
An Improved Convergence Analysis of Stochastic Variance-Reduced Policy
Gradient

Pan Xu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

Felicia Gao
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

Abstract

We revisit the stochastic variance-reduced pol-
icy gradient (SVRPG) method proposed by
Papini et al. (2018) for reinforcement learn-
ing. We provide an improved convergence
analysis of SVRPG and show that it can find
an ε-approximate stationary point of the per-
formance function within O(1/ε5/3) trajecto-
ries. This sample complexity improves upon
the best known result O(1/ε2) by a factor of
O(1/ε1/3). At the core of our analysis is (i) a
tighter upper bound for the variance of impor-
tance sampling weights, where we prove that
the variance can be controlled by the parame-
ter distance between different policies; and (ii)
a fine-grained analysis of the epoch length and
batch size parameters such that we can signif-
icantly reduce the number of trajectories re-
quired in each iteration of SVRPG. We also
empirically demonstrate the effectiveness of
our theoretical claims of batch sizes on rein-
forcement learning benchmark tasks.

1 INTRODUCTION

Reinforcement learning (RL) is a sequential decision
process that learns the best actions to solve a task by re-
peated, direct interaction with the environment (Sutton
& Barto, 2018). In detail, an RL agent starts at one state
and sequentially takes an action according to a certain
policy, observes the resulting reward signal, and lastly,
evaluates and improves its policy before it transits to the
next state. A policy tells the agent which action to take at
each state. Therefore, a good policy is critically impor-
tant in a RL problem. Recently, policy gradient methods
(Sutton et al., 2000) have achieved impressive successes
in many challenging deep reinforcement learning appli-
cations (Kakade, 2002; Schulman et al., 2015), which di-

rectly optimizes the performance function J(θ) (We will
formally define it later) over a class of policies parame-
terized by some model parameter θ. In particular, pol-
icy gradient methods seek to find the best policy πθ that
maximizes the expected return of the agent. They are
generally more effective in the high-dimensional action
space and enjoy the additional flexibility of stochasticity,
compared with deterministic value-function based meth-
ods such as Q-learning and SARSA (Sutton et al., 2000).

In many RL applications, the performance function J(θ)
is non-concave and the goal is to find a stationary point
θ∗ such that ‖∇J(θ∗)‖2 = 0 using gradient based al-
gorithms. Due to the specialty of reinforcement learn-
ing, the objective function J(θ) is calculated based on
cumulative rewards arriving in a sequential way, which
makes it impossible to calculate the full gradient di-
rectly. Therefore, most algorithms such as REINFORCE
(Williams, 1992) and GPOMDP (Baxter & Bartlett,
2001) need to actively sample trajectories to approximate
the gradient ∇J(θ). This resembles the stochastic gra-
dient (SG) based algorithms in stochastic optimization
(Robbins & Monro, 1951) which require O(1/ε2) trajec-
tories to obtain E[‖∇J(θ)‖22] ≤ ε Due to the large vari-
ances caused by stochastic gradient, the convergence of
SG based methods can be rather sample inefficient when
the required precision ε is very small.

To mitigate the negative effect of large variance on the
convergence of SG methods, a large class of stochastic
variance-reduced gradient (SVRG) algorithms were pro-
posed for both convex (Johnson & Zhang, 2013; Xiao
& Zhang, 2014; Harikandeh et al., 2015; Nguyen et al.,
2017) and nonconvex (Allen-Zhu & Hazan, 2016; Reddi
et al., 2016; Lei et al., 2017; Li & Li, 2018; Fang et al.,
2018; Zhou et al., 2018) objective functions. SVRG
has proved to achieve faster convergence in terms of the
total number of stochastic gradient evaluations. These
variance-reduced algorithms have since been applied to
reinforcement learning in policy evaluation (Du et al.,
2017), trust-region policy optimization (Xu et al., 2017)

and policy gradient (Papini et al., 2018). In particu-
lar, Papini et al. (2018) recently proposed a stochas-
tic variance-reduced policy gradient (SVRPG) algorithm
that marries SVRG to policy gradient for reinforcement
learning. The algorithm saves on sample computation
and improves the performance of the vanilla policy gra-
dient methods based on SG. However, from a theoret-
ical perspective, the authors only showed that SVRPG
converges to a stationary point within E[‖∇J(θ)‖22] ≤ ε
with O(1/ε2) stochastic gradient evaluations (trajectory
samples), which in fact only matches the sample com-
plexity of SG based policy gradient methods. This leaves
open the important question:

Can SVRPG be provably better than SG based policy
gradient methods?

We answer this question affirmatively and fill this gap
between theory and practice in this paper. Specifically,
we provide a sharp convergence analysis of SVRPG and
show that it only requires O(1/ε5/3) stochastic gradi-
ent evaluations in order to converge to a stationary point
θ of the performance function, i.e., E[‖∇J(θ)‖22] ≤ ε.
This sample complexity of SVRPG is strictly lower than
that of SG based policy gradient methods by a factor of
O(1/ε1/3). By the same argument, our result is also
better than the sample complexity provided in Papini
et al. (2018) by a factor of O(1/ε1/3). The key ideas in
our theoretical analysis are twofold: (i) we prove a key
lemma that controls the variance of importance weights
introduced in SVRPG to deal with the non-stationarity of
the sample distribution in reinforcement learning. This
helps offset the additional variance introduced by im-
portance sampling; and (ii) we provide a refined proof
of the convergence of SVRPG and carefully investigate
the trade-off between the convergence rate and compu-
tational efficiency of SG methods. This enables us to
choose a smaller batch size to reduce the sample com-
plexity while maintaining the convergence rate. In ad-
dition, we demonstrate the advantage of SVRPG over
GPOMDP and validate our theoretical results on Cart-
pole and Mountain Car problems.

Notation In this paper, scalars, vectors and matrices are
denoted by lower case, lower case bold face, and up-
per case bold face letters respectively. We use ‖v‖2 and
‖A‖2 to denote the vector 2-norm of a vector v ∈ Rd
and the spectral norm of a matrix A ∈ Rd×d respec-
tively. We denote an = O(bn) if an ≤ Cbn for some
constant 0 < C. For α > 0, the Rényi divergence (Rényi
et al., 1961) between distributions P,Q is

Dα(P ||Q) =
1

α− 1
log2

∫
x

P (x)

(
P (x)

Q(x)

)α−1
dx,

which is non-negative for all α > 0. The exponentiated

Rényi divergence is defined as dα(P ||Q) = 2Dα(P ||Q).

