, xs the other variables are
forced by unit propagation to a specific value.

= 2
−(h+1)

h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

ĥ∏
l=1

Pr(x
l
s = i, x

l
o = zl, x

l
r)

ĥ−1∏
l=1

Pr(x
l
Ω, x

l
T |x

l
p = vl, x

l
s = i, x

l
o = zl) (10)

Similarly, for the distribution xo the constant, |O|h−1,
can be factored out in front and its value is used in the
conditional distribution xΩ.

= 2
−(h+1)|O|−h

h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

ĥ∏
l=1

Pr(x
l
s = i, x

l
r)

ĥ−1∏
l=1

Pr(x
l
Ω, x

l
T |x

l
p = vl, x

l
s = i, x

l
o = zl) (11)

the next variable xls has uniform distribution for all l > 1
and the initial belief when l = 1. Therefore, we can
simplify the equation by pulling out the constant factors
again.

= 2
−(h+1)

(|O| · |S|)|−h
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

Pr(x
1
s = i)

ĥ∏
l=1

Pr(x
l
r)

ĥ−1∏
l=1

Pr(x
l
Ω, x

l
T |x

l
p = vl, x

l
s = i, x

l
o = zl) (12)



According to the distribution xp, rewards xr will only be
given at the end of the process for each ĥ.

= 2
−(h+1)

(|O| · |S|)−h
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

Pr(x
1
s = i) Pr(x

ĥ
r )

ĥ−1∏
l=1

Pr(x
l
Ω, x

l
T |x

l
p = vl, x

l
s = i, x

l
o = zl) (13)

If we replace the distributions below with their defini-
tions and replace constants with the proportional relation,
we obtain

∝
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

b(s1)

ĥ−1∏
l=1

Ω
al
sl+1,zl

T
al
sl,sl+1

r(s
ĥ
, a
ĥ

)

(14)

=

|S|∑
s1

b(s1)

r(s1, a1) +

|O|∑
z1

|S|∑
s2

Ω
a1
s2,z1

T
a1
s1,s2

Pr(φh)

 (15)

where Pr(φh) = r(s, a) +

|O|∑
z

|S|∑
s′

Ωas′,zT
a
s,s′ Pr(φh−1)

Now consider the reverse. Given a policy, πh+1, with
value function V πh+1 there exists a satisfiable policy tree,
φh+1, with satisfiability probability Pr(φh+1) such that
V πh+1 = Pr(φh+1). First, Bellman’s equation for a h+1
horizon policy is:

V
πh+1 =

∑
s

b
h+1

(s)

r(s, a) +
∑
o

∑
s′

Ω
a
s′oT

a
ss′V

πh (b
a
o)

 , a = π(b)

(16)

However, any h + 1 horizon policy can be written as a
linear combination of h horizon policies. Since we know
Pr(φh) = V πh by the inductive step, we conclude, that
(15) and (16) are equal. Therefore, the probability of
satisfying a h + 1 depth policy tree corresponds to the
value function of a h+ 1 step policy.

B PROBLEM STATISTICS

We test the improvements to the watch literal rule on a
variety of problems from 3 different benchmark types as
shown in Table 1. The POMDP problems are from Cas-
sandra’s repository [?] and consist of two easy and two
hard problems that have quite a large number of literals
per clause and variable cardinality. The inference prob-
lems are from a prior probabilistic inference competition
[?] and tend to be highly structured and contain a large
number of variables and clauses.

Finally, the random benchmarks consist of a series of
variables with alternating quantifiers in 3-SAT and 10-
SAT forms that were generated by a procedure. Assume
we are given V the number of variables, C the number of
clauses, k the number of literals in a clause, t the number

of values for each variable and p the probability for each
variable to be existentially quantified (1 − p is the prob-
ability for each variable to be randomly quantified). We
can generate a problem by first sampling the quantifier
for each variable Q(vi) and if randomly quantified, draw
its distribution from a uniform Dirichlet with dimension
t. For each clause ci where i ∈ {0, ..., C − 1} a variable
is sampled uniformly from {1, ..., V } and a value is sam-
pled uniformly from {0, ..., t− 1} repeatedly to generate
k literals for each clause.

Benchmark Problem #var #clause avg #value avg #literal

RANDOM

fail-learn1 50 120 2.00 3.00
pure1 50 120 2.00 3.00
big1 30 450 2.00 10.00
big2 15 60 4.00 10.00

POMDP

tiger.95 H10 157 304 2.31 5.60
ejs7 H10 121 212 2.16 4.58
query.s4 H2 657 27,868 42.68 160.40
aloha.10 H3 1,094 18,637 17.14 64.39

INFERENCE mastermind 04 08 6,319 14,670 2.00 2.90
fs-29 327,787 803,068 2.00 2.74

Table 1: Basic information for each benchmark problem.
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