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The structure of the Supplemental Material is as follows. In Section A, we provide preliminaries for the first-order
and second-order variations on functionals. In Section C, we prove Theorem 3, the sufficient condition 1 for IB-
Learnability. In Section D, we calculate the first and second variations of IB� [p(z|x)] at the trivial representation
p(z|x) = p(z), which is used in proving the Sufficient Condition 2 for IB�-learnability (Section F). After these
preparations, we prove the key result of this paper, Theorem 5, in Section G. Then two important corollaries 5.1, 5.2 are
proved in Section H. In Section I we explore the deep relation between �0, �0[h(x)], the hypercontractivity coefficient,
contraction coefficient and maximum correlation. Finally in Section J, we provide details for the experiments.

A Preliminaries: first-order and second-order variation

Let functional F [f(x)] be defined on some normed linear space R. Let us add a perturbative function ✏h(x) to f(x),
and now the functional F [f(x) + ✏h(x)] can be expanded as

�F [f(x)] = F [f(x) + ✏h(x)]� F [f(x)]

= '1[f(x)] + '2[f(x)] +O(✏3||h||2)

where ||h|| denotes the norm of h, '1[f(x)] = ✏
dF [f(x)]

d✏ is a linear functional of ✏h(x), and is called the first-order
variation, denoted as �F [f(x)]. '2[f(x)] =

1
2✏

2 d2F [f(x)]
d✏2 is a quadratic functional of ✏h(x), and is called the second-

order variation, denoted as �2F [f(x)].

If �F [f(x)] = 0, we call f(x) a stationary solution for the functional F [·].

If �F [f(x)] � 0 for all h(x) such that f(x) + ✏h(x) is at the neighborhood of f(x), we call f(x) a (local) minimum
of F [·].

B Proof of Theorem 1

Proof. If (X,Y ) is IB�-learnable, then there exists Z given by some p1(z|x) such that IB�(X,Y ;Z) <

IB(X,Y ;Ztrivial) = 0, where Ztrivial satisfies p(z|x) = p(z). Since X 0 = g(X) is a uniquely invertible map (if X is
continuous variable, g is additionally required to be continuous), and mutual information is invariant under such an in-
vertible map (Kraskov et al. (2004)), we have that IB�(X 0

, Y ;Z) = I(X 0;Z)� �I(Y ;Z) = I(X;Z)� �I(Y ;Z) =
IB�(X,Y ;Z) < 0 = IB(X 0

, Y ;Ztrivial), so (X 0
, Y ) is IB�-learnable. On the other hand, if (X,Y ) is not IB�-

learnable, then 8Z, we have IB�(X,Y ;Z) � IB(X,Y ;Ztrivial) = 0. Again using mutual information’s invariance
under g, we have for all Z, IB�(X 0

, Y ;Z) = IB�(X,Y ;Z) � IB(X,Y ;Ztrivial) = 0, leading to that (X 0
, Y ) is not

IB�-learnable. Therefore, we have that (X,Y ) and (X 0
, Y ) have the same IB�-learnability.

C Proof of Theorem 3

Proof. To prove Theorem 3, we use the Theorem 1 of Chapter 5 of Gelfand et al. (2000) which gives a necessary
condition for F [f(x)] to have a minimum at f0(x). Adapting to our notation, we have:

Theorem 6 (Gelfand et al. (2000)). A necessary condition for the functional F [f(x)] to have a minimum at f(x) =
f0(x) is that for f(x) = f0(x) and all admissible ✏h(x),

�
2
F [f(x)] � 0

.



Applying to our functional IB� [p(z|x)], an immediate result of Theorem 6 is that, if at p(z|x) = p(z), there exists an
✏h(z|x) such that �2IB� [p(z|x)] < 0, then p(z|x) = p(z) is not a minimum for IB� [p(z|x)]. Using the definition of
IB� learnability, we have that (X,Y ) is IB�-learnable.

D First- and second-order variations of IB�[p(z|x)]

In this section, we derive the first- and second-order variations of IB� [p(z|x)], which are needed for proving Lemma
2.1 and Theorem 4.

Lemma 6.1. Using perturbative function h(z|x), we have

�IB� [p(z|x)] =

Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)
� �

Z
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

�
2IB� [p(z|x)] =

1

2

 Z
dxdz

p(x)2

p(x, z)
h(z|x)2 � �

Z
dxdx

0
dydz

p(x, y)p(x0
, y)

p(y, z)
h(z|x)h(z|x0) + (� � 1)

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

�

Proof. Since IB� [p(z|x)] = I(X;Z)� �I(Y ;Z), let us calculate the first and second-order variation of I(X;Z) and
I(Y ;Z) w.r.t. p(z|x), respectively. Through this derivation, we use ✏h(z|x) as a perturbative function, for ease of
deciding different orders of variations. We will finally absorb ✏ into h(z|x).

Denote I(X;Z) = F1[p(z|x)]. We have

F1[p(z|x)] = I(X;Z) =

Z
dxdzp(z|x)p(x)log

p(z|x)

p(z)

Since

p(z) =

Z
p(z|x)p(x)dx

We have

p(z)|p(z|x)+✏h(z|x) = p(z)|p(z|x) + ✏

Z
h(z|x)p(x)dx

Expanding F1[p(z|x) + ✏h(z|x)] to the second order of ✏, we have



F1[p(z|x) + ✏h(z|x)]

=

Z
dxdzp(x)[p(z|x) + ✏h(z|x)]log

p(z|x) + ✏h(z|x)

p(z) + ✏
R
h(z|x0)p(x0)dx0

=

Z
dxdzp(x)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(z|x)
⇣
1 + ✏

h(z|x)
p(z|x)

⌘

p(z)
⇣
1 + ✏

R
h(z|x0)p(x0)dx0

p(z)

⌘

=

Z
dxdzp(x)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(z|x)

p(z)

✓
1 + ✏

h(z|x)

p(z|x)

◆✓
1� ✏

R
h(z|x0)p(x0)dx0

p(z)

+ ✏
2

✓R
h(z|x0)p(x0)dx0

p(z)

◆2◆�
+O(✏3)

=

Z
dxdzp(x)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(z|x)

p(z)