2 ADDITIONAL RELATED WORK

In this section, we review additional relevant work that is
not discussed in the introduction.

Deep RL models (Mnih et al., 2015) have been popular
in solving complex problems such as robot locomotion,
playing grandmaster skill-level Go, and safe autonomous
driving (Levine et al., 2015; Silver et al., 2016; Shalev-
Shwartz et al., 2016). Policy gradient (Sutton et al.,
2000) is one of the most effective algorithms, where
the policy is usually approximated by linear functions
or nonlinear functions such as neural networks, and can
be both stochastic and deterministic (Silver et al., 2014).
One major drawback of traditional policy gradient meth-
ods such as REINFORCE (Williams, 1992), GPOMDP
(Baxter & Bartlett, 2001) and TRPO (Schulman et al.,
2015) is the large variance caused in the estimation of the
gradient (Sehnke et al., 2010), which leads to a poor con-
vergence performance in practice. One way of reducing
the variance in gradient estimation is to introduce var-
ious baselines as control variates (Weaver & Tao, 2001;
Greensmith et al., 2004; Peters & Schaal, 2008; Gu et al.,
2017; Tucker et al., 2018). (Pirotta et al., 2013) proposed
to use adaptive step size to offset the effect of variance of
the policy. Papini et al. (2017) further studied the adap-
tive batch size used to approximate the gradient and pro-
posed to jointly optimize the adaptive step size and batch
size. It has also been extensively studied to reduce the
variance of policy gradient by importance sampling (Liu,
2008; Cortes et al., 2010). Metelli et al. (2018) reduced
the variance caused by importance sampling by deriving
a surrogate objective with a Renyi penalty.

3 PRELIMINARIES

In this section, we introduce the preliminaries on rein-
forcement learning and policy gradient.
Markov Decision Process: We will model the reinforce-
ment learning task as a discrete-time Markov Decision
Process (MDP): M = {S,A,P,R, γ, ρ}, where S is
the state space and A is the action space. P(s′|s, a)
defines the probability that the agent transits to state s′

when taking action a in state s. The reward function
R(s, a) : S×A 7→ [0, R] gives the reward after the agent
takes action a at state s for some constant R > 0, and
γ ∈ (0, 1) is the discount factor. ρ is the initial state dis-
tribution. The probability that the agent chooses action a
at state s is modeled by its policy π(a|s). Following any
stationary policy, the agent can observe and collect a tra-
jectory τ = {s0, a0, s1, a1, . . . , sH−1, aH−1, sH} which
is a sequence of state-action pairs, where H is the trajec-
tory horizon. Along with the state-action pairs, the agent

also observes an cumulative discounted reward

R(τ) =
∑H−1
h=0 γ

hR(sh, ah). (3.1)

Policy Gradients: Suppose that the policy π is parame-
terized by an unknown parameter θ ∈ Rd and denoted by
πθ. We denote the distribution induced by policy πθ as
p(τ |πθ), also referred to as p(τ |θ) for simplicity. Then

p(τ |θ) = ρ(s0)

H−1∏
h=0

πθ(ah|sh)P (sh+1|sh, ah). (3.2)

To measure the performance of a given policy πθ, we
define the expected total reward under this policy as
J(θ) = Eτ∼p(·|θ)[R(τ)|M]. Taking the gradient of
J(θ) with respect to θ gives

∇θJ(θ) =

∫
τ

R(τ)∇θp(τ |θ)dτ

=

∫
τ

R(τ)
∇θp(τ |θ)

p(τ |θ)
p(τ |θ)dτ

= Eτ∼p(·|θ)[∇θ log p(τ |θ)R(τ)|M]. (3.3)

We can update the policy by running gradient ascent
based algorithms on θ. However, it is impossible to
calculate the full gradient in reinforcement learning. In
particular, policy gradient samples a batch of trajectories
{τi}Ni=1 to approximate the full gradient in (3.3). At the
k-th iteration, the policy is then updated by

θk+1 = θk + η∇̂NJ(θk), (3.4)

where η > 0 is the step size and the estimated gradient
∇̂NJ(θk) is an approximation of (3.3) based on trajec-
tories {τi}Ni=1, which is defined as follows

∇̂NJ(θ) =
1

N

N∑
i=1

∇θ log p(τi|θ)R(τi).

According to (3.2), we know that∇θ log p(τi|θ) is inde-
pendent of the transition matrix P . Therefore, combining
this with (3.1) yields

∇̂NJ(θ)

=
1

N

N∑
i=1

[
H−1∑
h=0

∇θ log πθ(aih|sih)

][
H−1∑
h=0

γhR(sih, a
i
h)

]
︸ ︷︷ ︸

g(τi|θ)

,

where τi = {si0, ai0, si1, ai1, . . . , siH−1, aiH−1, siH} for all
i = 1, . . . , N are sampled from policy πθ, and g(τi|θ)
is the unbiased gradient estimator based on sample τi.
Then we can rewrite the gradient in (3.4) as ∇̂NJ(θ) =

1/N
∑N
i=1 g(τi|θ). Based on the above estimator, we

can obtain the most well-known gradient estimators for

policy gradient such as REINFORCE (Williams, 1992)
and GPOMDP (Baxter & Bartlett, 2001). In particular,
the REINFORCE estimator introduces an additional term
b as the constant baseline:

g(τi|θ) (3.5)

=

[
H−1∑
h=0

∇θ log πθ(aih|sih)

][
H−1∑
h=0

γhR(sih, a
i
h)− b

]
.

GPOMDP is a refined estimator of REINFORCE based
on the fact that the current action does not affect previous
decisions:

g(τi|θ) (3.6)

=

H−1∑
h=0

[
h∑
t=0

∇θ log πθ(ait|sit)

](
γhr(sih, a

i
h)− bh

)
.

4 ALGORITHM
In each iteration of the gradient ascent update (3.4), pol-
icy gradient methods need to sample a batch of trajec-
tories to estimate the expected gradient. This subsam-
pling introduces a high variance and undermines the
convergence speed of the algorithm. Inspired by the
success of stochastic variance-reduced gradient (SVRG)
techniques in stochastic optimization (Johnson & Zhang,
2013; Reddi et al., 2016; Allen-Zhu & Hazan, 2016), Pa-
pini et al. (2018) proposed a stochastic variance reduced
policy gradient (SVRPG) method, which is displayed in
Algorithm 1.

