Supplement for "Learning with Non-Convex Truncated Losses by SGD"

A Properties of truncation functions

In this section, we first verify that three examples of trunction functions satisfy Definition 1.
Example 1. $\phi_{\alpha}^{(1)}(x)=\alpha \log \left(1+\frac{x}{\alpha}\right)$. We have $\phi_{\alpha}^{(1)}(x)=\frac{1}{1+x / \alpha}$. Then it is easy to check it satisfies condition (ii), (iii), and for any $\alpha_{1} \leq \alpha_{2}$, we have $\phi_{\alpha_{1}}^{\prime}(x) \leq \phi_{\alpha_{2}}^{\prime}(x)$. Since $\phi_{\alpha}^{\prime \prime(1)}(x)=-\frac{1 / \alpha}{(1+x / \alpha)^{2}}$, then $\left|\phi_{\alpha}^{\prime \prime(1)}(x)\right| \leq 1 / \alpha$, indicating that it satisfies condition (i).
Example 2. $\phi_{\alpha}^{(2)}(x)=\alpha \log \left(1+\frac{x}{\alpha}+\frac{x^{2}}{2 \alpha^{2}}\right)$. We have $\phi_{\alpha}^{\prime(2)}(x)=\frac{1+\frac{x}{\alpha}}{1+\frac{x}{\alpha}+\frac{x^{2}}{2 \alpha^{2}}}=1-\frac{1}{1+2 \alpha / x+2 \alpha^{2} / x^{2}}$. Then it is easy to check it satisfies condition (ii), (iii), and for any $\alpha_{1} \leq \alpha_{2}$, we have $\phi_{\alpha_{1}}^{\prime}(x) \leq \phi_{\alpha_{2}}^{\prime}(x)$. Since $\phi_{\alpha}^{\prime \prime(2)}(x)=$ $-\frac{1}{\alpha} \frac{\frac{x}{\alpha}+\frac{x^{2}}{2 \alpha^{2}}}{\left(1+\frac{x}{\alpha}+\frac{x^{2}}{2 \alpha^{2}}\right)^{2}}$, then $\left|\phi_{\alpha}^{\prime \prime(2)}(x)\right| \leq 1 / \alpha$, indicating that it satisfies condition (i).

Example 3.

$$
\phi_{\alpha}^{h}(x)= \begin{cases}\frac{\alpha}{3}\left[1-\left(1-\frac{x}{\alpha}\right)^{3}\right] & \text { if } 0 \leq x<\alpha \\ \frac{\alpha}{3} & \text { otherwise }\end{cases}
$$

Then we have

$$
\phi_{\alpha}^{\prime h}(x)=\left\{\begin{array}{lc}
\left(1-\frac{x}{\alpha}\right)^{2} & \text { if } 0 \leq x<\alpha, \\
0 & \text { otherwise } .
\end{array}\right.
$$

Then it is easy to check it satisfies condition (ii), (iii), and for any $\alpha_{1} \leq \alpha_{2}$, we have $\phi_{\alpha_{1}}^{\prime}(x) \leq \phi_{\alpha_{2}}^{\prime}(x)$. Since

$$
\phi_{\alpha}^{\prime \prime} h(x)= \begin{cases}-\frac{2}{\alpha}\left(1-\frac{x}{\alpha}\right) & \text { if } 0 \leq x<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

then $\left|\phi_{\alpha}^{\prime \prime h}(x)\right| \leq 2 / \alpha$, indicating that it satisfies condition (i).
Next, we will verify the conditions $\left|x-\phi_{\alpha}^{(1)}(x)\right| \leq \frac{M x^{2}}{\alpha},\left|x-\phi_{\alpha}^{(2)}(x)\right| \leq \frac{M x^{2}}{\alpha}$, and $\left|x-\phi_{\alpha}^{h}(x)\right| \leq \frac{M x^{2}}{\alpha}$.
Proposition 1. For any $\alpha>0$ and $x \geq 0$, we have

$$
\begin{equation*}
\left|x-\phi_{\alpha}^{(1)}(x)\right| \leq \frac{x^{2}}{2 \alpha} \text { and }\left|x-\phi_{\alpha}^{(2)}(x)\right| \leq \frac{x^{2}}{2 \alpha} \tag{1}
\end{equation*}
$$

Proof. We first need the following result to prove the proposition:

$$
\begin{equation*}
\exp (y) \geq 1+y+\frac{y^{2}}{2} \text { for all } y \geq 0 \tag{2}
\end{equation*}
$$

Let's first condsider $\phi_{\alpha}^{(1)}(x)$, to prove $|x-\alpha \log (1+x / \alpha)| \leq \frac{1}{2 \alpha} x^{2}$, we have to show $|x / \alpha-\log (1+x / \alpha)| \leq \frac{1}{2 \alpha^{2}} x^{2}$. Let $y=x / \alpha \geq 0$, we only need to show $|y-\log (1+y)| \leq \frac{y^{2}}{2}$. By the inequality (2) we know that $\log (1+y)-y \leq 0$, so we only need to show $f(y):=y-\log (1+y)-\frac{y^{2}}{2} \leq 0$ for all $y \geq 0$. Since $f^{\prime}(y)=-\frac{y^{2}}{1+y} \leq 0$, then we know $f(y)$ is a decreasing function on $y \geq 0$ thus $f(y) \leq f(0)=0$, which give the first inequality in (3).
Next let's consider $\phi_{\alpha}^{(2)}(x)$. Similarly, we only need to show $f(y):=y-\log \left(1+y+y^{2} / 2\right)-\frac{y^{2}}{2} \leq 0$ for all $y \geq 0$. Since $f^{\prime}(y)=-\frac{y+y^{2} / 2+y^{3} / 2}{1+y+y^{2} / 2} \leq 0$, then we know $f(y)$ is a decreasing function on $y \geq 0$ thus $f(y) \leq f(0)=0$, which gives the second inequality in (3).

