A PROOF OF LEMMA 2

Proof. The proof technique is standard, and can be found in Zinkevich (2003); Hazan et al. (2016).
First, we prove the regret bound of (21). Note that by Definition 2, $s_{t}^{\eta}(\mathbf{x})$ is $2 \eta^{2} G^{2}$-strongly convex. For convince, we denote $\alpha_{t+1}=1 /\left(2 \eta^{2} G^{2} t\right), \lambda^{s}=2 \eta^{2} G^{2}$, and define the upper bound of the gradients of $s_{t}^{\eta}(\mathbf{x})$ as

$$
\max _{\mathbf{x} \in \mathcal{D}}\left\|\nabla s_{t}^{\eta}(\mathbf{x})\right\|=\max _{\mathbf{x} \in \mathcal{D}}\left\|\eta \mathbf{g}_{t}+2 \eta^{2} G^{2}\left(\mathbf{x}-\mathbf{x}_{t}\right)\right\| \leq G \eta+2 \eta^{2} G^{2} D=: G^{s}
$$

By the update rule of $\mathbf{x}_{t+1}^{\eta, s}$, we have

$$
\begin{align*}
\left\|\mathbf{x}_{t+1}^{\eta, s}-\mathbf{u}\right\| & =\left\|\Pi_{\mathcal{D}}^{I_{d}}\left(\mathbf{x}_{t}^{\eta, s}-\alpha_{t+1} \nabla s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right)\right)-\mathbf{u}\right\| \\
& \leq\left\|\mathbf{x}_{t}^{\eta, s}-\alpha_{t+1} \nabla s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right)-\mathbf{u}\right\| \tag{28}\\
& =\left\|\mathbf{x}_{t}^{\eta, s}-\mathbf{u}\right\|^{2}+\alpha_{t+1}^{2}\left\|\nabla s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right)\right\|^{2}-2 \alpha_{t+1}\left(\mathbf{x}_{t}^{\eta, s}-\mathbf{u}\right)^{\top} \nabla s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right)
\end{align*}
$$

Hence,

$$
\begin{equation*}
2\left(\mathbf{x}_{t}^{\eta, s}-\mathbf{u}\right)^{\top} \nabla s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right) \leq \frac{\left\|\mathbf{x}_{t}^{\eta, s}-\mathbf{u}\right\|-\left\|\mathbf{x}_{t+1}^{\eta, s}-\mathbf{u}\right\|^{2}}{\alpha_{t+1}}+\alpha_{t+1}\left(G^{s}\right)^{2} \tag{29}
\end{equation*}
$$

Summing over 1 to T and applying definition 2, we get

$$
\begin{align*}
2 \sum_{t=1}^{T} s_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, s}\right)-2 \sum_{t=1}^{T} s_{t}^{\eta}(\mathbf{u}) & \leq \sum_{t=1}^{T}\left\|\mathbf{x}_{t}^{\eta, s}-\mathbf{u}\right\|^{2}\left(\frac{1}{\alpha_{t+1}}-\frac{1}{\alpha_{t}}-\lambda^{s}\right)+\left(G^{s}\right)^{2} \sum_{t=1}^{T} \alpha_{t+1} \tag{30}\\
& \leq \frac{\left(G^{s}\right)^{2}}{\lambda^{s}}(1+\log T)
\end{align*}
$$

Note that $\eta \leq \frac{1}{5 D G}$. We have

$$
\begin{equation*}
\left(G^{s}\right)^{2}=G^{2} \eta^{2}+4 \eta^{3} G^{3} D+4 \eta^{4} G^{4} D^{2} \leq G^{2} \eta^{2}+\frac{4 \eta^{2} G^{2}}{5}+\frac{4 \eta^{2} G^{2}}{25} \leq 2 \eta^{2} G^{2}=\lambda^{s} \tag{31}
\end{equation*}
$$

Next, we prove the regret bound of (22). We start with the following inequality

$$
\begin{align*}
\nabla \ell_{t}^{\eta}(\mathbf{x})\left(\nabla \ell_{t}^{\eta}(\mathbf{x})\right)^{\top} & =\eta^{2} \mathbf{g}_{t} \mathbf{g}_{t}^{\top}+4 \eta^{3} \mathbf{g}_{t}\left(\mathbf{x}-\mathbf{x}_{t}\right)^{\top} \mathbf{g}_{t} \mathbf{g}_{t}^{\top}+4 \eta^{4} \mathbf{g}_{t} \mathbf{g}_{t}^{\top}\left(\mathbf{x}-\mathbf{x}_{t}\right)\left(\mathbf{x}-\mathbf{x}_{t}\right)^{\top} \mathbf{g}_{t} \mathbf{g}_{t}^{\top} \\
& =\eta^{2} \mathbf{g}_{t} \mathbf{g}_{t}^{\top}+\mathbf{g}_{t}\left(4 \eta^{3}\left(\mathbf{x}-\mathbf{x}_{t}\right)^{\top} \mathbf{g}_{t}+4 \eta^{4}\left(\left(\mathbf{x}-\mathbf{x}_{t}\right)^{\top} \mathbf{g}_{t}\right)^{2}\right) \mathbf{g}_{t}^{\top} \tag{32}\\
& \preceq 2 \eta^{2} \mathbf{g}_{t} \mathbf{g}_{t}^{\top}=\nabla^{2} \ell_{t}^{\eta}(\mathbf{x})
\end{align*}
$$