SVRPG consists of multiple epochs. At the beginning of
the s-th epoch, it treats the current policy as a reference
point denoted by θ̃s = θs+1

0 . It then computes a gradient
estimator µs = 1/N

∑N
i=1 g(τi|θ̃s) based on N trajec-

tories {τi}Ni=1 sampled from the current policy, where
g(τi|θ̃s) is the REINFORCE or GPOMDP estimator. At
the t-th iteration within the s-th epoch, SVRPG samples
B trajectories {τj}Bj=1 based on the current policy θs+1

t .
Then it updates the policy based on the following semi-
stochastic gradient

vs+1
t =

1

B

∑B
j=1g(τj |θs+1

t)

+ µs −
1

B

B∑
j=1

ω(τj |θ̃s,θs+1
t)g(τj |θ̃s), (4.1)

where the last two terms serve as a correction to the sub-
sampled gradient estimator which reduces the variance
and improves the convergence rate of Algorithm 1. It
is worth noting that the semi-stochastic gradient in (4.1)
differs from the common one used in SVRG due to the
additional term ω(τ |θ̃s,θs+1

t) = p(τ |θ̃s)/p(τ |θs+1
t),

which is called the importance sampling weight from
p(τ |θs+1

t) to p(τ |θ̃s). This term is important in rein-
forcement learning due to the non-stationarity of the dis-
tribution of τ . Specifically, {τi}Ni=1 are sampled from θ̃s

while {τj}Bj=1 are sampled based on θs+1
t . Nevertheless,

we have

Eπ
θ
s+1
t

[
ω(·|θ̃s,θs+1

t)g(·|θ̃s)
]

= Eπ
θ̃s

[
g(·|θ̃s)

]
,

which ensures the correction term is zero mean and thus
vs+1
t is an unbiased gradient estimator.

Algorithm 1 SVRPG
1: Input: number of epochs S, epoch size m, step size
η, batch size N , mini-batch size B, gradient estima-
tor g, initial parameter θ0

m := θ̃0 := θ0
2: for s = 0, . . . , S − 1 do
3: θs+1

0 = θ̃s = θsm
4: Sample N trajectories {τi} from p(·|θ̃s)
5: µs = ∇̂NJ(θ̃s) := 1

N

∑N
i=1 g(τi|θ̃s)

6: for t = 0, . . . ,m− 1 do
7: Sample B trajectories {τj} from p(·|θs+1

t)

8: vs+1
t = µs + 1

B

∑B
j=1

(
g
(
τj |θs+1

t

)
−

ω
(
τj |θ̃s,θs+1

t

)
g
(
τj |θ̃s

))
9: θs+1

t+1 = θs+1
t + ηvs+1

t

10: end for
11: end for
12: return θout: uniformly picked from {θst } for t =

0, . . . ,m; s = 0, . . . , S

5 THEORY
In this section, we are going to provide a sharp analysis
of Algorithm 1. We first lay down the following common
assumption on the log-density of the policy function.

Assumption 5.1. Let πθ(a|s) be the policy of an agent
at state s. There exist constants G,M > 0 such that the
log-density of the policy function satisfies

‖∇θ log πθ(a|s)‖ ≤ G,
∥∥∇2

θ log πθ(a|s)
∥∥
2
≤M,

for all a ∈ A and s ∈ S.

In many real-world problems, we require that policy pa-
rameterization to change smoothly over time instead of
drastically. Assumption 5.1 is an important condition in
nonconvex optimization (Reddi et al., 2016; Allen-Zhu
& Hazan, 2016), which guarantees the smoothness of
the objective function J(θ). Our assumption is slightly
different from that in Papini et al. (2018), which as-
sumes that ∂

∂θi
log πθ(a|s) and ∂2

∂θi∂θj
log πθ(a|s) are

upper bounded elementwisely. It can be easily verified
that our Assumption 5.1 is milder than theirs. It should
also be noted that although in reinforcement learning we
make the assumptions on the parameterized policy, there

is no difference in imposing the smoothness assumption
on the performance function J(θ) directly. In fact, As-
sumption 5.1 implies the following proposition on J(θ).

Proposition 5.2. Under Assumption 5.1, J(θ) is L-
smooth with L = HR(M +HG2)/(1− γ). In addition,
let g(τ |θ) be the REINFORCE or GPOMDP gradient es-
timators. Then for all θ1,θ2 ∈ Rd, it holds that

‖g(τ |θ1)− g(τ |θ2)‖2 ≤ Lg‖θ1 − θ2‖2

and ‖g(τ |θ)‖2 ≤ Cg for all θ ∈ Rd, where Lg =
HM(R + |b|)/(1 − γ), Cg = HG(R + |b|)/(1 − γ)
and b is the baseline reward.

The next assumption requires that the variance of the gra-
dient estimator is bounded.

Assumption 5.3. There exists a constant σ such that

Var
(
g(τ |θ)

)
≤ σ2, for all policy πθ.

The above assumption is widely made in stochastic opti-
mization. It can be easily verified for Gaussian policies
with REINFORCE estimator (Zhao et al., 2011; Pirotta
et al., 2013; Papini et al., 2018).

The following assumption is needed due to the non-
stationarity of the sample distribution, which is also
made in Papini et al. (2018).

Assumption 5.4. There is a constant W < ∞ such that
for each policy pairs encountered in Algorithm 1, it holds

Var(ω(τ |θ1,θ2)) ≤W, ∀θ1,θ2 ∈ Rd, τ ∼ p(·|θ2).

We now present our convergence result for SVRPG.

Theorem 5.5. Under Assumptions 5.1, 5.3 and 5.4. In
Algorithm 1, suppose the step size η ≤ 1/(4L) and
epoch length m and mini-batch size B satisfy

B

m2
≥

3(CωC
2
g + L2

g)

2L2
,

where Cω = H(2HG2 + M)(W + 1), and Lg, Cg and
L are defined in Proposition 5.2. Then the output of Al-
gorithm 1 satisfies

E
[∥∥∇J(θout

)∥∥2
2

]
≤ 8(J(θ∗)− J(θ0))

ηSm
+

6σ2

N
,

where θ∗ is the maximizer of J(θ).

