
A Configurations for UAI Marginal MAP Experiments

(a) Combination 1 (b) Combination 2 (c) Combination 3

Figure 6: MAP/sum nodes combinations for UAI challenge datasets with shaded sum nodes and unshaded MAP nodes.

B Computational Details

B.1 Gradient of the Bethe Free Energy

Let η denote the parameters of the (approximate) marginals, then the negative Bethe free energy for a pairwise MRF
can be expressed in terms of singleton and pairwise expectations, as follows:

−F(η) =
∑
i∈V

Ebi(xi)[log φi(Xi)] +
∑
i∈V

(1−Ni)H[bi]

+
∑

(i,j)∈E

Ebij(xi,xj)[logψij(Xi, Xj)] +
∑

(i,j)∈E

H[bij ])

=
∑
i∈V

Ebi(xi)[log φi(Xi)− (1−Ni) log bi(Xi)] +
∑

(i,j)∈E

Ebij(xi,xj)[logψij(Xi, Xj)− log bij(Xi, Xj)]

where Ni is the number of nodes adjacent to node i.

Using the fact that ∇θEpθ [f(X)] = Epθ [f(X)∇θ log pθ(X)] + Epθ [∇θf(X)] for any distribution pθ parameterized
by θ and most real-valued functions f of interest, the (negative) gradient of the BFE can also be written as a sum of
expectations:

−∇ηF(η) =
∑
i∈V
∇ηEbi(xi)[log φi(Xi)− (1−Ni) log bi(Xi)] +

∑
(i,j)∈E

∇ηEbij(xi,xj)[logψij(Xi, Xj)− log bij(Xi, Xj)]

=
∑
i∈V

Ebi(xi)[log φi(Xi)∇η log bi(Xi)]− (1−Ni)Ebi(xi)[(log bi(Xi))∇η log bi(Xi)]

+
∑

(i,j)∈E

Ebij(xi,xj)[logψij(Xi, Xj)∇η log bij(Xi, Xj)]− Ebij(xi,xj)[(log bij(Xi, Xj))∇η log bij(Xi, Xj)]

=
∑
i∈V

Ebi(xi)[{log φi(Xi)− (1−Ni)(log bi(Xi))}∇η log bi(Xi)]

+
∑

(i,j)∈E

Ebij(xi,xj)[{logψij(Xi, Xj)− log bij(Xi, Xj)}∇η log bij(Xi, Xj)]

The (negative) gradient of the BFE can be further simplified in the case of independent mixture beliefs for computational
efficiency. In the most general case of a hybrid graphical model, let Vd,Vc denote the set of discrete/continuous nodes,



respectively; for any node i ∈ V , let Nd(i), Nc(i) denote the discrete/continuous neighbors of i, respectively. For any
node i, let bi(xi) =

∑
k wkb

k
i (xi), where bki (xi) is the kth scalar component distribution. For a discrete node i with

xi ∈ Xi, let bki be a categorical distribution, such that
∑
xi∈Xi b

k
i (xi) = 1. For a continuous node i, let ηik be any

scalar parameter of the kth component distribution bki (xi). Then we have

∀i ∈ Vd,∀xi ∈ Xi,−
∂F

∂bki (xi)
= wk{log φ(xi)− (1−Ni)(log bi(xi))}+ wk

∑
j∈Nd(i)

Ebkj (Xj)[logψ(xi, Xj)− log bij(xi, Xj)]

+ wk
∑

j∈Nc(i)

Ebkj (Xj)[logψ(xi, Xj)− log bij(xi, Xj)]

∀i ∈ Vc,−
∂F
∂ηik

= wkEbki (Xi)[(log φi(Xi)− (1−Ni)(log bi(Xi)))
∂

ηik
log bki (Xi)]

+ wk
∑

j∈Nd(i)

Ebki (Xi)bkj (Xj)[(logψ(Xi, Xj)− log bij(Xi, Xj))
∂

∂ηik
log bki (Xi)]

+ wk
∑

j∈Nc(i)

Ebki (Xi)bkj (Xj)[(logψ(Xi, Xj)− log bij(Xi, Xj))
∂

∂ηik
log bki (Xi)]

For continuous nodes, the derivatives of (log) component beliefs ∂
∂ηik

log bki (xi) are usually available in closed-form;

e.g., if bki (xi) = N (xi|µik, σ2
ik), then ∂

∂µik
log bki (xi) = (xi−µik)2

σ2
ik

, and ∂
∂σ2

ik
log bki (xi) =

(xi−µik)2/(σ2
ik)−1

2σ2
ik

.