✓
1 + ✏

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆

+ ✏
2

✓R
h(z|x0)p(x0)dx0

p(z)

◆2

� ✏
2h(z|x)

p(z|x)

R
h(z|x0)p(x0)dx0

p(z)

◆�
+O(✏3)

=

Z
dxdzp(x)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(z|x)

p(z)
+ ✏

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆

+ ✏
2

✓R
h(z|x0)p(x0)dx0

p(z)

◆2

� ✏
2h(z|x)

p(z|x)

R
h(z|x0)p(x0)dx0

p(z)
�

1

2
✏
2

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆2�
+O(✏3)

Collecting the first order terms of ✏, we have

�F1[p(z|x)]

= ✏

Z
dxdzp(x)p(z|x)

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆
+ ✏

Z
dxdzp(x)p(z|x)

h(z|x)

p(z|x)
log

p(z|x)

p(z)

= ✏

Z
dxdzp(x)h(z|x)� ✏

Z
dx

0
dzp(x0)h(z|x0) + ✏

Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)

= ✏

Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)

Collecting the second order terms of ✏2, we have

�
2
F1[p(z|x)]

= ✏
2

Z
dxdzp(x)p(z|x)

✓R
h(z|x0)p(x0)dx0

p(z)

◆2

�
h(z|x)

p(z|x)

R
h(z|x0)p(x0)dx0

p(z)
�

1

2

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆2�

+ ✏
2

Z
dxdzp(x)p(z|x)

h(z|x)

p(z|x)

✓
h(z|x)

p(z|x)
�

R
h(z|x0)p(x0)dx0

p(z)

◆

=
✏
2

2

Z
dxdz

p(x)2

p(x, z)
h(z|x)2 �

✏
2

2

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

Now let us calculate the first and second-order variation of F2[p(z|x)] = I(Z;Y ). We have

F2[p(z|x)] = I(Y ;Z) =

Z
dydzp(z|y)p(y)log

p(y, z)

p(y)p(z)
=

Z
dxdydzp(z|y)p(x, y)log

p(y, z)

p(y)p(z)

Using the Markov chain Z  X $ Y , we have

p(y, z) =

Z
p(z|x)p(x, y)dx



Hence

p(y, z)|p(z|x)+✏h(z|x) = p(y, z)|p(z|x) + ✏

Z
h(z|x)p(x, y)dx

Then expanding F2[p(z|x) + ✏h(z|x)] to the second order of ✏, we have

F2[p(z|x) + ✏h(z|x)]

=

Z
dxdydzp(x, y)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(y, z)
⇣
1 + ✏

R
h(z|x0)p(x0,y)dx0

p(y,z)

⌘

p(y)p(z)(1 + ✏

R
h(z|x00)p(x00)dx00

p(z) )

=

Z
dxdydzp(x, y)p(z|x)

✓
1 + ✏

h(z|x)

p(z|x)

◆
log

p(y, z)

p(y)p(z)
+ ✏

✓R
h(z|x0)p(x0

, y)dx0

p(y, z)
�

R
h(z|x0)p(x0)dx0

p(z)

◆

+ ✏
2

✓R
h(z|x0)p(x0)dx0

p(z)

◆2

�

R
h(z|x0)p(x0

, y)dx0

p(y, z)

R
h(z|x00)p(x00)dx00

p(z)
�

1

2

✓R
h(z|x0)p(x0

, y)dx0

p(y, z)
�

R
h(z|x0)p(x0)dx0

p(z)

◆2�

+O(✏3)

Collecting the first order terms of ✏, we have

�F2[p(z|x)]

= ✏

Z
dxdydzp(x, y)h(z|x)log

p(y, z)

p(y)p(z)
+ ✏

Z
dxdydzp(x, y)p(z|x)

R
h(z|x0)p(x0

, y)dx0

p(y, z)

� ✏

Z
dxdydzp(x, y)p(z|x)

R
h(z|x0)p(x0)dx0

p(z)

= ✏

Z
dxdydzp(x, y)h(z|x)log

p(y, z)

p(y)p(z)
+ ✏

Z
dx

0
dydzh(z|x0)p(x0

, y)� ✏

Z
dzh(z|x0)p(x0)dx0

= ✏

Z
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

Collecting the second order terms of ✏, we have

�
2
F2[p(z|x)]

= ✏
2

Z
dxdydzp(x, y)p(z|x)

✓R
h(z|x0)p(x0)dx0

p(z)

◆2

�

R
h(z|x0)p(x0

, y)dx0

p(y, z)

R
h(z|x00)p(x00)dx00

p(z)

�

�
✏
2

2

Z
dxdydzp(x, y)p(z|x)

✓R
h(z|x0)p(x0

, y)dx0

p(y, z)
�

R
h(z|x0)p(x0)dx0

p(z)

◆2

+ ✏
2

Z
dxdydzp(x, y)p(z|x)

h(z|x)

p(z|x)

✓R
h(z|x0)p(x0

, y)dx0

p(y, z)
�

R
h(z|x0)p(x0)dx0

p(z)

◆

=
✏
2

2

Z
dxdx

0
dydz

p(x, y)p(x0
, y)

p(y, z)
h(z|x)h(z|x0)�

✏
2

2

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

Finally, we have

�IB� [p(z|x)] = �F1[p(z|x)]� � · �F2[p(z|x)]

= ✏

✓Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)
� �

Z
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

◆ (8)



�
2IB� [p(z|x)] =�

2
F1[p(z|x)]� � · �

2
F2[p(z|x)]

=
✏
2

2

Z
dxdz

p(x)2

p(x, z)
h(z|x)2 �

✏
2

2

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

� �✏
2


1

2

Z
dxdx

0
dydz

p(x, y)p(x0
, y)

p(y, z)
h(z|x)h(z|x0)�

1

2

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

�

=
✏
2

2

 Z
dxdz

p(x)2

p(x, z)
h(z|x)2

� �

Z
dxdx

0
dydz

p(x, y)p(x0
, y)

p(y, z)
h(z|x)h(z|x0) + (� � 1)

Z
dxdx

0
dz

p(x)p(x0)

p(z)
h(z|x)h(z|x0)

�

Absorb ✏ into h(z|x), we get rid of the ✏ factor and obtain the final expression in Lemma 6.1.

