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Abstract

In this paper, we propose an approximate rela-
tive value learning (ARVL) algorithm for non-
parametric MDPs with continuous state space
and finite actions and average reward criterion.
It is a sampling based algorithm combined with
kernel density estimation and function approx-
imation via nearest neighbors. The theoreti-
cal analysis is done via a random contraction
operator framework and stochastic dominance
argument. This is the first such algorithm for
continuous state space MDPs with average re-
ward criteria with these provable properties
which does not require any discretization of
state space as far as we know. We then eval-
uate the proposed algorithm on a benchmark
problem numerically.

1 INTRODUCTION

Markov Decision Processes (MDPs) are a suitable frame-
work for sequential decision making under uncertainty
[14]. For infinite-horizon MDPs with discounted reward
criterion, there are various dynamic programming algo-
rithms available [2]. For continuous state space, different
techniques like state aggregation and function approxima-
tion have been proposed [3, 11].

MDPs with average reward criterion are more difficult to
analyze because establishing the existence of stationary
optimal policy itself requires some restriction on the un-
derlying Markov chains [1]. Unlike discounted setting
where the contraction parameter is the discount factor,
in average reward criterion the contraction parameter de-
pends on the dynamics of MDP. There has been an exten-
sive study in the literature on the existence and structural
properties of optimal policies. But computing such poli-
cies is generally a challenging problem when state space is

uncountable. One idea is to quantize the state spaces with
a finite grid and constructing a reduced discrete model
with a new transition probability and reward function. For
example, in [13], a meta-MDP is constructed through
state-aggregation method. Similarly, [12] constructs an
‘artificial’ MDP using kernel averaging. In [15], a discrete
MDP is constructed for MDPs with unbounded reward
and continuous state and action space. But unlike them,
we do not discretize state space but instead propose a
sampling based algorithm. Furthermore, we consider the
scenario where we do not know the transition kernel of
the MDP. we only have access to samples generated by
this distribution. We define an approximate Bellman op-
erator which uses the density estimated by these samples.
Another key element in our algorithm is non-parametric
function approximation. Although we work with nearest
neighbors in this paper, it can be extended to other non-
parametric function fitting methods as long as long it is
non-expansive and uniform convergence is obtained. For
nearest neighbors, [5] provides a uniform convergence of
under Lipschitz continuity assumption of the regression
function. This requires us to have MDPs with Lipschitz
continuous transition and reward function.

Our theoretical analysis is based on the idea of viewing
each iteration of the algorithm as application of a ran-
dom operator. The notion of probabilistic contraction
and probabilistic fixed points have been introduced in
[8, 6, 9, 16]. In particular, [6, 16] uses truncation which
requires the knowledge of contraction coefficient. This
may not be easy to compute for continuous state spaces.
The convergence was argued via construction of a Markov
chain that stochastically dominates the norm of the error
introduced due to the approximation. Since, they were
either working with discounted setting or had a trunca-
tion operator, the iterates of the algorithm were bounded.
Hence, the dominant Markov chain was on a finite state
space for which the invariant distribution was easy to
analyze. In [7] extended this to unbounded iterates by
constructing the Markov chain on the set of natural num-



bers and then analyzing the invariant distribution under
some conditions. This enables us to plug in their argument
for convergence of random contraction to probabilistic
fixed point for ARVL.

The main contribution of this paper is to introduce an off-
policy approximate, (relative) value learning algorithm
for computing optimal policies for non-parametric MDPs
with continuous state space and average reward criterion
when the transition kernel is unknown. We do not dis-
cretize the state space and work with a reduced model.
Instead, we propose a sampling-based algorithm. We also
provide theoretical guarantee for the proposed algorithm
under the random operator framework which can easily
be extended to other regression techniques if they have
non-expansive property and uniform convergence.

The rest of the paper is organized as follows. Section
2 first presents the conditions for existence of optimal
policies, then introduces the approximate Bellman oper-
ator followed by definition of probabilistic contraction.
The algorithm combining the approximate operator with
function approximation is presented in Section 3. The the-
oretical analysis is then presented in Section 4 followed
by numerical experiments.