B.2 Computing Expectations

As we saw earlier, computing the BFE and its gradient involves (approximately) computing expectations of various
functions with respect to singleton and pairwise beliefs. By linearity of expectation, computing expectations with
respect to mixture beliefs can be reduced to expectations with respect to the component distributions. Below we discuss
the details of such computation in general, and show how it can be done in terms of basic matrix-vector operations.

B.2.1 Quadrature Approximation for Expectations with Respect to Continuous Beliefs

When X follows a normal distribution N (x|µ, σ2), the Gauss-Hermite quadrature (GHQ) rule can be used to give

E[f(X)] =
1√
π

∫ ∞
−∞

exp(−x2)f(
√

2σx+ µ)dx

≈ 1√
π

T∑
t=1

λ(t)f(
√

2σy(t) + µ)

where the quadrature points y(t) and weights λ(t) are determined by the Gauss-Hermite method and are independent of
the mean and variance.
Theorem 3 (Golub and Welsch (1969)). For a positive integer T , mean µ ∈ R, and variance σ2 ∈ R>0, GHQ
constructs λ(1), . . . , λ(T ) ∈ R and y(1), . . . , y(T ) ∈ R such that there exists a ξ ∈ R with

EN (µ,σ2)f(x) =
T∑
t=1

λ(t)

√
π
f
(√

2σ2y(t) + µ
)
+
n!
√
π

2n
f (2T )(ξ)

(2n)!

As a consequence, using T quadrature points, the approximation is exact whenever f is a polynomial of degree at most
2T − 1 in each variable separately.

In the bivariate case, assuming the joint distribution factorizes like p(xi, xj) = p(xi)p(xj) so the dimensions are
independent (which is assumed by our mixture beliefs, i.e., bkij(xi, xj) = bki (xi)b

k
j (xj)) , the 2-dimensional integral

can be approximated by iterating the 1-dimensional quadrature rules:



E[f(Xi, Xj)] ≈
1

π

T∑
t=1

λ
(t)
i

T∑
s=1

λ
(s)
j f(

√
2σiy

(t)
i + µi,

√
2σjy

(s)
j + µj)

Similarly, the Gauss-Jacobi quadrature rule can be used to approximate expectations with respect to Beta distributions.

B.2.2 Expectations with Respect to Discrete/Mixed Beliefs

Let X be a discrete r.v. taking values in {1, 2, ..., S}, and let it follow a mixture of K categorical distributions,

p(x) =
∑
k

wkπk(x) =
∑
k

wk

S∑
s=1

πk,s1(x = s)

where for each k,
∑S
s=1 πk(s) =

∑S
s=1 πk,s = 1. Then

Ep[f(X)] =

S∑
s=1

K∑
k=1

wkπk,sf(s) =

K∑
k=1

wk

S∑
s=1

πk,sf(s) = w>πf([1, . . . , S]>)

Let Xi, Xj be discrete r.v.s taking values in {1, . . . , Si} and {1, . . . , Sj}, and follow a mixture of K independent
categorical distributions,

p(xi, xj) =
∑
k

wkπik(xi)πjk(xj)

Let F = f
(
[1, . . . , Si][1, . . . , Sj ]

>) ∈ RSi×Sj , then

Ep[f(Xi, Xj)] =

Si∑
si=1

Sj∑
sj=1

K∑
k=1

wkπik(si)πjk(sj)f(si, sj)

=

K∑
k=1

wk

Si∑
si=1

πik(si)

Sj∑
sj=1

πjk(sj)f(si, sj)

=

K∑
k=1

wkπ
>
ikFπjk

=

K∑
k=1

wkTr
[
πjkπ

>
ikF
]

= Tr

[(
K∑
k=1

wkπjkπ
>
ik

)
F

]
= Tr

[(
π>j diag(w)πi

)
F
]

=
∑
si,sj

[(
π>i diag(w)πj

)
� F

]
si,sj

where πi ∈ RK×Si ,πj ∈ RK×Sj , and � denotes element-wise product.