E Proof of Lemma 2.1

Proof. Using Lemma 6.1, we have

�IB� [p(z|x)] =

Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)
� �

Z
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

Let p(z|x) = p(z) (the trivial representation), we have that logp(z|x)
p(z) ⌘ 0. Therefore, the two integrals are both 0.

Hence,
�IB� [p(z|x)]

��
p(z|x)=p(z)

⌘ 0

Therefore, the p(z|x) = p(z) is a stationary solution for IB� [p(z|x)].

F Proof of Theorem 4

Proof. Firstly, from the necessary condition of � > 1 in Section 3, we have that any sufficient condition for IB�-
learnability should be able to deduce � > 1.

Now using Theorem 3, a sufficient condition for (X,Y ) to be IB�-learnable is that there exists h(z|x) withR
h(z|x)dx = 0 such that �2IB� [p(z|x)] < 0 at p(z|x) = p(x).

At the trivial representation, p(z|x) = p(z) and hence p(x, z) = p(x)p(z). Due to the Markov chain Z  X $ Y ,
we have p(y, z) = p(y)p(z). Substituting them into the �

2IB� [p(z|x)] in Lemma 6.1, the condition becomes: there
exists h(z|x) with

R
h(z|x)dz = 0, such that

0 > �
2IB� [p(z|x)] =

1

2
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dxdz

p(x)2

p(x)p(z)
h(z|x)2 � �

Z
dxdx

0
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p(x, y)p(x0
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h(z|x)h(z|x0) + (� � 1)

Z
dxdx

0
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p(x)p(x0)

p(z)
h(z|x)h(z|x0)

�

(9)

Rearranging terms and simplifying, we have
Z

dz

p(z)
G[h(z|x)] =

Z
dz

p(z)
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dxh(z|x)2p(x)� �

Z
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p(y)
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G[h(x)] =
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Now we prove that the condition that 9h(z|x) s.t.
R

dz
p(z)G[h(z|x)] < 0 is equivalent to the condition that 9h(x) s.t.

G[h(x)] < 0.

If 8h(z|x), G[h(z|x)] � 0, then we have 8h(z|x),
R

dz
p(z)G[h(z|x)] � 0. Therefore, if 9h(z|x) s.t.

R
dz
p(z)G[h(z|x)] <

0, we have that 9h(z|x) s.t. G[h(z|x)] < 0. Since the functional G[h(z|x)] does not contain integration over z, we
can treat the z in G[h(z|x)] as a parameter and we have that 9h(x) s.t. G[h(x)] < 0.

Conversely, if there exists an certain function h(x) such that G[h(x)] < 0, we can find some h2(z) such thatR
h2(z)dz = 0 and

R h2
2(z)
p(z) dz > 0, and let h1(z|x) = h(x)h2(z). Now we have

Z
dz

p(z)
G[h(z|x)] =

Z
h
2
2(z)dz
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G[h(x)] = G[h(x)]

Z
h
2
2(z)dz

p(z)
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In other words, the condition Eq. (9) is equivalent to requiring that there exists an h(x) such that G[h(x)] < 0 . Hence,
a sufficient condition for IB�-learnability is that there exists an h(x) such that

G[h(x)] =

Z
dxh(x)2p(x)� �

Z
dy

p(y)

✓Z
dxh(x)p(x)p(y|x)
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< 0 (10)

When h(x) = C = const in the entire input space X , Eq. (10) becomes:

C
2
� �C

2 + (� � 1)C2
< 0

which cannot be true. Therefore, h(x) = const cannot satisfy Eq. (10).

Rearranging terms and simplifying, and note that
⇥ R

dxh(x)p(x)
⇤2

> 0 due to h(x) 6⌘ 0 = const, we have

�
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�
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For the R.H.S. of Eq. (11), let us show that it is greater than 0. Using Cauchy-Schwarz inequality: hu, uihv, vi �
hu, vi

2, and setting u(x) = h(x)
p
p(x), v(x) =

p
p(x), and defining the inner product as hu, vi =

R
u(x)v(x)dx.
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dxh(x)2p(x)
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= 1

It attains equality when u(x)
v(x) = h(x) is constant. Since h(x) cannot be constant, we have that the R.H.S. of Eq. (11)

is greater than 0.

For the L.H.S. of Eq. (11), due to the necessary condition that � > 0, if
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 0, Eq.

(11) cannot hold. Then the h(x) such that Eq. (11) holds is for those that satisfies
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We see this constraint contains the requirement that h(x) 6⌘ const.



Written in the form of expectations, we have

Ey⇠p(y)
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Ex⇠p(x|y)[h(x)]
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Ex⇠p(x)[h(x)]

�2 (12)

Since the square function is convex, using Jensen’s inequality on the outer expectation on the L.H.S. of Eq. (12), we
have

Ey⇠p(y)
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The equality holds iff Ex⇠p(x|y)[h(x)] is constant w.r.t. y, i.e. Y is independent of X . Therefore, in order for Eq. (12)
to hold, we require that Y is not independent of X .

Using Jensen’s inequality on the innter expectation on the L.H.S. of Eq. (12), we have

Ey⇠p(y)
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The equality holds when h(x) is a constant. Since we require that h(x) is not a constant, we have that the equality
cannot be reached.

Under the constraint that Y is not independent of X , we can divide both sides of Eq. 10, and obtain the condition:
there exists an h(x) such that

� >

R
dxh(x)2p(x)� R
dxh(x)p(x)

�2 � 1

R dy
p(y)

� R
dxh(x)p(x)p(y|x)

�2
� R

dxh(x)p(x)
�2 � 1

i.e.