where $\nabla^{2} \ell_{t}^{\eta}(\mathbf{x})$ denotes the Hessian matrix. The inequality implies that $\nabla^{2} \ell_{t}^{\eta}(\mathbf{x}) \succeq \nabla \ell_{t}^{\eta}(\mathbf{x})\left(\nabla \ell_{t}^{\eta}(\mathbf{x})\right)^{\top}$. According to Lemma 4.1 in Hazan et al. (2016), $\ell_{t}^{\eta}(\mathbf{x})$ is 1-exp-concave. Next, we prove that the gradient of $\ell_{t}^{\eta}(\mathbf{x})$ can be upper bounded as follows

$$
\begin{equation*}
\max _{\mathbf{x} \in \mathcal{D}}\left\|\nabla \ell_{t}^{\eta}(\mathbf{x})\right\| \leq \eta G+2 \eta^{2} G^{2} D \leq \frac{7}{25 D}=G^{\ell} \tag{33}
\end{equation*}
$$

By Theorem 4.3 in Hazan et al. (2016), we have

$$
\begin{equation*}
\sum_{t=1}^{T} \ell_{t}^{\eta}\left(\mathbf{x}_{t}^{\eta, \ell}\right)-\sum_{t=1}^{T} \ell_{t}^{\eta}(\mathbf{u}) \leq 5\left(1+G^{\ell} D\right) d \log T \leq 10 d \log T \tag{34}
\end{equation*}
$$

Finally, we prove the regret bound of (23). Note that the gradient of $c_{t}(\mathbf{x})$ is upper bounded by $\max _{\mathbf{x} \in \mathcal{D}}\left\|\nabla c_{t}(\mathbf{x})\right\| \leq$ $\eta^{c} G$. Define $m_{t}=\frac{D}{\eta^{c} G \sqrt{t}}$. By the convexity of $c_{t}(\mathbf{x})$, we have $\forall \mathbf{u} \in \mathcal{D}$,

$$
\begin{equation*}
c_{t}\left(\mathbf{x}_{t}^{c}\right)-c_{t}(\mathbf{u}) \leq\left(\mathbf{x}_{t}^{c}-\mathbf{u}\right)^{\top} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right) . \tag{35}
\end{equation*}
$$

On the other hand, according to the update rule of \mathbf{x}_{t+1}^{c}, we have

$$
\begin{align*}
\left\|\mathbf{x}_{t+1}^{c}-\mathbf{u}\right\|^{2} & =\left\|\Pi_{\mathcal{D}}^{I_{d}}\left(\mathbf{x}_{t}^{c}-m_{t} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right)\right)-\mathbf{u}\right\|^{2} \\
& \leq\left\|\mathbf{x}_{t}^{c}-m_{t} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right)-\mathbf{u}\right\|^{2} \tag{36}\\
& =\left\|\mathbf{x}_{t}^{c}-\mathbf{u}\right\|^{2}+m_{t}^{2}\left\|\nabla c_{t}\left(\mathbf{x}_{t}^{c}\right)\right\|^{2}-2 m_{t}\left(\mathbf{x}_{t}^{c}-\mathbf{u}\right)^{\top} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right)
\end{align*}
$$

where the inequality follows from Theorem 2.1 in Hazan et al. (2016). Hence,

$$
\begin{align*}
& 2\left(\mathbf{x}_{t}^{c}-\mathbf{u}\right)^{\top} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right) \\
\leq & \frac{\left\|\mathbf{x}_{t}^{c}-\mathbf{u}\right\|^{2}-\left\|\mathbf{x}_{t+1}^{c}-\mathbf{u}\right\|^{2}}{m_{t}}+m_{t}\left\|\nabla c_{t}\left(\mathbf{x}_{t}^{c}\right)\right\|^{2} \tag{37}\\
\leq & \frac{\left\|\mathbf{x}_{t}^{c}-\mathbf{u}\right\|^{2}-\left\|\mathbf{x}_{t+1}^{c}-\mathbf{u}\right\|^{2}}{m_{t}}+m_{t}\left(\eta^{c} G\right)^{2}
\end{align*}
$$

Substituting the above inequality into (35) and summing over T, we have

$$
\begin{align*}
\sum_{t=1}^{T} c_{t}\left(\mathbf{x}_{t}^{c}\right)-c_{t}(\mathbf{u}) \stackrel{(2)}{\leq} & \sum_{t=1}^{T}\left(\mathbf{x}_{t}^{c}-\mathbf{u}\right)^{\top} \nabla c_{t}\left(\mathbf{x}_{t}^{c}\right) \\
& \leq \frac{1}{2} \sum_{t=1}^{T}\left\|\mathbf{x}_{t}^{c}-\mathbf{u}\right\|^{2}\left(\frac{1}{m_{t}}-\frac{1}{m_{t-1}}\right)+\frac{\left(\eta^{c} G\right)^{2}}{2} \sum_{t=1}^{T} m_{t} \tag{38}\\
& \leq D^{2} \frac{1}{2 m_{T}}+\frac{\left(\eta^{c} G\right)^{2}}{2} \sum_{t=1}^{T} m_{t} \\
& \leq \frac{3}{2} \eta^{c} G D \sqrt{T} \leq \frac{3}{4}
\end{align*}
$$

where the last inequality is due to $\eta^{c}=\frac{1}{2 G D \sqrt{T}}$.