Proposition 2. For any $\alpha>0$ and $x \geq 0$, we have

$$
\begin{equation*}
\left|x-\phi_{\alpha}^{h}(x)\right| \leq \frac{x^{2}}{\alpha} \tag{3}
\end{equation*}
$$

Proof. Let first consider $0 \leq x<\alpha$, then we want to show $\left|x-\frac{\alpha}{3}\left[1-\left(1-\frac{x}{\alpha}\right)^{3}\right]\right| \leq \frac{M x^{2}}{\alpha}$, or equivalently $\left|\frac{x}{\alpha}-\frac{1}{3}\left[1-\left(1-\frac{x}{\alpha}\right)^{3}\right]\right| \leq \frac{M x^{2}}{\alpha^{2}}$. Let $y=\frac{x}{\alpha} \in[0,1)$, we only need to show $\left|y-\frac{1}{3}\left[1-(1-y)^{3}\right]\right| \leq M y^{2}$.
(i) When $y-\frac{1}{3}\left[1-(1-y)^{3}\right]>0$, then we need to show $f(y):=y-\frac{1}{3}\left[1-(1-y)^{3}\right]-M y^{2} \leq 0$. In fact, $f^{\prime}(y)=1-(1-y)^{2}-2 M y=2(1-M) y-y^{2}$, By setting $M \geq 1$, we know $f^{\prime}(y)<0$. Therefore, $f(y) \leq f(0)=0$ for all $0 \leq y<1$.
(ii) When $y-\frac{1}{3}\left[1-(1-y)^{3}\right] \leq 0$, then we need to show $f(y):=\frac{1}{3}\left[1-(1-y)^{3}\right]-y-M y^{2} \leq 0$. In fact, $f^{\prime}(y)=(1-y)^{2}-1-2 M y=-(1+2 M) y-(1-y) y<0$, then $f(y) \leq f(0)=0$ for all $0 \leq y<1$.
Next we consider $x \geq \alpha$, then we want to show $\left|x-\frac{\alpha}{3}\right| \leq \frac{M x^{2}}{\alpha}$, or equivalently $\left|\frac{x}{\alpha}-\frac{1}{3}\right| \leq \frac{M x^{2}}{\alpha^{2}}$. Let $y=\frac{x}{\alpha} \geq 1$, we only need to show $\left|y-\frac{1}{3}\right| \leq M y^{2}$. Since $y>1$, we must show $y-\frac{1}{3} \leq M y^{2}$. By setting $M \geq 1$, this trivially holds. In summary, we can choose $M=1$, which completes the proof.

B Proof of Theorem 2

We will use the following lemma to prove this theorem. The proof of this lemma can be found in subsection B.1.
Lemma 1. Under the same setting as Theorem 2, with a probability at least $1-3 \delta$, we have

$$
\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \leq C \beta(\mathcal{F}, \alpha) \log (2 / \delta)\left(\frac{\gamma_{2}\left(\mathcal{F}, d_{e}\right)}{\sqrt{n}}+\frac{\gamma_{1}\left(\mathcal{F}, d_{m}\right)}{n}\right)
$$

where $\Lambda(f)=P\left(\phi_{\alpha}(f)\right)-P_{n}\left(\phi_{\alpha}(f)\right), C$ is a universal constant.
Proof of Theorem 2. By (6), we know $\widehat{f}=\arg \min _{f \in \mathcal{F}} P_{n}\left(\phi_{\alpha}(f)\right)$, and thus $P_{n}\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right) \leq 0$, where $f^{*}=\arg \min _{f \in \mathcal{F}} P(f)$. Then we have

$$
\begin{aligned}
& P(\widehat{f})-P\left(f^{*}\right)= {\left[P(\widehat{f})-P\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P_{n}\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right)\right] } \\
&+\left[P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(\phi_{\alpha}\left(f^{*}\right)\right)\right]+\left[P\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(f^{*}\right)\right] \\
& \leq\left[P(\widehat{f})-P\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(\phi_{\alpha}\left(f^{*}\right)\right)\right] \\
&+\left[P\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(f^{*}\right)\right] \\
& \leq {\left[P\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(\phi_{\alpha}\left(f^{*}\right)\right)\right]+\frac{2 M \sigma^{2}}{\alpha} . }
\end{aligned}
$$

where the last inequality is derived using the fact that $\mathrm{E}\left[\left|X-\phi_{\alpha}(X)\right|\right] \leq \mathrm{E}\left[\frac{M}{\alpha} X^{2}\right]$ for a random variable X. Then by Lemma 1 , with a probability at least $1-3 \delta$,

$$
P(\widehat{f})-P\left(f^{*}\right) \leq C \beta(\mathcal{F}, \alpha) \log (2 / \delta)\left(\frac{\gamma_{2}\left(\mathcal{F}, d_{e}\right)}{\sqrt{n}}+\frac{\gamma_{1}\left(\mathcal{F}, d_{m}\right)}{n}\right)+\frac{2 M \sigma^{2}}{\alpha}
$$