� > inf
h(x)

R
dxh(x)2p(x)� R
dxh(x)p(x)

�2 � 1

R dy
p(y)

� R
dxh(x)p(x)p(y|x)

�2
� R

dxh(x)p(x)
�2 � 1

Written in the form of expectations, we have

� > inf
h(x)

Ex⇠p(x)[h(x)
2]

(Ex⇠p(x)[h(x)])
2 � 1

R dy
p(y)

⇣Ex⇠p(x)[p(y|x)h(x)]
Ex⇠p(x)[h(x)]

⌘2
� 1

= inf
h(x)

Ex⇠p(x)[h(x)
2]

(Ex⇠p(x)[h(x)])
2 � 1

Ey⇠p(y)

⇣Ex⇠p(x|y)[h(x)]
Ex⇠p(x)[h(x)]

⌘2 �
� 1

We can absorb the constraint Eq. (12) into the above formula, and get

� > inf
h(x)

�0[h(x)]



where

�0[h(x)] =

Ex⇠p(x)[h(x)
2]

(Ex⇠p(x)[h(x)])
2 � 1

Ey⇠p(y)

⇣Ex⇠p(x|y)[h(x)]
Ex⇠p(x)[h(x)]

⌘2 �
� 1

which proves the condition of Theorem 4.

Furthermore, from Eq. (13) we have

�0[h(x)] > 1

for h(x) 6⌘ const, which satisfies the necessary condition of � > 1 in Section 3.

Proof of lower bound of slope of the Pareto frontier at the origin:

Now we prove the second statement of Theorem 4. Since �I(X;Z) = 0 and �I(Y ;Z) = 0 according to Lemma 2.1,

we have
⇣

�I(Y ;Z)
�I(X;Z)

⌘�1
=
⇣

�2I(Y ;Z)
�2I(X;Z)

⌘�1
. Substituting into the expression of �2I(Y ;Z) and �

2
I(X;Z) from Lemma

6.1, we have

✓
�I(Y ;Z)

�I(X;Z)

◆�1

=

✓
�
2
I(Y ;Z)

�2I(X;Z)

◆�1

=
✏2

2

R
dxdz

p(x)2

p(x)p(z)h(z|x)
2
�

✏2

2

R
dxdx

0
dz

p(x)p(x0)
p(z) h(z|x)h(z|x0)

✏2

2

R
dxdx0dydz p(x,y)p(x0,y)

p(y)p(z) h(z|x)h(z|x0)� ✏2

2

R
dxdx0dz p(x)p(x0)

p(z) h(z|x)h(z|x0)

=

�R
dxp(x)h(x)2 �

R
dxdx

0
p(x)p(x0)h(x)h(x0)

� R h2(z)
2

p(z) dz
⇣R

dxdx0dy p(x,y)p(x0,y)
p(y) h(x)h(x0)�

R
dxdx0p(x)p(x0)h(x)h(x0)

⌘ R h2(z)2

p(z) dz

=

R
dxp(x)h(x)2 �

R
dxdx

0
p(x)p(x0)h(x)h(x0)

R
dxdx0dy p(x,y)p(x0,y)

p(y) h(x)h(x0)�
R
dxdx0p(x)p(x0)h(x)h(x0)

=
Ex⇠p(x)[h(x)

2]�
�
Ex⇠p(x)[h(x)]

�2

Ey⇠p(y)

⇥ �
Ex⇠p(x|y)[h(x)]

�2 ⇤
�
�
Ex⇠p(x)[h(x)]

�2

=

Ex⇠p(x)[h(x)
2]

(Ex⇠p(x)[h(x)])
2 � 1

Ey⇠p(y)

⇣Ex⇠p(x|y)[h(x)]
Ex⇠p(x)[h(x)]

⌘2 �
� 1

= �0[h(x)]

Therefore,
�
infh(x) �0[h(x)]

��1 gives the largest slope of �I(Y ;Z) vs. �I(X;Z) for perturbation function of the

form h1(z|x) = h(x)h2(z) satisfying
R
h2(z)dz = 0 and

R h2
2(z)
p(z) dz > 0, which is a lower bound of slope of

�I(Y ;Z) vs. �I(X;Z) for all possible perturbation function h1(z|x). The latter is the slope of the Pareto frontier of
the I(Y ;Z) vs. I(X;Z) curve at the origin.

Inflection point for general Z: If we do not assume that Z is at the origin of the information plane, but at some
general stationary solution Z

⇤ with p(z|x), we define



�
(2)[h(x)] =

✓
�
2
I(Y ;Z)

�2I(X;Z)

◆�1

=
✏2

2

R
dxdz

p(x)2

p(x,z)h(z|x)
2
�

✏2

2

R
dxdx

0
dz

p(x)p(x0)
p(z) h(z|x)h(z|x0)

✏2

2

R
dxdx0dydz p(x,y)p(x0,y)

p(y,z) h(z|x)h(z|x0)� ✏2

2

R
dxdx0dz p(x)p(x0)

p(z) h(z|x)h(z|x0)

=

R
dxdz

p(x)2

p(x,z)h(x)
2
�
R
dxdx

0
dz

p(x)p(x0)
p(z) h(x)h(x0)

R
dxdx0dydz p(x,y)p(x0,y)

p(y,z) h(x)h(x0)�
R
dxdx0dz p(x)p(x0)

p(z) h(x)h(x0)

=

R
dz
p(z)

hR
dx

p(x)2

p(x|z)h(x)
2
�
�R

dxp(x)h(x)
�2i

R
dz
p(z)

hR dy
p(y|z)

�R
dxp(x, y)h(x)

�2
�
�R

dxp(x)h(x)
�2i

=

R
dz
p(z)

 R
dx p(x)2

p(x|z)h(x)
2

(
R
dxp(x)h(x))2

� 1

�

R
dz
p(z)

 R dy
p(y|z) (

R
dxp(x,y)h(x))2

(
R
dxp(x)h(x))2

� 1

�

=

R
dz

 R
dx p(x)

p(z|x)h(x)
2

(
R
dxp(x)h(x))2

�
1

p(z)

�

R
dz

 R dy
p(z|y)p(y) (

R
dxp(x,y)h(x))2

(
R
dxp(x)h(x))2

�
1

p(z)

�

=

R
dz

hR
dx

p(x)
p(z|x)h(x)

2
�

1
p(z) (

R
dxp(x)h(x))2

i

R
dz

hR dy
p(z|y)p(y)

�R
dxp(x, y)h(x)

�2
�

1
p(z)

�R
dxp(x)h(x)

�2i

which reduces to �0[h(x)] when p(z|x) = p(z). When

� > inf
h(x)

�
(2)[h(x)] (14)

it becomes a non-stable solution (non-minimum), and we will have other Z that achieves a better IB�(X,Y ;Z) than
the current Z⇤.