Finally, if Xi is discrete and Xj is continuous, so that

p(xi, xj) =

K∑
k=1

wkπi,k(xi)p
k
j (xj)

Then

Ep[f(Xi, Xj)] =

K∑
k=1

wk

S∑
s=1

πi,k(s)

∫
pkj (xj)f(s, xj)dxj =

K∑
k=1

wk

S∑
s=1

πi,k(s)Epkj (Xj)[f(s,Xj)]



where the inner expectations with respect to the scalar continuous distribution pkj (Xj) can be approximated using
quadrature methods as discussed above.

C Proof of Lemma 2

Claim. LetA,B be two n×n real symmetric matrices, withB positive definite; let λmin(A) be the smallest eigenvalue
of A. Then we have

Tr[AB] ≥ λmin(A)Tr[B]

Proof. Denote the eigenvalues of A by λ1, ..., λn, and denote the eigenvalues of B by γ1, ..., γn. Let A = UΛUT ,
B = V ΓV T be the eigen-decompositions of A and B, such that U, V are orthogonal matrices, and Λ and Γ are diagonal
matrices with Λii = λi and Γii = γi for i = 1, ..., n. Then

Tr[AB] = Tr[UΛUTV ΓV T ]

= Tr[V TUΛUTV Γ]

= Tr[WTΛWΓ] let W := UTV

= Tr[(ΛW )TWΓ]

=
∑
i,j

ΛW �WΓ

=
∑
i

〈Λwi, γiwi〉 let wi be the ith column of W ; note that ‖wi‖ = 1 since W is orthogonal

=
∑
i

γiw
T
i Λwi

≥
∑
i

γiλmin(A) by the variational characterization of λmin(A), and γi > 0

= λmin(A)Tr[B]

D Computer Vision Experiments Setup

D.1 Model and Potentials Used in Optical Flow Experiment

Our model uses a robust penalty function (same as the Classic-C) called Charbonnier penalty, a differentiable variant of
the L1 norm for both edge and node potentials. According to the additive property, we have logψst = φvertst + φhorst ,
here we give the horizontal component as below:

φhorst (us, ut) = −λ
√
ε2 + (us − ut)2 (7)

where λ is a regularization parameter determines the smoothness of optimized values spatially. Similarly the node
potential enforces a data constancy of the given two images: matched part of object should have similar intensity. By
using Charbonnier penalty again, we got node potential as follow:

φs(u, v) = −
√
ε2 + (I1(i, j)− I2(i+ u, j + v))2 (8)

where I1 and I2 represent image intensity functions and we use bicubic interpolation to get a smooth function I2 over
continuous coordinate space. Our graphical model is a M×N×2 grid graph which can be visualized as Figure 7.

In the optimal flow experiment, we set the Charbonnier width ε = 0.001 and regularization parameter λ = 5 for the
pixel level comparison and λ = 16 for super pixel level comparison, to ensure consistency with competing approaches.



Figure 7: MRF model (a M×N×2 grid graph) for optical flow problem.

D.2 Model and Potentials Used in Stereo Depth Estimation Experiment

The graphical model for this problem is a simple M×N×1 grid, whose node potential is:

φ(ds) ∝ exp

{
− 1

2σ2
(IL(is, js)− IR(is + ds, js))

2

}
(9)

where IL represents the pixel value of left image and IR represents the pixel value of right image. This term enforces the
constancy of intensity of two images. Since we are treating ds as continuous variables, here again bicubic interpolation
was used to get a smooth IR function in the continuous coordinate space.

For realistic scenes, the local evidence for a match can be weak, particularly in texture-less regions. We thus need
another assumption to enforce the smoothness of neighboring pixels, which becomes the pairwise edge potential:

ψ(ds, dt) ∝ exp

{
− 1

2γ2
min

(
(ds − dt)2, δ20

)}
(10)

D.3 More Details about Bicubic Interpolation

Bicubic interpolation is often better than bilinear or nearest-neighbor interpolation in terms of better smoothness. It
considers 16 pixels (4×4) as sampling points in order to get the interpolated surface. MATLAB has a build-in function
called interp2 which implements bicubic interpolation when specified the ‘cubic’parameter. For convenience and
less overhead, we use MATLAB Coder to generate C code of this function and extract the core part to use it in our
kernel function.
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