B. 1 Proof of Lemma 1

Proof. This proof is similar to the analysis in Proposition 5 and Lemma 6 from [1]. For completeness, we include it here. For any $f, f^{\prime} \in \mathcal{F}$, we first know that $n\left(\Lambda(f)-\Lambda\left(f^{\prime}\right)\right)$ is the summation of the following independent random variables with zero mean:

$$
C_{i}\left(f, f^{\prime}\right)=\phi_{\alpha}\left(f\left(Z_{i}\right)\right)-\phi_{\alpha}\left(f^{\prime}\left(Z_{i}\right)\right)-\left[\mathrm{E}\left[\phi_{\alpha}(f(Z))\right]-\mathrm{E}\left[\phi_{\alpha}\left(f^{\prime}(Z)\right)\right]\right] \leq 2 \beta(\mathcal{F}, \alpha) d_{m}\left(f, f^{\prime}\right)
$$

where the last inequality is due to ϕ_{α} is Lipschitz continuous and $\beta(\mathcal{F}, \alpha)=\sup _{f, Z} \phi_{\alpha}^{\prime}(f(Z))$. On the other hand,

$$
\sum_{i=1}^{n} \mathrm{E}\left[C_{i}\left(f, f^{\prime}\right)^{2}\right] \leq \sum_{i=1}^{n} \mathrm{E}\left[\left(\phi_{\alpha}\left(f\left(Z_{i}\right)\right)-\phi_{\alpha}\left(f^{\prime}\left(Z_{i}\right)\right)\right)^{2}\right] \leq n \beta^{2}(\mathcal{F}, \alpha) d_{e}^{2}\left(f, f^{\prime}\right)
$$

Then by using Bernstein's inequality we have for any $f, f^{\prime} \in \mathcal{F}$ and $\theta>0$,

$$
\operatorname{Pr}\left(\left|\Lambda(f)-\Lambda\left(f^{\prime}\right)\right|>\theta\right) \leq 2 \exp \left(-\frac{n \theta^{2}}{2\left(\beta^{2}(\mathcal{F}, \alpha) d_{e}^{2}\left(f, f^{\prime}\right)+\theta \beta(\mathcal{F}, \alpha) d_{m}\left(f, f^{\prime}\right) / 3\right)}\right)
$$

Then by using Theorem 12 and inequality (14) from [1], let $f^{\prime}=f^{*}$ we get

$$
\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \leq C \beta(\mathcal{F}, \alpha) \log (2 / \delta)\left(\frac{\gamma_{2}\left(\mathcal{F}, d_{e}\right)}{\sqrt{n}}+\frac{\gamma_{1}\left(\mathcal{F}, d_{m}\right)}{n}\right)
$$

where C is a constant.

C Proof of Corollary 3

Proof. By assumption we know that there exists a constant $D>0$ such that $\max _{X \in \mathcal{X}, h, h^{\prime} \in \mathcal{H}}\left|h(X)-h^{\prime}(X)\right| \leq D$. Then for any $X \in \mathcal{X}$, by the Lipschitz continuity of ℓ function, we know that

$$
\left|\ell(h(X), Y)-\ell\left(h^{\prime}(X), Y\right)\right| \leq L\left|h(X)-h^{\prime}(X)\right| \leq L D
$$

where L is the Lipschitz constant of $\ell()$ with respect to its first argument. By the definition of \mathcal{H}, Since for any $f, f^{\prime} \in \mathcal{F}$, we have $d_{m}\left(f, f^{\prime}\right) \leq L d_{m}\left(h, h^{\prime}\right)$, where $f=\ell(h(\cdot), \cdot)$ and $f^{\prime}=\ell\left(h^{\prime}(\cdot), \cdot\right)$. Hence an ϵ / L-cover of \mathcal{H} under the metric d_{m} induces an ϵ-cover of \mathcal{F} under the metric d_{m}. Therefore, we have

$$
\log N\left(\mathcal{F}, \epsilon, d_{m}\right) \leq \log N\left(\mathcal{H}, \epsilon / L, d_{m}\right)
$$

Since \mathcal{H} is a compact set under distance measure d_{m} by the assumption, its covering number is finite [2]. Then

$$
\gamma_{1}\left(\mathcal{F}, d_{m}\right) \leq \int_{0}^{1} \log N\left(\mathcal{F}, \epsilon, d_{m}\right) d \epsilon \leq \int_{0}^{1} \log N\left(\mathcal{H}, \epsilon / L, d_{m}\right) d \epsilon<\infty
$$

Similarly,

$$
\begin{aligned}
\gamma_{2}\left(\mathcal{F}, d_{e}\right) & \leq \int_{0}^{1} \log N\left(\mathcal{F}, \epsilon, d_{e}\right)^{1 / 2} d \epsilon \leq \int_{0}^{1} \log N\left(\mathcal{F}, \epsilon, d_{m}\right)^{1 / 2} d \epsilon \leq \int_{0}^{1} \log N\left(\mathcal{H}, \epsilon / L, d_{m}\right)^{1 / 2} d \epsilon \\
& \leq \infty
\end{aligned}
$$

By setting $\alpha \geq \Omega(\sqrt{n})$ in Theorem 2, we get the result.