Multiple phase transitions To discuss multiple phase transitions, let us first obtain the �
(1) for stationary solution

for the IB objective. At a stationary solution for IB� [p(z|x)], for valid perturbation h(z|x) satisfying
R
dzh(z|x) = 0

for any x, we have �
⇥
IB� [p(z|x)]�

R
dzdx�(x)p(z|x)

⇤
= 0 as a constraint optimization with �(x) as Lagrangian

multipliers. Using Eq. (8), we have

�IB� [p(z|x)]� �

Z
dzdx�(x)p(z|x)

=

Z
dxdzp(x)h(z|x)log

p(z|x)

p(z)
� �

Z
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)
�

Z
dzdx�(x)h(z|x) = 0

Therefore, we have

�
(1)
⌘

R
dxdzp(x)h(z|x)logp(z|x)

p(z) �
R
dzdx�(x)h(z|x)

R
dxdydzp(x, y)h(z|x)logp(z|y)

p(z)

=
p(x)logp(z|x)

p(z) � �(x)
R
dyp(x, y)logp(z|y)

p(z)

(15)

The last equality is due to that the first equality is always true for any function h(z|x). So we can take out theR
dxdzh(z|x) factor. �(x) is used for normalization of p(z|x). Eq. (15) is equivalent to the result of the self-consistent

equation in Tishby et al. (2000).



Eq. (15) and Eq. (14) provide us with an ideal tool to study multiple phase transitions. For each �, at the minimization
of the IB objective, Eq. (15) is satisfied by some Z⇤ that is at the Pareto frontier on the I(Y ;Z) vs. I(X;Z) plane. As
we increase �, the infh(x) �(2)[h(x)] may remain stable for a wide range of �, until � is greater than infh(x) �

(2)[h(x)],
at which point we will have a phase transition where suddenly there is a better Z = Z

⇤⇤ that achieves much lower
IB�(X,Y ;Z) value.

For example, we can rewrite Eq. (15) as

log
p(z|x)

p(z)
= �

(1)

Z
dyp(y|x)log

p(z|y)

p(z)
+ �̃(x) (16)

where �̃(x) = �(x)
p(x) . By substituting into Eq. (14), we may proceed and get useful results.

G Proof of Theorem 5

Proof. According to Theorem 4, a sufficient condition for (X,Y ) to be IB�-learnable is that X and Y are not inde-
pendent, and

� > inf
h(x)

Ex⇠p(x)[h(x)
2]

(Ex⇠p(x)[h(x)])
2 � 1

Ey⇠p(y)

⇣Ex⇠p(x|y)[h(x)]
Ex⇠p(x)[h(x)]

⌘2 �
� 1

(17)

We can assume a specific form of h(x), and obtain a (potentially stronger) sufficient condition. Specifically, we let

h(x) =

(
1, x 2 ⌦x

0, otherwise
(18)

for certain ⌦x ⇢ X . Substituting into Eq. (18), we have that a sufficient condition for (X,Y ) to be IB�-learnable is

� > inf
⌦x⇢X

p(⌦x)
p(⌦x)2

� 1

R
dyp(y)

⇣ R
x2⌦x

dxp(x|y)dx
p(⌦x)

⌘2
� 1

> 0 (19)

where p(⌦x) =
R
x2⌦x

p(x)dx.

The denominator of Eq. (19) is

Z
dyp(y)

 R
x2⌦x

dxp(x|y)dx

p(⌦x)

!2

� 1

=

Z
dyp(y)

✓
p(⌦x|y)

p(⌦x)

◆2

� 1

=

Z
dy

p(y|⌦x)2

p(y)
� 1

= Ey⇠p(y|⌦x)


p(y|⌦x)

p(y)
� 1

�

Using the inequality x� 1 � log x, we have

Ey⇠p(y|⌦x)


p(y|⌦x)

p(y)
� 1

�
� Ey⇠p(y|⌦x)


log

p(y|⌦x)

p(y)

�
� 0



Both equalities hold iff p(y|⌦x) ⌘ p(y), at which the denominator of Eq. (19) is equal to 0 and the expression inside
the infimum diverge, which will not contribute to the infimum. Except this scenario, the denominator is greater than
0. Substituting into Eq. (19), we have that a sufficient condition for (X,Y ) to be IB�-learnable is

� > inf
⌦x⇢X

p(⌦x)
p(⌦x)2

� 1

Ey⇠p(y|⌦x)

h
p(y|⌦x)
p(y) � 1

i (20)

Since ⌦x is a subset of X , by the definition of h(x) in Eq. (18), h(x) is not a constant in the entire X . Hence the
numerator of Eq. (20) is positive. Since its denominator is also positive, we can then neglect the “> 0”, and obtain the
condition in Theorem 5.

Since the h(x) used in this theorem is a subset of the h(x) used in Theorem 4, the infimum for Eq. (4) is greater
than or equal to the infimum in Eq. (2). Therefore, according to the second statement of Theorem 4, we have that the
(inf⌦x⇢X �0(⌦x))

�1 is also a lower bound of the slope for the Pareto frontier of I(Y ;Z) vs. I(X;Z) curve.

Now we prove that the condition Eq. (4) is invariant to invertible mappings of X . In fact, if X 0 = g(X) is a uniquely
invertible map (if X is continuous, g is additionally required to be continuous), let X 0 = {g(x)|x 2 ⌦x}, and denote
g(⌦x) ⌘ {g(x)|x 2 ⌦x} for any ⌦x ⇢ X , we have p(g(⌦x)) = p(⌦x), and p(y|g(⌦x)) = p(y|⌦x). Then for dataset
(X,Y ), let ⌦0

x = g(⌦x), we have

1
p(⌦0

x)
� 1

Ey⇠p(y|⌦0
x)


p(y|⌦0

x)
p(y) � 1

� =
1

p(⌦x)
� 1

Ey⇠p(y|⌦x)


p(y|⌦x)
p(y) � 1

� (21)

Additionally we have X
0 = g(X ). Then

inf
⌦0

x⇢X 0

1
p(⌦0

x)
� 1

Ey⇠p(y|⌦0
x)


p(y|⌦0

x)
p(y) � 1

� = inf
⌦x⇢X

1
p(⌦x)

� 1

Ey⇠p(y|⌦x)


p(y|⌦x)
p(y) � 1

� (22)

For dataset (X 0
, Y ) = (g(X), Y ), applying Theorem 5 we have that a sufficient condition for it to be IB�-learnable is

� > inf
⌦0

x⇢X 0

1
p(⌦0

x)
� 1

Ey⇠p(y|⌦0
x)


p(y|⌦0

x)
p(y) � 1

� = inf
⌦x⇢X

1
p(⌦x)

� 1

Ey⇠p(y|⌦x)


p(y|⌦x)
p(y) � 1

� (23)

where the equality is due to Eq. (22). Comparing with the condition for IB�-learnability for (X,Y ) (Eq. (4)), we see
that they are the same. Therefore, the condition given by Theorem 5 is invariant to invertible mapping of X .