2 PRELIMINARIES

2.1 Exact Bellman operator

Consider an MDP (X ,A, r, P ) where X is the state space
and A is the action space, r : X ×A → R is the reward
function and P is the transition kernel . We assume that
X is a compact subset in Rd and A is finite. Let B(X )
be the endowed Borel sigma-algebra on X . Let C(X ) be
the set of continuous and bounded functions over X . For
each f ∈ C(X ), define

‖f‖Lip = sup
(x,y)∈X×X

|f(y)− f(x)|
‖y − x‖

.

Lip(X ) denotes the set of all Lipschitz continuous func-
tions on X , i.e.,

Lip(X ) = {f ∈ C(X ) : ‖f‖Lip <∞}.

The transition probability kernel is given by P (·|x, a),
i.e., if action a is executed in state x, the probability that
the next state is in a Borel-measurable setB is P (Xt+1 ∈
B|Xt = x, at = a). For a stationary policy π : X × A,
we are interested in maximizing the long-run average
expected reward defined as

Jπ(x) = lim inf
T→∞

1

T
E

[
T−1∑
t=0

r(xt, at)

∣∣∣∣x0 = x, at = π(xt)

]
.

Let J∗(x) = supπ J
π(x). A policy π∗ is said to be

optimal if for all x ∈ X , it satisfies Jπ
∗
(x) = J∗. We

make the following assumptions.

Assumption 2.1. (a) For every (x, a), |r(x, a)| ≤
rmax and for every a, r(·, a) is Lipschitz continu-
ous.

(b) For every a ∈ A, transition kernel P (·|x, a) has a
positive Radon-Nikodym derivative, p(y|x, a) with
respect to Lebesgue measure, λ on Rd, for all x, y ∈
Rd.

(c) The transition probability density is Lipschitz con-
tinuous in the present state, i.e, for all a ∈ A and
x, y, z ∈ X , there exists L′p(z) such that

|p(z|x, a)− p(z|y, a)| ≤ L′p(z)‖x− y‖

where
∫
X L
′
p(z)λ(dz) = Lp.

(d) There exists α < 1 such that

sup
(x,a),(x′,a′)

‖P (·|x, a)− P (·|x′, a′)‖TV = 2α

where ‖ · ‖TV denotes the total variation norm.

Assumption 2.1 (a) establishes that for every a, r(·, a) ∈
Lip(X ), (b) and (c) imply that if v ∈ Lip(X ) then for any
action a,

∫
v(y)P (dy|·, a) ∈ Lip(X ) and (d) implies that

under any stationary and deterministic policy, t-step tran-
sition probability converges to a unique invariant probabil-
ity measure (over the state process {xt}) in total variation
norm, uniformly in x and at a geometric rate. Under these
assumptions, there exists (J∗, v∗) ∈ R × Lip(X ) such
that the following optimality equation holds:

J∗ + v∗(x) = sup
a∈A

{
r(x, a) +

∫
v∗(x′)P (dx′|x, a)

}
.

(1)
Define the Bellman operator T : Lip(X )→ Lip(X ) as

Tv(x) = max
a∈A

[
r(x, a) + Ex′∼P (·|x,a)v(x′)

]
.

Hence, J∗ = Tv∗ − v∗. Note that v∗ is unique upto a
constant.

Iteration on a Quotient Space. Let us now define the
span semi-norm and the quotient space. For a function
f ∈ C(X ), span(f) := sup(x) f(x)−infx f(x). Clearly,
this is a semi-norm and for the constant function f , we
have span(f) = 0. Let us now define an equivalence
relation ∼ on C(X ) defined by f ∼ g if and only if there
exists a constant c such that for all x ∈ X , f(x)−g(x) =

c. Let C̃(X ) = C(X )/ ∼ be the quotient space. The
following then is not difficult to show for the quotient
space.



Lemma 2.1. [6] (C̃(X ), span) is a Banach space.

The proof is given in the appendix. Furthermore, we
can show that the operator T is a contraction in the span
semi-norm. The next theorem is from [10].
Theorem 2.2. [10] Suppose that Assumptions 2.1 hold.
Then, operator T : Lip(X ) → Lip(X ) is a span-
contraction operator, i.e.,

span(Tv1 − Tv2) ≤ α span(v1 − v2)

where v1, v2 ∈ Lip(X ) and α is defined in Assumption
2.1(c).