D Proof of Theorem 4

We will use the following lemma to prove this theorem. The proof of this lemma can be found in subsection D.1.
Lemma 2. Under the same setting as Theorem 4, with a probability at least $1-3 \delta$, we have

$$
\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \leq C \beta(\mathcal{F}, \alpha) \max \left(\Gamma_{\delta}, \Delta\left(\mathcal{F}, d_{e}\right)\right) \sqrt{\frac{\log \left(\frac{8}{\delta}\right)}{n}},
$$

where $\left.\Lambda(f)=P\left(\phi_{\alpha}(f)\right)-P_{n}\left(\phi_{\alpha}(f)\right)\right], C$ is a universal constant.
Proof of Theorem 4. Similar to the proof of Theorem 2, we have

$$
P(\widehat{f})-P\left(f^{*}\right) \leq\left[P\left(\phi_{\alpha}(\widehat{f})\right)-P_{n}\left(\phi_{\alpha}(\widehat{f})\right)\right]+\left[P_{n}\left(\phi_{\alpha}\left(f^{*}\right)\right)-P\left(\phi_{\alpha}\left(f^{*}\right)\right)\right]+\frac{2 M \sigma^{2}}{\alpha}
$$

Then by Lemma 2, with a probability at least $1-3 \delta$,

$$
P(\widehat{f})-P\left(f^{*}\right) \leq C \beta(\mathcal{F}, \alpha) \max \left(\Gamma_{\delta}, \Delta\left(\mathcal{F}, d_{e}\right)\right) \sqrt{\frac{\log \left(\frac{8}{\delta}\right)}{n}}+\frac{2 M \sigma^{2}}{\alpha}
$$

Then by setting $\alpha \geq \sqrt{n \sigma^{2} /(2 \log (1 / \delta))}$, we get

$$
P(\widehat{f})-P\left(f^{*}\right) \leq O\left(\max \left(\Gamma_{\delta}, \Delta\left(\mathcal{F}, d_{e}\right)\right) \sqrt{\frac{\log (8 / \delta)}{n}}\right)
$$

D. 1 Proof of Lemma 2

Proof. This proof is similar to the analysis in Theorem 7 from [1]. For completeness, we include it here. First, we assume $\Gamma_{\delta} \geq \Delta\left(\mathcal{F}, d_{e}\right)$. Let $\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ be an independent copies of $\left(Z_{1}, \ldots, Z_{n}\right)$, and we define

$$
W_{i}(f)=\frac{1}{n} \phi_{\alpha}\left(f\left(Z_{i}\right)\right)-\frac{1}{n} \phi_{\alpha}\left(f\left(Z_{i}^{\prime}\right)\right)
$$

For any $f \in \mathcal{F}$, we define

$$
W(f)=\sum_{i=1}^{n} \varepsilon_{i} W_{i}(f)
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent Rademacher random variables. Based on Hoeffding's inequality, we have for all $f, g \in \mathcal{F}$ and any $\theta>0$,

$$
\operatorname{Pr}(|W(f)-W(g)|>\theta) \leq 2 \exp \left(-\frac{\theta^{2}}{2 d_{s, s^{\prime}}(f, g)}\right)
$$

where the probability is taken over Rademacher variables conditional on Z_{i} and Z_{i}^{\prime}, and $d_{s, s^{\prime}}(f, g)=$ $\underset{C}{\sum_{i=1}^{n}\left(W_{i}(f)-W_{i}(g)\right)^{2}}$. Then by using Proposition 14 of [1], we have for all $\lambda>0$, and a universal constant

$$
\begin{equation*}
\mathrm{E}\left[\exp \left(\lambda \sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right|\right)\right] \leq 2 \exp \left(\lambda^{2} C^{2} \gamma\left(\mathcal{F}, d_{s, s^{\prime}}\left(f, f^{*}\right)\right)^{2} / 4\right) \tag{4}
\end{equation*}
$$