Remark 5.6. Let T = Sm be the total number of itera-
tions Algorithm 1 needs to achieve E

[∥∥∇J(θout
)∥∥2

2

]
≤

ε. The first term on the right hand side in Theorem 5.5
gives an O(1/T) convergence rate which matches that
of Papini et al. (2018) and the results in nonconvex opti-
mization (Allen-Zhu & Hazan, 2016; Reddi et al., 2016).

Table 1: Comparison on sample complexity required to
achieve ‖∇J(θ)‖22 ≤ ε.

METHODS COMPLEXITY

SG O(1/ε2)
SVRPG (Papini et al., 2018) O(1/ε2)
SVRPG (This paper) O(1/ε5/3)

The second term O(1/N) comes from the full gradient
approximation at the beginning of each epoch in Algo-
rithm 1. Compared with the result in Papini et al. (2018),
Theorem 5.5 does not have the additional term O(1/B),
which is offset by our elaborate and careful analysis of
the variance of importance weights. This also enables us
to choose a much smaller batch size B in the inner loops
of Algorithm 1 and leads to a lower sample complexity.

Based on Theorem 5.5, we can calculate the total trajec-
tory samples Algorithm 1 requires to achieve ε-precision.

Corollary 5.7. Under the same conditions as in The-
orem 5.5, let ε > 0, if we set η = 1/(4L), N =
O(1/ε), B = O(1/ε2/3) and m =

√
B, then Algo-

rithm 1 needs O(1/ε5/3) trajectories in order to achieve
E[‖∇J(θout)‖22] ≤ ε.

Remark 5.8. In Theorem 4.4 of Papini et al. (2018), the
authors showed that the sample complexity of SVRPG is
O((B + N/m)/ε). In order to make the gradient small
enough, they essentially require that B,N = O(1/ε),
which leads to O(1/ε2) sample complexity. In sharp
contrast, our Corollary 5.7 shows that the SVRPG al-
gorithm only needs O(1/ε5/3) number of trajectories to
achieve ‖∇J(θ)‖22 ≤ ε, which is obviously lower than
the sample complexity proved in Papini et al. (2018). We
present a straightforward comparison in Table 1 to show
the sample complexities of different methods. SG repre-
sents vanilla stochastic gradient based methods such as
REINFORCE and GPOMDP. It can be seen from Table
1 that our analysis yields the lowest complexity.

6 PROOF OF THEORETICAL
RESULTS

In this section, we prove our main theoretical results.

6.1 PROOF OF THE MAIN THEORY

Before we provide the proof of Theorem 5.5, we first lay
down the following key lemma that controls the variance
of the importance sampling weights ω(τ |θ̃s,θs+1

t).

Lemma 6.1. Let ω
(
τ |θ̃s,θs+1

t

)
= p(τ |θ̃s)/p(τ |θs+1

t).
Under Assumptions 5.1 and 5.4, it holds that

Var
(
ω
(
τ |θ̃s,θs+1

t

))
≤ Cω‖θ̃s − θs+1

t ‖22,

where Cω = H(2HG2 +M)(W + 1).

Lemma 6.1 shows that the variance of the importance
weight is proportional to the distance between the behav-
ioral and the target policies. Note that this upper bound
could be trivial based on Assumption 5.4 when the dis-
tance is large. However, Lemma 6.1 also provides a fine-
grained control of the variance when the behavioral and
target polices are sufficiently close.

Now we are ready to present the proof of our main theo-
rem, which is also inspired from that in Li & Li (2018).

Proof of Theorem 5.5. By Proposition 5.2, J(θ) is L-
smooth, which leads to

J
(
θs+1
t+1

)
≥ J

(
θs+1
t

)
+
〈
∇J
(
θs+1
t

)
,θs+1
t+1 − θs+1

t

〉
− L/2

∥∥θs+1
t+1 − θs+1

t

∥∥2
2

= J
(
θs+1
t

)
+
〈
∇J
(
θs+1
t

)
− vs+1

t , ηvs+1
t

〉
+ η
∥∥vs+1

t

∥∥2
2
− L/2

∥∥θs+1
t+1 − θs+1

t

∥∥2
2

≥ J
(
θs+1
t

)
− η/2

∥∥∇J(θs+1
t

)
− vs+1

t

∥∥2
2

+ η/2
∥∥vs+1

t

∥∥2
2
− L/2

∥∥θs+1
t+1 − θs+1

t

∥∥2
2

≥ J
(
θs+1
t

)
− 3η/4

∥∥∇J(θs+1
t

)
− vs+1

t

∥∥2
2

+ (1/(4η)− L/2)
∥∥θs+1

t+1 − θs+1
t

∥∥2
2

+ η/8
∥∥∇J(θs+1

t

)∥∥2
2
, (6.1)

where the second inequality holds due to Young’s in-
equality and the last inequality comes from the fact that
‖∇J(θs+1

t)‖22 ≤ 2‖vs+1
t ‖22 + 2‖∇J(θs+1

t) − vs+1
t ‖22.

Let EN,B denote the expectation only over the random-
ness of the sampling trajectories {τi}Ni=1 and {τj}Bj=1

EN,B
∥∥∇J(θs+1

t

)
− vs+1

t

∥∥2
2

= EN,B
∥∥∥∥∇J(θs+1

t

)
− µs

+
1

B

B∑
j=1

(
ω(τj |θ̃s,θs+1

t)g
(
τj |θ̃s

)
− g
(
τj |θs+1

t

))∥∥∥∥2
2

= EN,B
∥∥∥∥∇J(θs+1

t

)
−∇J(θ̃s) +∇J(θ̃s)− µs

+
1

B

B∑
j=1

(
ω(τj |θ̃s,θs+1

t)g
(
τj |θ̃s

)
− g
(
τj |θs+1

t

))∥∥∥∥2
2

= EN,B
∥∥∥∥∇J(θs+1

t

)
−∇J(θ̃s)

+
1

B

B∑
j=1

(
ω(τj |θ̃s,θs+1

t)g
(
τj |θ̃s

)
− g
(
τj |θs+1

t

))∥∥∥∥2
2

+ EN,B
∥∥∥∥∇J(θ̃s)− 1

N

N∑
i=1

g
(
τi|θ̃s

)∥∥∥∥2
2

(6.2)

=
1

B2

B∑
j=1

EN,B
∥∥∇J(θs+1

t

)
−∇J(θ̃s)