H Proof of Corollary 5.1 and Corollary 5.2

H.1 Proof of Corollary 5.1

Proof. We use Theorem 5. Let ⌦x contain all elements x whose true class is y⇤ for some certain y
⇤, and 0 otherwise.

Then we obtain a (potentially stronger) sufficient condition. Since the probability p(y|y⇤, x) = p(y|y⇤) is class-
conditional, we have



inf
⌦x⇢X

1
p(⌦x)

� 1

Ey⇠p(y|⌦x)


p(y|⌦x)
p(y) � 1

�

= inf
y⇤

1
p(y⇤) � 1

Ey⇠p(y|y⇤)


p(y|y⇤)
p(y) � 1

�

By requiring � > infy⇤

1
p(y⇤)�1

Ey⇠p(y|y⇤)

⇥
p(y|y⇤)

p(y) �1
⇤ , we obtain a sufficient condition for IB� learnability.

H.2 Proof of Corollary 5.2

Proof. We again use Theorem 5. Since Y is a deterministic function of X , let Y = f(X). By the assumption that
Y contains at least one value y such that its probability p(y) > 0, we let ⌦x contain only x such that f(x) = y.
Substituting into Eq. (4), we have

1
p(⌦x)

� 1

Ey⇠p(y|⌦x)


p(y|⌦x)
p(y) � 1

�

=
1

p(y) � 1

Ey⇠p(y|⌦x)


1

p(y) � 1

�

=
1

p(y) � 1
1

p(y) � 1

=1

Therefore, the sufficient condition becomes � > 1.

I �0, hypercontractivity coefficient, contraction coefficient, �0[h(x)], and maximum
correlation

In this section, we prove the relations between the IB-Learnability threshold �0, the hypercontractivity coefficient
⇠(X;Y ), the contraction coefficient ⌘KL(p(y|x), p(x)), �0[h(x)] in Eq. (2), and maximum correlation ⇢m(X,Y ), as
follows:

1

�0
= ⇠(X;Y ) = ⌘KL(p(y|x), p(x)) � sup

h(x)

1

�0[h(x)]
= ⇢

2
m(X;Y ) (24)

Proof. The hypercontractivity coefficient ⇠ is defined as (Anantharam et al., 2013):

⇠(X;Y ) ⌘ sup
Z�X�Y

I(Y ;Z)

I(X;Z)

By our definition of IB-learnability, (X , Y ) is IB-Learnable iff there exists Z obeying the Markov chain Z �X � Y ,
such that

I(X;Z)� � · I(Y ;Z) < 0 = IB�(X,Y ;Z)|p(z|x)=p(z)



Or equivalently there exists Z obeying the Markov chain Z �X � Y such that

0 <
1

�
<

I(Y ;Z)

I(X;Z)
(25)

By Theorem 2, the IB-Learnability region for � is (�0,+1), or equivalently the IB-Learnability region for 1/� is

0 <
1

�
<

1

�0
(26)

Comparing Eq. (25) and Eq. (26), we have that

1

�0
= sup

Z�X�Y

I(Y ;Z)

I(X;Z)
= ⇠(X;Y ) (27)

In Anantharam et al. (2013), the authors prove that

⇠(X;Y ) = ⌘KL(p(y|x), p(x)) (28)

where the contraction coefficient ⌘KL(p(y|x), p(x)) is defined as

⌘KL(p(y|x), p(x)) = sup
r(x) 6=p(x)

DKL(r(y)||p(y))

DKL(r(x)||p(x))

where p(y) = Ex⇠p(x)[p(y|x)] and r(y) = Ex⇠r(x)[p(y|x)]. Treating p(y|x) as a channel, the contraction coefficient
measures how much the two distributions r(x) and p(x) becomes “nearer” (as measured by the KL-divergence) after
passing through the channel.

In Anantharam et al. (2013), the authors also provide a counterexample to an earlier result by Erkip and Cover (1998)
that incorrectly proved ⇠(X;Y ) = ⇢

2
m(X;Y ). In the specific counterexample Anantharam et al. (2013) design,

⇠(X;Y ) > ⇢
2
m(X;Y ).

The maximum correlation is defined as ⇢m(X;Y ) ⌘ maxf,g E[f(X)g(Y )] where f(X) and g(Y ) are real-valued
random variables such that E[f(X)] = E[g(Y )] = 0 and E[f2(X)] = E[g2(Y )] = 1 (Hirschfeld, 1935; Gebelein,
1941).

Now we prove ⇠(X;Y ) � ⇢
2
m(X;Y ), based on Theorem 4. To see this, we use the alternate characterization of

⇢m(X;Y ) by Rényi (1959):

⇢
2
m(X;Y ) = max

f(X):E[f(X)]=0,E[f2(X)]=1
E[(E[f(X)|Y ])2] (29)

Denoting h = Ep(x)[h(x)], we can transform �0[h(x)] in Eq. (2) as follows:



�0[h(x)] =
Ex⇠p(x)[h(x)

2]�
�
Ex⇠p(x)[h(x)]

�2

Ey⇠p(y)

h�
Ex⇠p(x|y)[h(x)]

�2i
�
�
Ex⇠p(x)[h(x)]

�2

=
Ex⇠p(x)[h(x)

2]� h
2

Ey⇠p(y)

h�
Ex⇠p(x|y)[h(x)]

�2i
� h

2

=
Ex⇠p(x)[(h(x)� h)2]

Ey⇠p(y)

h�
Ex⇠p(x|y)[h(x)� h]

�2i

=
1

Ey⇠p(y)

h�
Ex⇠p(x|y)[f(x)]

�2i

=
1

E[(E[f(X)|Y ])2]

where we denote f(x) = h(x)�h

(Ex⇠p(x)[(h(x)�h)2])1/2
, so that E[f(X)] = 0 and E[f2(X)] = 1.