By the definition of $d_{s, s^{\prime}}(f, g)$, we have

$$
\begin{aligned}
& d_{s, s^{\prime}}(f, g)=\sqrt{\sum_{i=1}^{n}\left(W_{i}(f)-W_{i}(g)\right)^{2}} \\
= & \left(\frac{1}{n^{2}} \sum_{i=1}^{n}\left[\phi_{\alpha}\left(f\left(Z_{i}\right)\right)-\phi_{\alpha}\left(f\left(Z_{i}^{\prime}\right)\right)-\left(\phi_{\alpha}\left(g\left(Z_{i}\right)\right)-\phi_{\alpha}\left(g\left(Z_{i}^{\prime}\right)\right)\right)\right]^{2}\right)^{\frac{1}{2}} \\
\leq & \frac{1}{n}\left(\sum_{i=1}^{n}\left[\phi_{\alpha}\left(f\left(Z_{i}\right)\right)-\phi_{\alpha}\left(g\left(Z_{i}\right)\right)\right]^{2}\right)^{\frac{1}{2}}+\frac{1}{n}\left(\sum_{i=1}^{n}\left[\phi_{\alpha}\left(f\left(Z_{i}^{\prime}\right)\right)-\phi_{\alpha}\left(g\left(Z_{i}^{\prime}\right)\right)\right]^{2}\right)^{\frac{1}{2}} \\
\leq & \frac{1}{\sqrt{n}} \beta(\mathcal{F}, \alpha)\left(\frac{1}{n} \sum_{i=1}^{n}\left[f\left(Z_{i}\right)-g\left(Z_{i}\right)\right]^{2}\right)^{\frac{1}{2}}+\frac{1}{\sqrt{n}} \beta(\mathcal{F}, \alpha)\left(\frac{1}{n} \sum_{i=1}^{n}\left[f\left(Z_{i}^{\prime}\right)-g\left(Z_{i}^{\prime}\right)\right]^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where the second inequality uses the fact that $\phi_{\alpha}(x)$ is Lipschitz continuous. Thus, we have

$$
\begin{equation*}
\gamma\left(\mathcal{F}, d_{s, s^{\prime}}(f, g)\right) \leq \frac{1}{\sqrt{n}} \beta(\mathcal{F}, \alpha) \gamma\left(\mathcal{F}, d_{s}(f, g)\right)+\frac{1}{\sqrt{n}} \beta(\mathcal{F}, \alpha) \gamma\left(\mathcal{F}, d_{s^{\prime}}(f, g)\right) \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right| \geq \theta\right) \\
\leq & \operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right| \geq \theta \mid \gamma\left(\mathcal{F}, d_{s}\right) \leq \Gamma_{\delta} \text { and } \gamma\left(\mathcal{F}, d_{s^{\prime}}\right) \leq \Gamma_{\delta}\right)+2 \operatorname{Pr}\left(\gamma\left(\mathcal{F}, d_{s}\right)>\Gamma_{\delta}\right) \\
\leq & {\left[\exp \left(\lambda \sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right|\right) \mid \gamma\left(\mathcal{F}, d_{s}\right) \leq \Gamma_{\delta} \text { and } \gamma\left(\mathcal{F}, d_{s^{\prime}}\right) \leq \Gamma_{\delta}\right] \exp (-\lambda \theta)+2 \operatorname{Pr}\left(\gamma\left(\mathcal{F}, d_{s}\right)>\Gamma_{\delta}\right) } \\
\leq & 2 \exp \left(\lambda^{2} C^{2} \Gamma_{\delta}^{2} / n\right) \exp (-\lambda \theta)+2 \operatorname{Pr}\left(\gamma\left(\mathcal{F}, d_{s}\right)>\Gamma_{\delta}\right) \\
\leq & 2 \exp \left(\frac{\lambda^{2} C^{2} \Gamma_{\delta}^{2}}{n}-\lambda \theta\right)+\frac{\delta}{4}
\end{aligned}
$$

where the second inequality uses Markov inequality, the third inequality uses the results of (4) and (5), where the last inequality is due to the definition of Γ_{δ} which satisfies $\operatorname{Pr}\left(\gamma\left(\mathcal{F}, d_{s}\right)>\Gamma_{\delta}\right) \leq \delta / 8$.
Let $\theta=2 C \Gamma_{\delta} \sqrt{\frac{\log (8 / \delta)}{n}}$ and $\lambda=\frac{\sqrt{n \log (8 / \delta)}}{C \Gamma_{\delta}}$ then

$$
\frac{\lambda^{2} C^{2} \Gamma_{\delta}^{2}}{n}-\lambda \theta=\frac{\lambda^{2} C^{2} \Gamma_{\delta}^{2}}{n}-2 C \Gamma_{\delta} \sqrt{\frac{\log (8 / \delta)}{n}} \lambda=-\log (8 / \delta) .
$$

Therefore,

$$
\operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right| \geq \theta\right) \leq \frac{\delta}{4}+\frac{\delta}{4}=\frac{\delta}{2}
$$

By Lemma 3.3 from [4], we get

$$
\operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \geq 2 \theta\right) \leq 2 \operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|W(f)-W\left(f^{*}\right)\right| \geq \theta\right) \leq \delta
$$

and for any $f \in \mathcal{F}, \operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \geq \theta\right) \leq \frac{1}{2}$. On the other hand, by using $\mathrm{E}\left[\Lambda(f)-\Lambda\left(f^{*}\right)\right]=0$ and Lipschitz continuous of $\phi_{\alpha}(x)$, we have

$$
\frac{\operatorname{Var}\left(\Lambda(f)-\Lambda\left(f^{*}\right)\right)}{\theta^{2}} \leq \beta^{2}(\mathcal{F}, \alpha) \frac{\mathrm{E}\left[f(Z)-f^{*}(Z)\right]^{2}}{n \theta^{2}} \leq \beta^{2}(\mathcal{F}, \alpha) \frac{\Delta^{2}\left(\mathcal{F}, d_{e}\right)}{n \theta^{2}}
$$