+ ω(τj |θ̃s,θs+1
t)g

(
τj |θ̃s

)
− g
(
τj |θs+1

t

)∥∥2
2

+
1

N2

N∑
i=1

EN,B
∥∥∇J(θ̃s)− g

(
τi|θ̃s

)∥∥2
2

(6.3)

≤ 1

B2

B∑
j=1

EN,B
∥∥ω(τj |θ̃s,θs+1

t)g
(
τj |θ̃s

)
− g
(
τj |θs+1

t

)∥∥2
2

+ σ2/N, (6.4)

where (6.2) holds due to the independence between tra-
jectories {τi}Ni=1 and {τj}Bj=1, (6.3) is due to E‖x1 +

. . . + xn‖22 = E‖x1‖22 + . . . + E‖xn‖22 for independent
and zero mean variables x1, . . . ,xn, and (6.4) follows
Assumption 5.3 and the fact that E‖x−Ex‖22 ≤ E‖x‖22.
Note that we have

EN,B
∥∥ω(τj |θ̃s,θs+1

t)g
(
τj |θ̃s

)
− g
(
τj |θs+1

t

)∥∥2
2

≤ EN,B
∥∥(ω(τj |θ̃s,θs+1

t)− 1
)
g
(
τj |θ̃s

)∥∥2
2

+ EN,B
∥∥g(τj |θ̃s)− g(τj |θs+1

t

)∥∥2
2

≤ C2
gEN,B

∥∥ω(τj |θ̃s,θs+1
t)− 1

∥∥2
2

+ L2
g

∥∥θ̃s − θs+1
t

∥∥2
2
,

(6.5)

where the second inequality comes from Proposition 5.2.
By Lemma 6.1, we have

EN,B
∥∥ω(τj |θ̃s,θs+1

t)− 1
∥∥2
2

= Varθ̃s,θs+1
t

(
ω(τj |θ̃s,θs+1

t)
)

≤ Cω
∥∥θs+1

t − θ̃s
∥∥2
2
. (6.6)

whereCω = (2G2+M)(W+1). Substituting the results
in (6.4), (6.5) and (6.6) into (6.1) yields

EN,B
[
J
(
θs+1
t+1

)]
≥ EN,B

[
J
(
θs+1
t

)]
+
η

8
EN,B

[∥∥∇J(θs+1
t

)∥∥2
2

]
+

[
1

4η
− L

2

]
EN,B

[∥∥θs+1
t+1 − θs+1

t

∥∥2
2

]
− 3ησ2

4N

−
3η(CωC

2
g + L2)

4B
EN,B

[∥∥θs+1
t − θ̃s

∥∥2
2

]
. (6.7)

For the ease of notation, we denote

Ψ = 3(CωC
2
g + L2

g)/4B. (6.8)

By Young’s inequality (Peter-Paul inequality), we have∥∥θs+1
t+1 − θ̃s

∥∥2
2
≤ (1 + α)

∥∥θs+1
t+1 − θs+1

t

∥∥2
2

+ (1 + 1/α)
∥∥θs+1

t − θ̃s
∥∥2
2

holds for any α > 0. For η ≤ 1/(2L), combining the
above inequality with (6.7) and (6.8) yields

EN,B
[
J
(
θs+1
t+1

)]
≥ EN,B

[
J
(
θs+1
t

)]
+
η

8
EN,B

[∥∥∇J(θs+1
t

)∥∥2
2

]
− 3ησ2

4N

+
1

1 + α

[
1

4η
− L

2

]
EN,B

[∥∥θs+1
t+1 − θ̃s

∥∥2
2

]
−
[
ηΨ +

1

α

[
1

4η
− L

2

]]
EN,B

[∥∥θs+1
t − θ̃s

∥∥2
2

]
Now we set α = 2t+ 1 and sum up the above inequality
over t = 0, . . . ,m − 1. Note that θs+1

0 = θ̃s, θs+1
m =

θ̃s+1. We are able to obtain

EN
[
J
(
θ̃s+1

)]
≥ EN

[
J
(
θ̃s
)]

+
η

8

m−1∑
t=0

EN
[∥∥∇J(θs+1

t

)∥∥2
2

]
− 3mησ2

4N

+

m−1∑
t=0

1/(2η)− L
4(t+ 1)

EN
[∥∥θs+1

t+1 − θ̃s
∥∥2
2

]
−
m−1∑
t=0

[
ηΨ +

1/(2η)− L
2(2t+ 1)

]
EN
[∥∥θs+1

t − θ̃s
∥∥2
2

]
= EN

[
J
(
θ̃s
)]

+
η

8

m−1∑
t=0

EN
[∥∥∇J(θs+1

t

)∥∥2
2

]
− 3mησ2

4N

+

m−2∑
t=0

1/(2η)− L
4(t+ 1)

EN
[∥∥θs+1

t+1 − θ̃s
∥∥2
2

]
−
m−1∑
t=1

[
ηΨ +

1/(2η)− L
2(2t+ 1)

]
EN
[∥∥θs+1

t − θ̃s
∥∥2
2

]
+

1/(2η)− L
4m

EN
[∥∥θs+1

m − θ̃s
∥∥2
2

]
−
[
ηΨ +

1

4η
− L

2

]
EN
[∥∥θs+1

0 − θ̃s
∥∥2
2

]
= EN

[
J
(
θ̃s
)]

+
η

8

m−1∑
t=0

EN
[∥∥∇J(θs+1

t

)∥∥2
2

]
− 3mησ2

4N

+

m−1∑
t=1

[
1/(4η)− L/2

2t(2t+ 1)
− ηΨ

]
EN
[∥∥θs+1

t − θ̃s
∥∥2
2

]
+

1/(2η)− L
4m

EN
[∥∥θs+1

m − θ̃s
∥∥2
2

]
. (6.9)

Recall the definition of Ψ in (6.8). If we set step size η
and the epoch length B to satisfy

η ≤ 1

4L
,

B

m2
≥

3(CωC
2
g + L2

g)

2L2
, (6.10)

then (6.9) leads to

EN
[
J
(
θ̃s+1

)]
≥ EN

[
J
(
θ̃s
)]
− 3mησ2

4N

+
η

8

m−1∑
t=0

EN
[∥∥∇J(θs+1

t

)∥∥2
2

]
.