Now consider a v ∈ Lip(X ), and let ṽ be the correspond-
ing element in L̃ip(X ) and T̃ : L̃ip(X ) → L̃ip(X ) de-
fined as T̃ ṽ = T̃ v. Since T is a span-contraction, then so
is T̃ which by Banach fixed point theorem has a unique
fixed point, which can be found by a simple iterative pro-
cedure on the quotient space that is easy to translate into
an operation on the original space.

2.2 Approximate Bellman operator

In this paper, we assume that the transition kernel is un-
known but for a given state-action pair, we can get sam-
ples of the next state from the generative model. Using
these samples, we approximate the dynamics by non-
parametric density estimation. We begin with a smooth-
ing kernel K : X → R defined as any smooth func-
tion such that

∫
K(x)dx = 1,

∫
xK(x)dx = 0 and∫

x2K(x)dx <∞. Assume that for any (x, a) ∈ X ×A,
we have access to M independent and identically dis-
tributed samples Y x,ai ∼ P (·|x, a), i = 1, 2, . . .M . Let
hM be the bandwidth, then the kernel density estimator
is defined as

p̂M (y|x, a) =
1

MhdM

M∑
i=1

K

(
y − Y x,ai

hM

)
.

For instance, the kernels commonly used are the Gaussian
kernel, K(x) = 1√

2π
exp(−‖x‖2/2) and tophat kernel,

K(x) = 1
2 I (‖x‖ < 1) where I is an indicator function.

In this paper, we focus on Gaussian kernels so that the
Lipschitz property is preserved. The bandwidth, hM con-
trols the smoothness of estimation and hence, needs to
be chosen carefully. Let the estimated distribution be
P̂M . Let us now define our approximate Bellman opera-
tor T̂M : Lip(X )→ Lip(X ) as follows:

T̂Mv(x) = max
a∈A

[
r(x, a) + Ex′∼P̂M (·|x,a)v(x′)

]
.

Clearly, T̂M is a random operator. Let α̂M be the random
variable defined as

sup
(x,a),(x′,a′)

‖P̂M (·|x, a)− P̂M (·|x′, a′)‖TV = 2α̂M .

Then one can show that for all v1, v2 ∈ Lip(X )

span(T̂Mv1 − T̂Mv2) ≤ α̂M span(v1 − v2)

We analyze probabilistic contraction of the approximate
Bellman operator, T̂M by arguing that α̂M < 1 with high
probability (as presented in detail in Section 4).

Let us also compare our approximate Bellman operator to
empirical Bellman operator defined in [6, 9]. In their case,
the estimated distribution for a state-action pair (x, a) is
given by

P̂M (dy|x, a) =
1

M

M∑
i=1

δYi(dy)

where Yi are iid samples from the true distribution for
i = 1, . . .M and δ is the delta function. It can be shown
that for empirical distribution α̂M will always be equal to
1. To see that, fix (x, a) and (x′, a′), then

‖P̂M (·|x, a)− P̂M (·|x′, a′)‖TV =

2 sup
B⊂B(X )

∣∣∣P̂M (B|x, a)− P̂M (B|x′, a′)
∣∣∣

Since M is finite, one can choose B such that the differ-
ence between two distributions is always 1.

2.3 Function approximation using n nearest
neighbors

Let us now define a function space F = {f : X → R}.
Let ΠF be the function approximation operator which
maps a bunch of samples to a function in the space F .
While various non-parametric function spaces can be con-
sidered, we will choose nearest neighbors (NN) for func-
tion approximation (other non-parametric function ap-
proximation methods for e.g., kernel regression, etc. will
also work). n−NN is a powerful yet simple approach in
non-parametric regression. Suppose that we have N sam-
ples, {(xi, f̂(xi))}Ni=1. In this case, we first fix x ∈ X
and reorder the samples {x1, x2, . . . xN} according to
increasing distance of xi from x. Let the reordered sam-
ples be {x(i)} for 1 ≤ i ≤ N . Now we pick n nearest
neighbors and estimate the function as[

Πn
F f̂
]

(x) =
1

n

n∑
i=1

f̂(x(i)).