By applying Chebyshev's inequality, it suffices to get

$$
\theta \geq \sqrt{2 / n} \beta(\mathcal{F}, \alpha) \Delta\left(\mathcal{F}, d_{e}\right)
$$

If we assume $C>1$ and choose $\delta<1 / 3$, then $C \beta(\mathcal{F}, \alpha) \Gamma_{\delta} \sqrt{\frac{\log (8 / \delta)}{n}} \geq \sqrt{2 / n} \beta(\mathcal{F}, \alpha) \Delta^{2}\left(\mathcal{F}, d_{e}\right)$. Therefore, we get

$$
\operatorname{Pr}\left(\sup _{f \in \mathcal{F}}\left|\Lambda(f)-\Lambda\left(f^{*}\right)\right| \geq 2 C \beta(\mathcal{F}, \alpha) \Gamma_{\delta} \sqrt{\frac{\log (8 / \delta)}{n}}\right) \leq \delta
$$

We can get the similar result for $\Gamma_{\delta}<\Delta\left(\mathcal{F}, d_{e}\right)$ instead of Γ_{δ} by using the similar analysis. We then complete the proof.

E Proof of Proposition 1

Proof. Let define $z_{i}=\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}$, then $\nabla F_{\alpha}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}}\left(\phi_{(\alpha)}\left(z_{i}^{2} / 2\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \phi_{(\alpha)}^{\prime}\left(z_{i}^{2} / 2\right) z_{i} \mathbf{x}_{i}$ and $\nabla^{2} F_{\alpha}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}}\left(\phi_{(\alpha)}^{\prime}\left(z_{i}^{2} / 2\right) z_{i} \mathbf{x}_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \phi_{(\alpha)}^{\prime \prime}\left(z_{i}^{2} / 2\right) z_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\phi_{(\alpha)}^{\prime}\left(z_{i}^{2} / 2\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$. By the assumptions,
there exists a constant $\kappa>0$, such that $\left\|\nabla^{2} F_{\alpha}(\mathbf{w})\right\| \leq(\kappa+1) R^{2}$, indecating that $F_{\alpha}(\mathbf{w})$ has a $(\kappa+1) R^{2}$-Lipschitz continous gradient. Then we have

$$
\begin{aligned}
F_{\alpha}\left(\mathbf{w}_{t+1}\right) \leq & F_{\alpha}\left(\mathbf{w}_{t}\right)+\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)^{\top}\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)+\frac{(\kappa+1) R^{2}}{2}\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\|^{2} \\
= & F_{\alpha}\left(\mathbf{w}_{t}\right)-\eta_{t} \nabla F_{\alpha}\left(\mathbf{w}_{t}\right)^{\top} \phi_{\alpha}\left(\left(\mathbf{w}_{t}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}\right)+\frac{(\kappa+1) R^{2} \eta_{t}^{2}}{2}\left\|\phi_{\alpha}\left(\left(\mathbf{w}_{t}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}\right)\right\|^{2} \\
= & F_{\alpha}\left(\mathbf{w}_{t}\right)-\eta_{t} \nabla F_{\alpha}\left(\mathbf{w}_{t}\right)^{\top} \phi_{\alpha}\left(\left(\mathbf{w}_{t}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}\right) \\
& +\frac{(\kappa+1) R^{2} \eta_{t}^{2}}{2}\left\|\nabla \phi_{\alpha}\left(\left(\mathbf{w}_{t}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}\right)-\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)+\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}
\end{aligned}
$$

Taking expectation on both sides we have

$$
\begin{aligned}
\mathrm{E}\left[F_{\alpha}\left(\mathbf{w}_{t+1}\right)-F_{\alpha}\left(\mathbf{w}_{t}\right)\right] & \leq \frac{(\kappa+1) R^{2} \eta_{t}^{2}-2 \eta_{t}}{2} \mathrm{E}\left[\left\|\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}\right]+\frac{(\kappa+1) R^{2} \eta_{t}^{2} \sigma_{\alpha}}{2} \\
& \leq-\frac{\eta_{t}}{2} \mathrm{E}\left[\left\|\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}\right]+\frac{(\kappa+1) R^{2} \eta_{t}^{2} \sigma_{\alpha}}{2}
\end{aligned}
$$

where the last inequality uses the fact that $\eta_{t} \leq \frac{1}{(\kappa+1) L^{2}}$. Summing up t over $1, \ldots, T$, we have

$$
\begin{equation*}
\sum_{t=1}^{T} \eta_{t} \mathrm{E}\left[\left\|\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}\right] \leq 2\left(F_{\alpha}\left(\mathbf{w}_{1}\right)-F_{\alpha}\left(\mathbf{w}_{*}\right)\right)+\sum_{t=1}^{T}(\kappa+1) R^{2} \eta_{t}^{2} \sigma_{\alpha} \tag{6}
\end{equation*}
$$

By setting $\eta_{t}=\frac{1}{(\kappa+1) R^{2} \sqrt{T}}$, we have

$$
\begin{equation*}
\mathrm{E}_{R}\left[\mathrm{E}\left[\left\|\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}\right]\right] \leq \frac{2(\kappa+1) R^{2}\left(F_{\alpha}\left(\mathbf{w}_{1}\right)-F_{\alpha}\left(\mathbf{w}_{*}\right)\right)}{\sqrt{T}}+\frac{\sigma_{\alpha}}{\sqrt{T}} \tag{7}
\end{equation*}
$$

where R is a uniform random variable supported on $\{1, \ldots, T\}$. To achieve an approximate stationary point $\mathrm{E}\left[\left\|\nabla F_{\alpha}\left(\mathbf{w}_{t}\right)\right\|^{2}\right] \leq \epsilon^{2}$, the iteration complexity is $T=O\left(\sigma_{\alpha}^{2} / \epsilon^{4}\right)$.