Combined with Eq. (29), we have

sup
h(x)

1

�0[h(x)]
= ⇢

2
m(X;Y ) (30)

Our Theorem 4 states that

sup
h(x)

1

�0[h(x)]


1

�0
(31)

Combining Eqs. (26), (30) and Eq. (31), we have

⇢
2
m(X;Y )  ⇠(X;Y ) (32)

In summary, the relations among the quantities are:

1

�0
= ⇠(X;Y ) = ⌘KL(p(y|x), p(x)) � sup

h(x)

1

�0[h(x)]
= ⇢

2
m(X;Y ) (33)

J Experiment Details

We use the Variational Information Bottleneck (VIB) objective from Alemi et al. (2016). For the synthetic experiment,
the latent Z has dimension of 2. The encoder is a neural net with 2 hidden layers, each of which has 128 neurons
with ReLU activation. The last layer has linear activation and 4 output neurons; the first two parameterize the mean
of a Gaussian and the last two parameterize the log variance. The decoder is a neural net with 1 hidden layer with
128 neurons and ReLU activation. Its last layer has linear activation and outputs the logit for the class labels. It
uses a mixture of Gaussian prior with 500 components (for the experiment with class overlap, 256 components),
each of which is a 2D Gaussian with learnable mean and log variance, and the weights for the components are also
learnable. For the MNIST experiment, the architecture is mostly the same, except the following: (1) for Z, we let it
have dimension of 256. For the prior, we use standard Gaussian with diagonal covariance matrix.



For all experiments, we use Adam (Kingma and Ba (2014)) optimizer with default parameters. We do not add any
regularization. We use learning rate of 10�4 and have a learning rate decay of 1

1+0.01⇥epoch . We train in total 2000
epochs with batch size of 500.

For estimation of the observed �0 in Fig. 2, in the I(X;Z) vs. �i curve (�i denotes the i
th
�), we take the mean and

standard deviation of I(X;Z) for the lowest 5 �i values, denoting as µ� , �� (I(Y ;Z) has similar behavior, but since
we are minimizing I(X;Z) � � · I(Y ;Z), the onset of nonzero I(X;Z) is less prone to noise). When I(X;Z) is
greater than µ� + 3�� , we regard it as learning a non-trivial representation, and take the average of �i and �i�1 as
the experimentally estimated onset of learning. We also inspect manually and confirm that it is consistent with human
intuition.

For estimating �0 using Alg. 1, at step 6 we use the following discrete search algorithm. We fix ileft = 1 and gradually
narrow down the range [a, b] of iright, starting from [1, N ]. At each iteration, we set a tentative new range [a0, b0], where
a
0 = 0.8a + 0.2b, b0 = 0.2a + 0.8b, and calculate �̃0,a0 = Get�(Py|x, py,⌦a0), �̃0,b0 = Get�(Py|x, py,⌦b0) where

⌦a0 = {1, 2, ...a0} and ⌦b0 = {1, 2, ...b0}. If �̃0,a0 < �̃0,a, let a  a
0. If �̃0,b0 < �̃0,b, let b  b

0. In other words, we
narrow down the range of iright if we find that the ⌦ given by the left or right boundary gives a lower �̃0 value. The
process stops when both �̃0,a0 and �̃0,b0 stop improving (which we find always happens when b

0 = a
0 + 1), and we

return the smaller of the final �̃0,a0 and �̃0,b0 as �̃0.

For estimation of p(y|x) for (20) Alg. 1 and (30) ⌘̂KL for both synthetic and MNIST experiments, we use a 3-layer
neuron net where each hidden layer has 128 neurons and ReLU activation. The last layer has linear activation. The
objective is cross-entropy loss. We use Adam (Kingma and Ba, 2014) optimizer with a learning rate of 1e-4, and train
for 100 epochs (at which the validation loss does not go down).

For estimating �0 via (30) ⌘̂KL by the algorithm in (Kim et al., 2017), we use the code from the GitHub repository
provided by the paper4, using the same p(y|x) employed for (20) Alg. 1. Since our datasets are classification tasks, we
use Aij = p(yj |xi)/p(yj) instead of the kernel density for estimating matrix A; we take the maximum of 10 runs as
estimation of µ.

J.1 Detailed tables for classification with class-conditional noise

In Table J.1 we give the full set of values used for Fig. 2. As the noise rate increases, the true �0 increases dramatically.
Note that the Observed values are empirical estimates. Corollary 5.1 and Alg. 1 agree almost perfectly when using
the true p(y|x). ⌘̂KL is somewhat looser, but generally agrees well with the empirical estimates when using the true
p(y|x). However, its estimates become much less accurate when p(y|x) is given by a learned neural network trained
on the noisy dataset. In contrast, Alg. 1 generally gives much better predictions even when using the estimated p(y|x).
Directly optimizing Eq. 2 on the observed data is always an upper bound, although the bound becomes somewhat
looser as the noise becomes extreme.

J.2 MNIST Experiments using Equation 2

Here we explore directly training h(x) from Eq. 2 on the full MNIST training set. Eq. 2 can be optimized using
SGD using any differentiable parameterized mapping h(x) : X ! . In this case, we chose to parameterize h(x)
with a PixelCNN++ architecture (van den Oord et al., 2016; Salimans et al., 2017), as PixelCNN++ is a powerful
autoregressive model for images that gives a scalar output (normally interpreted as logp(x)). Eq. 2 should generally
give two clusters in the output space. In this setup, smaller values of h(x) correspond to the subset of the data that is
easiest to learn. Fig. 6 shows two strongly separated clusters, as well as the threshold we choose to divide them. Fig. 7
shows the first 5,776 MNIST training examples as sorted by our learned h(x), with the examples above the threshold
highlighted in red. We can clearly see that our learned h(x) has separated “easy” ones from the rest of the MNIST
training set, in addition to providing a tight bound on �0.