Thus, it allows to reconstruct a function from some finite
samples. Note that the function approximation opera-
tor Πn

F depends on both the sample size and number of
nearest-neighbors used. Moreover, since this is an aver-
aging operator, we can argue that this is non-expansive
mapping with respect to sup-norm.



2.4 Random contraction

In this section, we introduce the definition of random
contraction operator and fixed points in probabilistic sense
as provided in [8, 7]. Consider a function space F with
norm ‖ · ‖. Suppose there is an contraction operator
H : F → F . Let ĤN be the approximation of operator
H via finite samples N .

Definition 2.1. An operator ĤN : F → F is said to be
a random contraction operator with respect to norm ‖ · ‖
if there exists a random variable β̂ such that β̂ < 1 with
high probability and the following holds for all f, g ∈ F :

‖ĤN f − ĤN g‖ ≤ β̂‖f − g‖

Suppose that Ĥk
N denote that the iteration of operator k

times, we now define a weak probabilistic fixed point.

Definition 2.2. A function f ∈ F is a weak probabilistic
fixed point for a sequence of random operators {ĤN}
with respect to a given norm ‖ · ‖ if

lim
N→∞

lim
k→∞

P(‖Ĥk
N f0 − f‖ > ε) = 0

for all f0 ∈ F .

Based on the above definition, one can also define an
(ε, δ)-weak probabilistic fixed point.

3 ALGORITHM AND THE MAIN
RESULT

We now present the Approximate Relative Value Learning
(ARVL) algorithm, a non-parametric off-policy algorithm
for MDPs with continuous state space. It is a sampling-
based algorithm combined with non-parametric density
estimation and function approximation. It first samples
the state space uniformly and estimates the probability
density for each sampled state and action. Then, the
approximate Bellman operator gives samples of value
function which are then used for regression.

Recall that in relative value iteration, there is a bias sub-
traction at each iteration. This does not change the span
norm but keeps the iterates bounded. In our algorithm,
we make our samples for regression non-negative by sub-
tracting the minimum of the function. In other words,
we are choosing a non-negative optimal value function as
it is not unique. This makes the samples for regression
non-negative. Let the number of state samples be N , next
state samples be M and number of neighbors for function
approximation be n. Let ΓN : RN → RN be an operator
such that

ΓN v̂
′ = v̂′ −min v̂′ 1N

where 1N is a vector of all ones of size N . Let us denote
the composed operator by Ĝ(N,M,n) = Πn

F ΓN T̂M
where we use the fact that the function approximation
depends both on N and n. Algorithm 1 will iterate
the random operator Ĝ(N,M,n) (or just Ĝ for compact
notation), i.e., vk+1 = Ĝ vk = Ĝk v0. Using the non-
expansive property of NN regression, we will establish
that the composed operator Ĝ is a contraction with high
probability.

Now, we specify the ARVL algorithm in detail. We first
sample N points from X uniformly (or according to an-
other probability measure). Then, perform an ‘approxi-
mate’ value iteration step on these sampled points by esti-
mating the density via mini-batches of next states. Then,
we do function-fitting using nearest neighbors, which
gives us the next iterate of the value function.

Algorithm 1 ARVL
Input: sample sizes N ≥ 1 ; M ≥ 1; n ≥ 1; initial seed
v0; total iterations K ≥ 1.
For k = 1, . . . ,K

1. Sample {xi}Ni=1 from X uniformly

2. Kernel density estimation p̂M (·|xi, a) for each i =
1, 2, . . . , N and a ∈ A

3. Approximate value iteration: v̂′k (xi) ← T̂Mvk−1,
v̂k(xi)← v̂′k(xi)−minxj

v̂′k for i, j = 1, 2, . . . , N

4. Function fitting: vk ← Πn
F v̂k.

5. Increment k ← k + 1 and return to Step 1.

We can now establish that the iterates of the algo-
rithm, vk are an weak probabislitic fixed of the operator
Ĝ(N,M,n) = Πn

F ΓN T̂M and hence a good approxima-
tion to v∗, the fixed point of T in the span semi-norm with
high probability if N , M and k are large enough.