Remark. The condition of $\left|x^{2} \phi_{\alpha}^{\prime \prime}\left(x^{2} / 2\right)\right| \leq \kappa$ for three different truncation functions presented in Preliminaries subsection can be easily checked. Example 1: $\left|x^{2} \phi_{\alpha}^{\prime \prime(1)}\left(x^{2} / 2\right)\right|=\left|-\frac{x^{2} / \alpha}{\left(1+x^{2} /(2 \alpha)\right)^{2}}\right|=\frac{x^{2} / \alpha}{1+x^{2} / \alpha+x^{4} /(2 \alpha)^{4}} \leq 1$; Example 2: $\left|x^{2} \phi_{\alpha}^{\prime \prime(2)}\left(x^{2} / 2\right)\right|=\left|\frac{x^{4} /\left(2 \alpha^{2}\right)+x^{6} /\left(8 \alpha^{3}\right)}{\left(1+x^{2} /(2 \alpha)+x^{4} /\left(8 \alpha^{2}\right)\right)^{2}}\right|=\frac{x^{4} /\left(2 \alpha^{2}\right)+x^{6} /\left(8 \alpha^{3}\right)}{1+x^{2} / \alpha+x^{4} /\left(2 \alpha^{2}\right)+x^{6} /\left(8 \alpha^{3}\right)+x^{8} /\left(64 \alpha^{4}\right)} \leq 1$; Example 3: $\left|x^{2} \phi_{\alpha}^{\prime \prime h}\left(x^{2} / 2\right)\right|=\left|\frac{2 x^{2}\left(1-x^{2} /(2 \alpha)\right)}{\alpha}\right|=\frac{\left(2 \alpha-x^{2}\right) x^{2}}{\alpha^{2}} \leq 1$ when $0 \leq x^{2} / 2 \leq \alpha$, otherwise $\left|x^{2} \phi_{\alpha}^{\prime \prime h}\left(x^{2} / 2\right)\right|=0$.

F Proof of Theorem 5

Proof. We will use the following lemma in our proof.
Lemma 3. [5] Under the assumption of Theorem 5, the following inequality holds for any $\mathbf{w}_{1}, \mathbf{w}_{2} \in\{\mathbf{w}: \| \mathbf{w}-$ $\left.\mathbf{w}_{*} \|_{2} \leq r\right\}$ with probability $1-c \exp \left(c^{\prime} \log d\right)$,

$$
\begin{equation*}
\left(\nabla F_{\alpha}\left(\mathbf{w}_{1}\right)-\nabla F_{\alpha}\left(\mathbf{w}_{2}\right)\right)^{\top}\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right) \geq \frac{\alpha_{T} \lambda_{\min }\left(\Sigma_{x}\right)}{16}\left\|\mathbf{w}_{1}-\mathbf{w}_{2}\right\|_{2}^{2}-\tau \frac{\log (d)}{n}\left\|\mathbf{w}_{1}-\mathbf{w}_{2}\right\|_{1}^{2} \tag{8}
\end{equation*}
$$

where $\alpha_{T}:=\min _{|u| \leq T} \ell^{\prime \prime}(u)>0, \tau=\frac{C\left(\alpha_{T}+\kappa_{2}\right)^{2} \sigma_{x}^{2} T^{2}}{r^{2}}$, and κ_{2} satisfies $\ell^{\prime \prime}(u) \geq-\kappa_{2}$ for all u.
Then let's start our proof by setting $\ell(u):=\phi_{\alpha}\left(u^{2} / 2\right)=\alpha \log \left(1+u^{2} /(2 \alpha)\right)$. It is easy to show that $\left|\ell^{\prime}(u)\right|=$ $\left|\frac{u}{1+u^{2} /(2 \alpha)}\right| \leq \frac{\sqrt{2 \alpha}}{2}$ and $\phi_{\alpha}^{\prime \prime}(u)=\frac{1-u^{2} /(2 \alpha)}{\left(1+u^{2} /(2 \alpha)\right)^{2}} \geq-\frac{1}{8}$, then $\kappa_{2}=\frac{1}{8}$. Let $T \leq \sqrt{2 \alpha} / 2$, then $\alpha_{T}=\frac{12}{25}$. Then

$$
\begin{equation*}
\left(\nabla F_{\alpha}\left(\mathbf{w}_{\alpha}\right)-\nabla F_{\alpha}\left(\mathbf{w}_{*}\right)\right)^{\top}\left(\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right) \geq a\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}^{2}-\tau \frac{\log (d)}{n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{1}^{2} \tag{9}
\end{equation*}
$$