Telescoping the above inequality yields

η

8

S−1∑
s=0

m−1∑
t=0

E
[∥∥∇J(θs+1

t

)∥∥2
2

]
≤ E

[
J
(
θ̃S
)]
− E

[
J
(
θ̃0
)]

+
3Smησ2

4N
,

which immediately implies

E
[∥∥∇J(θout

)∥∥2
2

]
≤

8
(
E
[
J
(
θ̃S
)]
− E

[
J
(
θ̃0
)])

ηSm
+

6σ2

N

≤ 8(J(θ∗)− J(θ0))

ηSm
+

6σ2

N
.

This completes the proof.

Proof of Corollary 5.7. By Theorem 5.5, in order to en-
sure E

[∥∥∇J(θout
)∥∥2

2

]
≤ ε, it suffices to ensure

8(J(θ∗)− J(θ0))

ηSm
=
ε

2
,

6σ2

N
=
ε

2
,

which implies Sm = O(1/ε) and N = O(1/ε). Note
that we have set m = O(

√
B). The total number of

stochastic gradient evaluations Tg we need is

Tg = SN + SmB = O

(
N√
Bε

+
B

ε

)
= O

(
1

ε5/3

)
,

where we set B = N2/3 = 1/ε2/3.

6.2 PROOF OF TECHNICAL LEMMAS

In this subsection, we provide the proofs of the technical
lemmas used in the proof of main theory. We first prove
the smoothness of J(θ).

Proof of Proposition 5.2. Recall the notion in (3.3) as

∇J(θ) =

∫
τ

R(τ)∇θp(τ |θ)dτ,

which directly implies the Hessian matrix

∇2J(θ) =

∫
τ

R(τ)∇2
θp(τ |θ)dτ. (6.11)

Note that the Hessian of the log-density function is

∇2
θ log p(τ |θ) = −p(τ |θ)−2∇θp(τ |θ)∇θp(τ |θ)>

+ p(τ |θ)−1∇2
θp(τ |θ). (6.12)

Substituting (6.12) into (6.11) yields

∇2J(θ) =

∫
τ

p(τ |θ)R(τ)
[
∇2

θ log p(τ |θ)

+∇θ log p(τ |θ)∇θ log p(τ |θ)>
]
dτ.

Therefore, we have

‖∇2J(θ)‖2 ≤
∫
τ

p(τ |θ)R(τ)
[
‖∇2

θ log p(τ |θ)‖2

+ ‖∇θ log p(τ |θ)‖22
]
dτ

≤
∫
τ

p(τ |θ)R(τ)H(M +HG2)dτ

≤ R(1− γH)H(M +HG2)

1− γ
≤ RH(M +HG2)/(1− γ), (6.13)

where the second inequality comes from Assumption 5.1
and the third inequality holds due to the definition of R
in (3.1). Thus J(θ) is L-smooth with L = RH(M +
HG2)/(1 − γ). Recall the REINFORCE estimator de-
fined in (3.5). We immediately have

‖∇g(τ |θ)‖2 ≤

[
H−1∑
t=0

∥∥∇2 log πθ(at|st)
∥∥
2

]
R+ |b|
1− γ

≤ HM(R+ |b|)/(1− γ).

Similarly, we have

‖g(τ |θ)‖2 ≤ HG
[
R(1− γH)

1− γ
+ |b|

]
≤ HG(R+ |b|)

1− γ
.

The proof of the GPOMDP estimator is similar and we
omit it for simplicity. This completes the proof.

The analysis of Lemma 6.1 relies on the following im-
portant properties of importance sampling weights.

Lemma 6.2 (Lemma 1 in Cortes et al. (2010)). Let
ω(x) = P (x)/Q(x) be the importance weight for dis-
tributions P and Q. Then the following identities hold:

E[ω] = 1, E[ω2] = d2(P ||Q),

where d2(P ||Q) = 2D2(P ||Q) and D2(P ||Q) is the
Rényi divergence between distributions P and Q. Note
that this immediately implies Var(ω) = d2(P ||Q)− 1.

Proof of Lemma 6.1. According to Lemma 6.2, we have

Var
(
ω
(
τ |θ̃s,θs+1

t

))
= d2

(
p(τ |θ̃s)||p(τ |θs+1

t)
)
− 1.

In the rest of this proof, we denote θ1 = θ̃s and θ2 =
θs+1
t to simplify the notation. By definition, we have

d2(p(τ |θ1)||p(τ |θ2)) =

∫
τ

p(τ |θ1)
p(τ |θ1)

p(τ |θ2)
dτ

=

∫
τ

p(τ |θ1)2p(τ |θ2)−1dτ.

For any fixed θ2 ∈ Rd, computing the gradient of
d2(p(τ |θ1)||p(τ |θ2)) with respect to θ1 yields

∇θ1
d2(p(τ |θ1)||p(τ |θ2))

= 2

∫
τ

p(τ |θ1)∇θ1
p(τ |θ1)p(τ |θ2)−1dτ,

which implies that if we set θ1 = θ2, we will obtain

∇θ1d2(p(τ |θ1)||p(τ |θ2))
∣∣
θ1=θ2

= 2

∫
τ

∇θ1
p(τ |θ1)dτ

∣∣
θ1=θ2

= 0.

Hence, applying mean value theorem, we have

d2(p(τ |θ1)||p(τ |θ2)) (6.14)

= 1 +
1

2
(θ1 − θ2)>∇2

θd2(p(τ |θ)||p(τ |θ2))(θ1 − θ2),

where θ = tθ1 + (1− t)θ2 for some t ∈ [0, 1]. Next, we
compute the Hessian matrix. For any fixed θ2, we have

∇2
θd2(p(τ |θ)||p(τ |θ2))

= 2

∫
τ

∇θp(τ |θ)∇θp(τ |θ)>p(τ |θ2)−1dτ

+ 2

∫
τ

∇2
θp(τ |θ)p(τ |θ)p(τ |θ2)−1dτ

= 2

∫
τ

∇θ log p(τ |θ)∇θ log p(τ |θ)>
p(τ |θ)2

p(τ |θ2)
dτ

+ 2

∫
τ

∇2
θp(τ |θ)p(τ |θ)p(τ |θ2)−1dτ. (6.15)

Recall the Hessian of the log-density function in (6.12).
Substituting (6.12) into (6.15) yields

‖∇2
θd2(p(τ |θ)||p(τ |θ2))‖2

=

∥∥∥∥4

∫
τ

∇θ log p(τ |θ)∇θ log p(τ |θ)>
p(τ |θ)2

p(τ |θ2)
dτ

+ 2

∫
τ

∇2
θ log p(τ |θ)

p(τ |θ)2

p(τ |θ2)
dτ
∥∥∥∥
2

≤
∫
τ

p(τ |θ)2

p(τ |θ2)