Theorem 3.1. Suppose that Assumptions 2.1 and 4.1
hold. Given ε, δ > 0, there exist constants B and C
such that for any

N ≥ 2

(
8BC

ε

)2d

log
2

δ

(
16BC

ε

)d
and n ≥

N

2

(
ε

4BC

)d
, we have

lim
M→∞

lim
k→∞

P (span(vk − v∗) > ε) ≤ δ.

Note that the nearest neighbors scale very poorly with
dimension which is reflected in our bounds. Furthermore,



the dependence on next state sample size, M , is due to
asymptotic convergence of kernel density estimation.

4 ANALYSIS: PROOF OF THEOREM
3.1

We now prove Theorem 3.1. There are two approxima-
tions in ARVL: one is due to density estimation and an-
other is due to function fitting. We first bound the error
due to these approximations. As mentioned before, each
iteration of ARVL can be viewed as iteration of a random
operator, we then bound the error in one iteration. In the
end, we use a stochastic dominance argument to argue
convergence.

Error due to density estimation. We first want to es-
tablish that when M is large enough, α̂M < 1 with high
probability. Let us now recall that L1 distance between
any two densities µ and ν over X is given as:

‖µ− ν‖1 =

∫
X
|µ(x)− ν(x)| dx

If we can bound the L1 norm, we get a bound on total-
variation norm as well since if

∫
|µ − ν|dx < δ then

|µ(B) − ν(B)| < δ for all B. Next, we present conver-
gence of estimated density to the true density in L1 norm
as shown in [4] which needs the following assumptions:

Assumption 4.1. 1. Let K : Rd → R such that∫
K(x)dx = 1 and L(u) = sup‖x‖≥uK(x) for

u ≥ 0.

2. hM is a sequence of positive numbers such that
hM → 0 and M hdM →∞ as M →∞.

3. The density p(·|x, a) is almost everywhere continu-
ous for all (x, a) ∈ X ×A and ‖x‖dK(x)→ 0 as
‖x‖ → ∞.

Theorem 4.1. Let K be a smoothing kernel such that
Assumption 4.1 holds then the following holds with prob-
ability 1,

lim
M→∞

‖p(·|x, a)− p̂M (·|x, a)‖1 = 0

for all (x, a) ∈ X ×A.

This now leads to the following lemma:

Lemma 4.2. Assume that Assumption 4.1 holds then for
any δ ∈ (0, 1− α),

lim
M→∞

P(α̂M ≥ 1− δ) = 0

Proof. The proof is a direct application of Theorem 4.1.
For any (x, a), (x′, a′) ∈ X ×A,

‖P̂M (·|x, a)− P̂M (·|x′, a′)‖TV
≤ ‖P̂M (·|x, a)− P (·|x, a)‖TV

+ ‖P (·|x′, a′)− P̂M (·|x′, a′)‖TV + ‖P (·|x, a)− P (·|x′, a′)‖TV

Using ergodicity of transition kernel as mentioned in
assumption 2.1 (d) and Theorem 4.1, we conclude the
lemma.

Error due to function approximation with nearest
neighbors. In the previous section, we had defined
ΓN for vectors in RN but it can be extended to X as
Γ : Lip(X )→ Lip(X ) defined as Γ f = f −min f . Let
gM : X → R be such that

gM (x) =

[
max
a∈A

{
r (x, a) + Ex′∼P̂M (·|x,a)v (x′)

}]
for any continuous value function v ∈ Lip(X ). Now, we
define fM : X → R and f̃M : X → R via

fM (x) = E [gM ] and f̃M (x) = E [Γ gM ]

f̃M is the regression function. It is the expected value of
our approximate estimator of Tv. As expected, fM → Tv
as M →∞. We note that fM is not necessarily equal to
Tv by Jensen’s inequality.

In the next lemma we show that we can make the bias be-
tween the regression function fM and the Bellman update
T v arbitrarily small uniformly over x ∈ X when M is
large enough.