4At https://github.com/wgao9/hypercontractivity.

https://github.com/wgao9/hypercontractivity


Table 1: Full table of values used to generate Fig. 2.

(2) Alg. 1 (3) ⌘̂KL

Noise rate Observed (1) Corollary 5.1 true p(y|x) true p(y|x) (4) Eq. 2 (20) Alg. 1 (30) ⌘̂KL

0.02 1.06 1.09 1.09 1.10 1.08 1.08 1.10
0.04 1.20 1.18 1.18 1.21 1.18 1.19 1.20
0.06 1.26 1.29 1.29 1.33 1.30 1.31 1.33
0.08 1.40 1.42 1.42 1.45 1.42 1.43 1.46
0.10 1.52 1.56 1.56 1.60 1.55 1.58 1.60
0.12 1.70 1.73 1.73 1.78 1.71 1.73 1.77
0.14 1.99 1.93 1.93 1.99 1.90 1.91 1.95
0.16 2.04 2.16 2.16 2.24 2.15 2.15 2.16
0.18 2.41 2.44 2.44 2.49 2.43 2.42 2.49
0.20 2.74 2.78 2.78 2.86 2.76 2.77 2.71
0.22 3.15 3.19 3.19 3.29 3.19 3.21 3.29
0.24 3.75 3.70 3.70 3.83 3.71 3.75 3.72
0.26 4.40 4.34 4.34 4.48 4.35 4.31 4.17
0.28 5.16 5.17 5.17 5.37 5.12 4.98 4.55
0.30 6.34 6.25 6.25 6.49 6.24 6.03 5.58
0.32 8.06 7.72 7.72 8.02 7.63 7.19 7.33
0.34 9.77 9.77 9.77 10.13 9.74 8.95 7.37
0.36 12.58 12.76 12.76 13.21 12.51 11.11 10.09
0.38 16.91 17.36 17.36 17.96 16.97 14.55 10.49
0.40 24.66 25.00 25.00 25.99 25.01 20.36 17.27
0.42 39.08 39.06 39.06 40.85 39.48 30.12 10.89
0.44 64.82 69.44 69.44 71.80 76.48 51.95 21.95
0.46 163.07 156.25 156.26 161.88 173.15 114.57 21.47
0.48 599.45 625.00 625.00 651.47 838.90 293.90 8.69

Table 2: Class confusion matrix used in CIFAR10 experiments. The value in row i, column j means for class i, the
probability of labeling it as class j. The mean confusion across the classes is 20%.

Plane Auto. Bird Cat Deer Dog Frog Horse Ship Truck

Plane 0.82232 0.00238 0.021 0.00069 0.00108 0 0.00017 0.00019 0.1473 0.00489
Auto. 0.00233 0.83419 0.00009 0.00011 0 0.00001 0.00002 0 0.00946 0.15379
Bird 0.03139 0.00026 0.76082 0.0095 0.07764 0.01389 0.1031 0.00309 0.00031 0
Cat 0.00096 0.0001 0.00273 0.69325 0.00557 0.28067 0.01471 0.00191 0.00002 0.0001

Deer 0.00199 0 0.03866 0.00542 0.83435 0.01273 0.02567 0.08066 0.00052 0.00001
Dog 0 0.00004 0.00391 0.2498 0.00531 0.73191 0.00477 0.00423 0.00001 0
Frog 0.00067 0.00008 0.06303 0.05025 0.0337 0.00842 0.8433 0 0.00054 0

Horse 0.00157 0.00006 0.00649 0.00295 0.13058 0.02287 0 0.83328 0.00023 0.00196
Ship 0.1288 0.01668 0.00029 0.00002 0.00164 0.00006 0.00027 0.00017 0.83385 0.01822

Truck 0.01007 0.15107 0 0.00015 0.00001 0.00001 0 0.00048 0.02549 0.81273



Figure 6: Histograms of the full MNIST training and validation sets according to h(X). Note that both are bimodal,
and the histograms are indistinguishable. In both cases, h(x) has learned to separate most of the ones into the smaller
mode, but difficult ones are in the wide valley between the two modes. See Fig. 7 in the Appendix for all of the training
images to the right of the red threshold line, as well as the first few images to the right of the threshold.

J.3 CIFAR10 Details

We trained a deterministic 28x10 wide resnet (He et al., 2016; Zagoruyko and Komodakis, 2016), using the open
source implementation from Cubuk et al. (2018). However, we extended the final 10 dimensional logits of that model
through another 3 layer MLP classifier, in order to keep the inference network architecture identical between this
model and the VIB models we describe below. During training, we dynamically added label noise according to the
class confusion matrix in Tab. J.1. The mean label noise averaged across the 10 classes is 20%. After that model had
converged, we used it to estimate �0 with Alg. 1. Even with 20% label noise, �0 was estimated to be 1.0483.

We then trained 73 different VIB models using the same 28x10 wide resnet architecture for the encoder, parameterizing
the mean of a 10-dimensional unit variance Gaussian. Samples from the encoder distribution were fed to the same 3
layer MLP classifier architecture used in the deterministic model. The marginal distributions were mixtures of 500
fully covariate 10-dimensional Gaussians, all parameters of which are trained. The VIB models had � ranging from
1.02 to 2.0 by steps of 0.02, plus an extra set ranging from 1.04 to 1.06 by steps of 0.001 to ensure we captured the
empirical �0 with high precision.

However, this particular VIB architecture does not start learning until � > 2.5, so none of these models would train
as described.5 Instead, we started them all at � = 100, and annealed � down to the corresponding target over 10,000
training gradient steps. The models continued to train for another 200,000 gradient steps after that. In all cases,
the models converged to essentially their final accuracy within 20,000 additional gradient steps after annealing was
completed. They were stable over the remaining ⇠ 180, 000 gradient steps.

5A given architecture trained using maximum likelihood and with no stochastic layers will tend to have higher effective capacity
than the same architecture with a stochastic layer that has a fixed but non-trivial variance, even though those two architectures have
exactly the same number of learnable parameters.



Figure 7: The first 5776 MNIST digits when sorted by h(x). The digits highlighted in red are above the threshold
drawn in Fig. 6.
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