(
4‖∇θ log p(τ |θ)‖22

+ 2‖∇2
θ log p(τ |θ)‖2

)
dτ

≤ (4H2G2 + 2HM)E[ω(τ |θ,θ2)2]

≤ 2H(2HG2 +M)(W + 1),

where the second inequality comes from Assumption 5.1
and the last inequality is due to Assumption 5.4 and
Lemma 6.2. Therefore, by (6.14) we have

Var
(
ω
(
τ |θ̃s,θs+1

t

))
= d2

(
p(τ |θ̃s)||p(τ |θs+1

t)
)
− 1

0 500 1000 1500 2000 2500
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

×103

REINFORCE
GPOMDP
SVRPG

(a) Cartpole

0 1000 2000 3000 4000 5000
Number of Trajectories

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

×102

REINFORCE
GPOMDP
SVRPG

(b) Mountain Car

Figure 1: The average reward of different algorithms in
Cartpole and Mountain Car environments.

≤ Cω‖θ̃s − θs+1
t ‖22,

where Cω = H(2HG2 +M)(W + 1).

7 EXPERIMENTS
In this section, we conduct experiments on reinforcement
learning benchmark tasks, i.e., the Cartpole and Moun-
tain Car (continuous) environments (Brockman et al.,
2016), to evaluate the performance of Algorithm 1. We
measure the performance of an algorithm in terms of
the total sample trajectories it needs to achieve a cer-
tain reward. We compare SVRPG with vanilla stochastic
gradient based algorithms: the REINFORCE (Williams,
1992) and GPOMDP1 (Baxter & Bartlett, 2001) algo-
rithms. Recall that at each iteration of Algorithm 1, we
also need to choose certain stochastic gradient estimator
to approximate the full gradient based on sampled tra-
jectories. Since the performance of GPOMDP is always
comparable or better than REINFORCE, we only report
the results of SVRPG with the GPOMDP estimator.

We follow the practical suggestions provided in Papini
et al. (2018) to improve the performance including (1)
performing one initial gradient update immediately after
sampling the N trajectories in the outer loop; (2) using
adaptive step sizes; and (3) using adaptive epoch length
(terminate the inner loop update early if the step size used
in the inner loop is smaller than that used in the outer
loop). Following Papini et al. (2018), we use the follow-
ing Gaussian policy with a fixed standard deviation σ̃2:

πθ(a|s) = 1/
√

2πσ exp
(
− (θ>φ(s)− a)2/2σ̃2

)
,

where φ : S 7→ Rd is a bounded feature map. Under the
Gaussian policy, it is easy to verify that Assumptions 5.1
and 5.3 is satisfied with parameters depending on φ, σ̃2

and the upper bound of the action a for all a ∈ A.

Cartpole Setup: The neural network of the Cartpole en-
vironment has one hidden layer of 64 nodes with the

1We thank Papini et al. (2018) for their implementations of
GPOMDP and SVRPG as well as Duan et al. (2016) for their
implementations from the rllab library.

0 500 1000 1500 2000 2500
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

×103

B = 5
B = 10
B = 20

(a) Cartpole

0 1000 2000 3000 4000 5000
Number of Trajectories

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

×102

B = 3
B = 8
B = 20

(b) Mountain Car

0 500 1000 1500 2000 2500
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

×103

m = 1
m = 3
m = 7

(c) Cartpole

0 1000 2000 3000 4000 5000
Number of Trajectories

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

×102

m = 2
m = 5
m = 7

(d) Mountain Car

Figure 2: (a) - (b): The average reward of SVRPG with different mini-batch sizes B. (c) - (d): The average reward of
SVRPG with different epoch lengths m.

tanh activation function. In the comparison between
REINFORCE, GPOMDP, and SVRPG, we use learning
rate η = [0.005, 0.005, 0.0125] for them respectively.
Based on our theoretical analysis, we chose N = 25 and
B = 10 for SVRPG. We also the set the batch size of
vanilla gradient methods to beN = 25 for REINFORCE
and N = 10 for GPOMDP.

Mountain Car Setup: The neural network for the
Mountain Car environment contains one hidden layer
with 16 nodes with the tanh activation. In the compar-
ison among REINFORCE, GPOMDP and SVRPG, we
set N = 25 and B = 8 for SVRPG and set batch size
N = 20 for the vanilla gradient methods. REINFORCE,
GPOMDP, and SVRPG have respective learning rates of
η = [0.005, 0.005, 0.0075].

Experimental Results: Figures 1(a) and 1(b) respec-
tively show the performance of different algorithms on
the Cartpole and Mountain Car environments. All the
results are averaged over 10 repetitions and the shaded
area is a confidence interval corresponding to the stan-
dard deviation over different runs. It can be seen that all
the methods solved the Cartpole environment (with aver-
aged reward close to 1000). The SVRPG algorithm out-
performs the other two by gaining higher rewards with
fewer sample trajectories. SVRPG also beats the other
methods in solving the Mountain Car environment (with
averaged reward close to 90).

Sensitivity Study: We now study the impact of the mini-
batch size B within each epoch of SVRPG to validate
our theoretical claims in Corollary 5.7. Specifically, in
Cartpole environment, we fix N = 25 and vary the mini-
batch sizeB in the range of {5, 10, 20}. In Mountain Car
environment, we set N = 25 and vary the mini-batch
size B in the range of {3, 8, 20}. The learning rates are
tuned accordingly. Figures 2(a) and 2(b) show the effect
of different mini-batch sizes B on SVRPG. Note that the
outer loop batch size is N = 25 in both environments.
It can be seen that when B = 10 and B = 8 for Cart-
pole and Mountain Car respectively, SVRPG achieve the
best performance, which is well aligned with our the-

ory. In particular, with a small mini-batch size, SVRPG
acts similarly to the vanilla stochastic gradient based al-
gorithms which needs fewer trajectories in each iteration
but converges slowly and requires more trajectories in to-
tal. Conversely, using a large mini-batch pushes SVRPG
to converge in fewer iterations, but requires more trajec-
tories in total.