Lemma 4.3. Under Assumption 4.1, the following holds

lim
M→∞

‖fM − T v‖∞ = 0

Proof. For any x ∈ X , we compute

|fM (x)− Tv (x) |

≤E
[∣∣∣∣max

a∈A

{
r (x, a) + Ex′∼P̂M (·|x,a)v (x′)

}
−max

a∈A

{
r (x, a) + Ex′∼P (· | x, a) [v (x′)]

} ∣∣∣∣]
≤E

[
max
a∈A

∣∣∣Ex′∼P̂M (·|x,a)v (x′)− Ex′∼P (· | x, a) [v (x′)]
∣∣∣]

Note that the value function v is a continuous function on
a compact set X hence supx∈X v(x) = ‖v‖∞ <∞. Let



the action which maximizes the inner term be a∗x then by
Jenson’s and Cauchy-Schwartz inequalities we have

lim
M→∞

|fM (x)− Tv (x) |

≤ ‖v‖∞ lim
M→∞

E
[ ∫
X

∣∣p̂M (x′|x, a∗x)

− p(x′|x, a∗x)
∣∣λ(dx′)

]
Using bounded convergence theorem and Theorem 4.1,
the proof concludes.

The next lemma is from [5] which presents the rate of
convergence in sup-norm for nearest neighbor regression.

Lemma 4.4. Suppose for a value function v ∈ Lip(X ),
there exist constants B and C such that ‖v‖∞ < B and
the regression function fM is Lipschitz with constant C for

any M , then for δ, ε > 0, n ≥ n0(ε) =
N

2

(
ε

4BC

)d
and

N ≥ N0(ε, δ) = 2

(
8BC

ε

)2d

log
2

δ

(
16BC

ε

)d
we have

lim
M→∞

P(‖Ĝ v − f̃M‖∞ ≥ ε) ≤ δ.

One-step error analysis of the random operator. The
following lemma provides a probabilistic bound on the
one-step error of the ARVL, which points out that the
error in one iteration can be controlled if the samples are
sufficiently large.

Lemma 4.5. Given v ∈ Lip (X ), ε > 0, and δ ∈ (0, 1).
Also choose N ≥ N0(ε, δ) and n ≥ n0(ε), Then we have

lim
M→∞

P(span(Ĝ v − Tv) ≥ ε) ≤ δ.

Proof. By the triangle inequality,

span(Ĝ v − T v) ≤ span(Ĝ v − f̃M ) + span(fM − T v)

where the last inequality follows from the fact that
span(f̃M − fM ) = span(E[ΓgM − gM ]) = 0. From
Lemma 4.4, if n ≥ n0(ε) and N ≥ N0(ε, δ) then with
probability 1 − δ, ‖Ĝ v − f̃M‖∞ < ε. Combining with
Lemma 4.3 concludes the proof.

Next we establish that it is indeed a random contraction.

Lemma 4.6. For a given N,M,n ≥ 1, the operator
Ĝ(N,M,n) = Πn

F ΓN T̂M is a random contraction op-
erator, i.e, for any v1, v2 ∈ Lip(X ),

span(Ĝ v1 − Ĝ v2) ≤ α̂M span(v1 − v2)

where α̂M is a the random contraction coefficient.

Proof. Since we use n-NN for function fitting, we can
easily establish that Πn

F in this case is a non-expansive
mapping:

‖Πn
F v̂1 −Πn

F v̂2‖∞ ≤ ‖v̂1 − v̂2‖∞.

Note that in the above equation if min v̂1 = min v̂2 = 0
then it also holds in span norm. Hence,

span(Πn
F ΓN v̂1 −Πn

F ΓN v̂1) = span(v̂1 − v̂2)

Since Ĝ is a composition of a non-expansive mapping
with a (random) contraction, i.e, for any v1, v2 ∈ Lip(X )

span(Πn
F ΓN T̂M v1 −Πn

F ΓN T̂M v2)

= span(T̂M v1 − T̂M v2)

≤ α̂Mspan(v1 − v2)

Stochastic Dominance. The following lemma is from
[7] which enables us to analyze iteration of the composed
operator.