where $a=\frac{3 \lambda_{\min }\left(\Sigma_{x}\right)}{100}$ and $\tau=\frac{C \sigma_{x}^{2} T^{2}}{r^{2}}$ and C is a constant. Suppose SGD returns an approximate stationary point \mathbf{w}_{α} such that $\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2} \leq r$ and $\left\|\nabla F_{\alpha}\left(\mathbf{w}_{\alpha}\right)\right\|_{2} \leq \epsilon$. Since \mathbf{w}_{α} is a stationary point and \mathbf{w}_{*} is feasible, we have

$$
\begin{equation*}
\nabla F_{\alpha}\left(\mathbf{w}_{\alpha}\right)^{\top}\left(\mathbf{w}_{*}-\mathbf{w}_{\alpha}\right) \geq-\epsilon\left\|\mathbf{w}_{*}-\mathbf{w}_{\alpha}\right\|_{2} \tag{10}
\end{equation*}
$$

By Proposition 1 of [5], we have

$$
\begin{equation*}
\nabla F_{\alpha}\left(\mathbf{w}_{*}\right)^{\top}\left(\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right) \geq-c \frac{\sqrt{2 \alpha}}{2} \sigma_{x} \sqrt{\log (d) / n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{1} \tag{11}
\end{equation*}
$$

Combining inequalities (9) (10) and (11), we have

$$
\begin{aligned}
a\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}^{2} & \leq \epsilon\left\|\mathbf{w}_{*}-\mathbf{w}_{\alpha}\right\|_{2}+c \frac{\sqrt{2 \alpha}}{2} \sigma_{x} \sqrt{\log (d) / n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{1}+\tau \frac{\log (d)}{n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{1}^{2} \\
& \leq \epsilon\left\|\mathbf{w}_{*}-\mathbf{w}_{\alpha}\right\|_{2}+c \frac{\sqrt{2 \alpha}}{2} \sigma_{x} \sqrt{d \log (d) / n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}+\tau \frac{d \log (d)}{n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}^{2} \\
& \leq \epsilon\left\|\mathbf{w}_{*}-\mathbf{w}_{\alpha}\right\|_{2}+c \frac{\sqrt{2 \alpha}}{2} \sigma_{x} \sqrt{d \log (d) / n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}+\tau r \frac{d \log (d)}{n}\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2}
\end{aligned}
$$

Then we get

$$
\left\|\mathbf{w}_{\alpha}-\mathbf{w}_{*}\right\|_{2} \leq O\left(\sqrt{\frac{\alpha d \log d}{n}}+\frac{T^{2} d \log d}{r n}+\epsilon\right)
$$

G Proof of Proposition 2

Proof. For similicity, let $\ell(\mathbf{w})=\ell(\mathbf{w} ; \mathbf{x}, \mathbf{y})$. By the defination of truncation function, we know that $\phi_{\alpha}(x)$ is smooth, i.e., for any $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{d}$, there exists a constant L_{α} such that $\phi_{\alpha}(\ell(\mathbf{v}))+\phi_{\alpha}^{\prime}(\ell(\mathbf{v}))(\ell(\mathbf{w})-\ell(\mathbf{v}))-\frac{L_{\alpha}}{2}|\ell(\mathbf{w})-\ell(\mathbf{v})|^{2} \leq$ $\phi_{\alpha}(\ell(\mathbf{w}))$. Since ℓ is convex, i.e. for any $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{d}, \ell(\mathbf{w}) \geq \ell(\mathbf{v})+\partial \ell(\mathbf{v})^{\top}(\mathbf{w}-\mathbf{v})$, then

$$
\begin{aligned}
\phi_{\alpha}(\ell(\mathbf{w}))-\phi_{\alpha}(\ell(\mathbf{v})) & \geq \phi_{\alpha}^{\prime}(\ell(\mathbf{v})) \partial \ell(\mathbf{v})^{\top}(\mathbf{w}-\mathbf{v})-\frac{L_{\alpha}}{2}|\ell(\mathbf{w})-\ell(\mathbf{v})|^{2} \\
& \geq \phi_{\alpha}^{\prime}(\ell(\mathbf{v})) \partial \ell(\mathbf{v})^{\top}(\mathbf{w}-\mathbf{v})-\frac{G^{2} L_{\alpha}}{2}\|\mathbf{w}-\mathbf{v}\|^{2}
\end{aligned}
$$

where the first inequality uses $\phi_{\alpha}^{\prime}(\ell(\mathbf{v})) \geq 0$; the second inequality uses the fact that $\left\|\partial \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)\right\| \leq G$. That is, $F_{\alpha}(\mathbf{w})$ is $G^{2} L_{\alpha}$-weakly convex. Finally, by employing the result of Theorem 2.1 from [3], we can complete the proof.

References

[1] C. Brownlees, E. Joly, and G. Lugosi. Empirical risk minimization for heavy-tailed losses. The Annals of Statistics, 43(6):2507-2536, 2015.
[2] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the American mathematical society, 39(1):1-49, 2002.
[3] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization, 29(1):207-239, 2019.
[4] S. A. Geer. Applications of empirical process theory. Cambridge University Press, 2000.
[5] P.-L. Loh. Statistical consistency and asymptotic normality for high-dimensional robust m-estimators. The Annals of Statistics, 45(2):866-896, 2017.