We also conduct experiments to show the impact of dif-
ferent epoch lengths m on the performance of SVRPG.
Similar to the previous sensitivity study onB, here we fix
N and B for all experiments and vary the epoch length
m in different experiments. The learning rates are tuned
accordingly. Figures 2(c) and 2(d) show the sensitivity
of SVRPG with respect to the epoch length m. It can be
seen that smallerm tends to give better results, where the
algorithm runs more outer iterations with a larger batch
size N (compared with the mini-batch size B in the in-
ner loop). This implies that the current choice of epoch
length in Corollary 5.7 may not be optimal yet.

8 CONCLUSIONS

We revisited the SVRPG algorithm (Papini et al., 2018)
and derived a sharp convergence analysis of SVRPG
which achieves the state-of-the-art sample complexity.
We provided a detailed discussion and guidance on the
choice of batch sizes and epoch length based on our im-
proved analysis so that the total number of samples can
be significantly reduced. We also empirically validated
the theoretical results on common reinforcement learn-
ing tasks. As a future direction, it would be interesting
to see whether any better sample complexity can be ob-
tained for policy gradient algorithms.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments. This research was sponsored
in part by the National Science Foundation IIS-1904183
and IIS-1906169. The views and conclusions contained
in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

References

Allen-Zhu, Z. and Hazan, E. Variance reduction for
faster non-convex optimization. In International Con-
ference on Machine Learning, pp. 699–707, 2016.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence
Research, 15:319–350, 2001.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Cortes, C., Mansour, Y., and Mohri, M. Learning bounds
for importance weighting. In Advances in Neural In-
formation Processing Systems, pp. 442–450, 2010.

Du, S. S., Chen, J., Li, L., Xiao, L., and Zhou, D.
Stochastic variance reduction methods for policy eval-
uation. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1049–
1058. JMLR. org, 2017.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider:
Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In Advances in
Neural Information Processing Systems, pp. 686–696,
2018.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance
reduction techniques for gradient estimates in rein-
forcement learning. Journal of Machine Learning Re-
search, 5(Nov):1471–1530, 2004.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and
Levine, S. Q-prop: Sample-efficient policy gradient
with an off-policy critic. In International Conference
on Learning Representations 2017. OpenReviews. net,
2017.

Harikandeh, R., Ahmed, M. O., Virani, A., Schmidt, M.,
Konečnỳ, J., and Sallinen, S. Stopwasting my gradi-
ents: Practical svrg. In Advances in Neural Informa-
tion Processing Systems, pp. 2251–2259, 2015.

Johnson, R. and Zhang, T. Accelerating stochastic gra-
dient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems,
pp. 315–323, 2013.

Kakade, S. M. A natural policy gradient. In Advances
in Neural Information Processing Systems, pp. 1531–
1538, 2002.

Lei, L., Ju, C., Chen, J., and Jordan, M. I. Non-convex
finite-sum optimization via scsg methods. In Advances

in Neural Information Processing Systems, pp. 2348–
2358, 2017.

Levine, S., Wagener, N., and Abbeel, P. Learning
contact-rich manipulation skills with guided policy
search. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 156–163. IEEE,
2015.

Li, Z. and Li, J. A simple proximal stochastic gradi-
ent method for nonsmooth nonconvex optimization. In
Advances in Neural Information Processing Systems,
pp. 5569–5579, 2018.

Liu, J. S. Monte Carlo strategies in scientific computing.
Springer Science & Business Media, 2008.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M.
Policy optimization via importance sampling. In Ad-
vances in Neural Information Processing Systems, pp.
5447–5459, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529, 2015.

Nguyen, L. M., Liu, J., Scheinberg, K., and Takáč,
M. Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 2613–2621. JMLR.
org, 2017.

Papini, M., Pirotta, M., and Restelli, M. Adaptive batch
size for safe policy gradients. In Advances in Neu-
ral Information Processing Systems, pp. 3591–3600,
2017.

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and
Restelli, M. Stochastic variance-reduced policy gradi-
ent. In International Conference on Machine Learn-
ing, pp. 4023–4032, 2018.

Peters, J. and Schaal, S. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):
682–697, 2008.

Pirotta, M., Restelli, M., and Bascetta, L. Adaptive step-
size for policy gradient methods. In Advances in Neu-
ral Information Processing Systems, pp. 1394–1402,
2013.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola,
A. Stochastic variance reduction for nonconvex op-
timization. In International Conference on Machine
Learning, pp. 314–323, 2016.

Rényi, A. et al. On measures of entropy and informa-
tion. In Proceedings of the Fourth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Vol-

ume 1: Contributions to the Theory of Statistics. The
Regents of the University of California, 1961.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp.
400–407, 1951.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I.,
and Moritz, P. Trust region policy optimization. In
International Conference on Machine Learning, vol-
ume 37, pp. 1889–1897, 2015.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Parameter-exploring pol-
icy gradients. Neural Networks, 23(4):551–559, 2010.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous
driving. CoRR, abs/1610.03295, 2016. URL http:
//arxiv.org/abs/1610.03295.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., and Riedmiller, M. Deterministic policy gradient
algorithms. In International Conference on Machine
Learning, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu,
K., Graepel, T., and Hassabis, D. Mastering the game
of go with deep neural networks and tree search. Na-
ture, 529:484–489, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement learning:
An introduction. MIT press, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. Policy gradient methods for reinforcement
learning with function approximation. In Advances
in Neural Information Processing Systems, pp. 1057–
1063, 2000.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahra-
mani, Z., and Levine, S. The mirage of action-
dependent baselines in reinforcement learning. In
International Conference on Machine Learning, pp.
5022–5031, 2018.

Weaver, L. and Tao, N. The optimal reward baseline
for gradient-based reinforcement learning. In Pro-
ceedings of the 17th Conference in Uncertainty in Ar-
tificial Intelligence, pp. 538–545. Morgan Kaufmann
Publishers Inc., 2001.

Williams, R. J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8(3-4):229–256, 1992.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014.

Xu, T., Liu, Q., and Peng, J. Stochastic variance
reduction for policy gradient estimation. CoRR,
abs/1710.06034, 2017. URL http://arxiv.
org/abs/1710.06034.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. Anal-
ysis and improvement of policy gradient estimation. In
Advances in Neural Information Processing Systems,
pp. 262–270, 2011.

Zhou, D., Xu, P., and Gu, Q. Stochastic nested variance
reduced gradient descent for nonconvex optimization.
In Advances in Neural Information Processing Sys-
tems, pp. 3922–3933, 2018.