Theorem 4.7. Assume that the following holds:

1. T : Lip(X )→ Lip(X ) is a contraction operator in
span norm with contraction coefficient α < 1.

2. For any v ∈ Lip (X ), we have

lim
M,N,n→∞

P(span(Ĝ v − Tv) ≥ ε) = 0.

3. Let α̂M be the contraction coefficient of Ĝ such that
for δ ∈ (0, 1− α),

lim
M→∞

P(α̂M ≥ 1− δ) = 0.

4. There exists w > 0 such that span(Ĝ v∗ − T v∗) ≤
w almost surely.

Then, v∗ is weak probabilistic fixed point of random oper-
ator Ĝ(N,M,n).

Sketch of the proof: The key element in the proof is
stochastic dominance of a Markov chain (over natural



numbers) on the error process {span(vk − v∗)}k≥0. Re-
call that vk = Ĝ vk−1, we decompose the process as

span(vk − v∗) ≤ span(Ĝ vk−1 − Ĝ v∗)

+ span(Ĝ v∗ − Tv∗)
≤ α̂M span(vk−1 − v∗)

+ span(Ĝ v∗ − Tv∗)

For for all v ∈ Lip(X ), let us now define for ε > 0, δ ∈
(0, 1− α), n,N,M ≥ 1,

q(ε, δ,N,M, n) , P
(
α̂M ≤ 1− δ, (2)

span
(
Ĝ v − T v

)
≤ ε
)
,

which we will denote by q. By Hoeffding-Frechet bound,

q ≥ P (α̂M ≤ 1− δ) + P
(
span

(
Ĝ v − T v

)
≤ ε
)
− 1

Fix κ > 0, ε ∈ (0, κ/2], δ ∈ (0, 1 − α) such that η =
d2/δe ≤ κ/ε, a Markov chain is constructed over natural
numbers as follows:

Yk =


η w.p. q if Yk = η

Yk−1 w.p. q if Yk ≥ η + 1

Yk−1 + dw/εe w.p. 1− q

The next step is to show that this Markov chain stochas-
tically dominates the error process. Let us first define
stochastic dominance:

Definition 4.1. Let X and Y be two random variables,
then Y stochastically dominates X , written X ≤st Y ,
when P(X ≥ θ) ≤ P (Y ≥ θ), for all θ in the support of
Y .

This yields for any t > 0,

P (Yk ≥ t) ≥ P (span(vk − v∗) ≥ t)

Now it remains to show that the Markov chain admits an
invariant distribution which concentrates at state 1 when
the samples are sufficiently high.

Proof of theorem 3.1. Now we apply Theorem 4.7. Note
that the first assumption in the theorem is satisfied by the
ergodicity condition assumed in Assumption 2.1. The
second and the third assumptions are satisfied by Lemma
4.5 and Lemma 4.2 respectively. The fourth one follows
from bounded rewards and the fact that v∗ is a fixed point
of operator T . Hence, Theorem 4.7 can be applied to
conclude the convergence.

5 NUMERICAL PERFORMANCE

We now show numerical performance on a benchmark
problem of machine replacement. This problem has been
studied for discounted setting [11]. We work out the de-
tails under average reward criterion. In this problem, the
state space is non-negative real numbers and two actions
are available in each state; keep the machine or replace
it. Let the action of keeping the machine be denoted as 0
and replacement as 1. The transition dynamics are given
as follows:

P (x′|x, a) =


β exp (−β(x′ − x)) , if x′ ≥ x, a = 0

β exp (−βx′) , if x′ ≥ 0, a = 1

0, otherwise.

If we decide the keep the machine, we need to pay
the maintenance cost which increases with state and for
replacement, we need to pay a fixed amount. Hence,
the reward function is given by r(x, 0) = −αx and
r(x, 1) = −C.

The optimality equation is given as follows:

J∗ + v∗(x) = max (T0, T1)

where

T0 = −αx+

∫ ∞
x

β exp (−β(x′ − x)) v∗(x′)dx′

and

T1 = −C +

∫ ∞
0

β exp (−βx′) v∗(x′)dx′

One could guess that the optimal policy will be a threshold
policy, i.e., there exists a x̄ such that following holds:

π∗(x) =

{
0, if x ≤ x̄
1, otherwise.

For x ∈ [0, x̄],

J∗ + v∗(x) = −αx+

∫ ∞
x

β exp (−β(y − x)) v∗(y)dy

Differentiating both sides, we have

(v∗)′(x) = −α+ β2 exp(βx)

∫ ∞
x

exp (−βy) v∗(y)dy

− βv∗(x)

= −α+ αβx+ βJ∗.

Recall that for x ≥ x̄, the value function does not depend
on x. Hence for x = x̄, we have

J∗ + v∗(x̄) = −αx̄+ β

∫ ∞
x̄

exp (−β(y − x̄)) v∗(y)dy

= −αx̄+ v∗(x̄).



Hence, J∗ = −αx̄. To compute x̄, we need to solve the
following equation:∫ x̄

0

β

(
αβ

2
x2 − αx(1 + βx̄)

)
exp(−βx)dx

+

∫ ∞
x̄

β

(
−αx̄−

αβ

2
x̄2

)
exp(−βx)dx

+ 2αx̄+
αβ

2
x̄2 − C = 0

Once we have x̄, we can compute the optimal value func-
tion as

v∗(x) =


−α(1 + βx̄) +

αβ

2
x2 if 0 ≤ x ≤ x̄

−αx̄−
αβ

2
x̄2 otherwise.

Recall that v∗ is unique upto a constant. For our experi-
ments, we use β = 2/3, α = 3, C = 15. This gives the
optimality policy as π∗(x) = 0 if x ≤ 2.654 ,otherwise 1
and J∗ = −7.962. Note that one could use any reference
state instead of minimum of the function. Fig. 1 shows
the estimation of transition probability using Gaussian
and tophat kernel for M = 50 and hM = 0.2 for a fixed
state-action pair (2, 0). Fig. 2 presents the optimal and

Figure 1: Kernel density estimation using Gaussian kernel
(left) and tophat kernel (right)

estimated value function. We used Gaussian kernel here
with a bandwidth of 0.2. The number of states sampled
and number of neighbors are fixed to N = 100, n = 20
and number of next states are varied M = 10, 50. Larger
values of M give a smoother estimation of density and
hence a better estimation of value function.

6 CONCLUSIONS

In this paper, we proposed an approximate relative value
learning (ARVL) algorithm for MDPs with continuous
state space. It is a variant of relative value iteration for
average-reward MDP, a combination of kernel density
estimation and non-parametric function approximation.
Although, we focused on nearest neighbors regression,

Figure 2: Optimal and estimated value function

the framework developed in this paper can be extended to
any non-parametric setting as long as the function approx-
imation is non-expansion and convergence to regression
function can be established in sup-norm. The proof argu-
ment is based on probabilistic contraction and their con-
vergence to a probabilistic fixed point. We use stochastic
dominance argument to argue convergence of our algo-
rithm with high probability.

APPENDIX

Proof of Lemma 2.1. Consider a Cauchy sequence
{f̃n}n≥1,where f̃n ∈ C̃(X ) i.e, there exists Nε such
that for m,n ≥ Nε, span(f̃m − f̃n) < ε. Fix x0 ∈ X .
Choose a function fn ∈ f̃n such that fn(x0) = 0 for all
n. Hence, for m,n ≥ Nε, fn(x0)− fm(x0) = 0, hence
sup(fn − fm) ≥ 0 ≥ inf(fn − fm). For every x ∈ X ,

|fm(x)− fn(x)| ≤ span(fn − fm) < ε

Hence, fn(x) is a Cauchy sequence in R which implies
that there exists a function f such that limn→∞ fn(x) =
f(x). Furthermore, supx |fm(x)− fn(x)| < ε. Thus, we
have a uniformly Cauchy sequence which implies uniform
convergence. Hence f ∈ CX . Let f̃ be the corresponding
element of f in C̃(X ) then

lim
n→∞

span(f̃n − f̃) = lim
n→∞

span(fn − f)

≤ 2 lim
n→∞

sup(|fn − f |) = 0
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