
Supplement for “Learning with Non-Convex Truncated Losses by SGD”

A Properties of truncation functions

In this section, we first verify that three examples of trunction functions satisfy Definition 1.

Example 1. φ(1)
α (x) = α log(1 + x

α ). We have φ′(1)
α (x) = 1

1+x/α . Then it is easy to check it satisfies condition

(ii), (iii), and for any α1 ≤ α2, we have φ′α1
(x) ≤ φ′α2

(x). Since φ′′(1)
α (x) = − 1/α

(1+x/α)2 , then |φ′′(1)
α (x)| ≤ 1/α,

indicating that it satisfies condition (i).

Example 2. φ(2)
α (x) = α log(1 + x

α + x2

2α2 ). We have φ′(2)
α (x) =

1+ x
α

1+ x
α+ x2

2α2

= 1 − 1
1+2α/x+2α2/x2 . Then it is

easy to check it satisfies condition (ii), (iii), and for any α1 ≤ α2, we have φ′α1
(x) ≤ φ′α2

(x). Since φ′′(2)
α (x) =

− 1
α

x
α+ x2

2α2

(1+ x
α+ x2

2α2 )2
, then |φ′′(2)

α (x)| ≤ 1/α, indicating that it satisfies condition (i).

Example 3.

φhα(x) =

{
α
3

[
1− (1− x

α )3
]

if 0 ≤ x < α,
α
3 otherwise.

Then we have

φ
′h
α (x) =

{
(1− x

α )2 if 0 ≤ x < α,
0 otherwise.

Then it is easy to check it satisfies condition (ii), (iii), and for any α1 ≤ α2, we have φ′α1
(x) ≤ φ′α2

(x). Since

φ
′′h
α (x) =

{
− 2
α (1− x

α ) if 0 ≤ x < α,
0 otherwise.

then |φ′′hα (x)| ≤ 2/α, indicating that it satisfies condition (i).

Next, we will verify the conditions |x− φ(1)
α (x)| ≤ Mx2

α , |x− φ(2)
α (x)| ≤ Mx2

α , and |x− φhα(x)| ≤ Mx2

α .

Proposition 1. For any α > 0 and x ≥ 0, we have

|x− φ(1)
α (x)| ≤ x2

2α
and |x− φ(2)

α (x)| ≤ x2

2α
. (1)

Proof. We first need the following result to prove the proposition:

exp(y) ≥ 1 + y +
y2

2
for all y ≥ 0. (2)

Let’s first condsider φ(1)
α (x), to prove |x−α log(1+x/α)| ≤ 1

2αx
2, we have to show |x/α− log(1+x/α)| ≤ 1

2α2x
2.

Let y = x/α ≥ 0, we only need to show |y− log(1+y)| ≤ y2

2 . By the inequality (2) we know that log(1+y)−y ≤ 0,

so we only need to show f(y) := y − log(1 + y) − y2

2 ≤ 0 for all y ≥ 0. Since f ′(y) = − y2

1+y ≤ 0, then we know
f(y) is a decreasing function on y ≥ 0 thus f(y) ≤ f(0) = 0, which give the first inequality in (3).

Next let’s consider φ(2)
α (x). Similarly, we only need to show f(y) := y − log(1 + y + y2/2)− y2

2 ≤ 0 for all y ≥ 0.

Since f ′(y) = −y+y2/2+y3/2
1+y+y2/2 ≤ 0, then we know f(y) is a decreasing function on y ≥ 0 thus f(y) ≤ f(0) = 0,

which gives the second inequality in (3).

Proposition 2. For any α > 0 and x ≥ 0, we have

|x− φhα(x)| ≤ x2

α
, (3)



Proof. Let first consider 0 ≤ x < α, then we want to show
∣∣x− α

3 [1− (1− x
α )3]

∣∣ ≤ Mx2

α , or equivalently∣∣ x
α −

1
3 [1− (1− x

α )3]
∣∣ ≤ Mx2

α2 . Let y = x
α ∈ [0, 1), we only need to show

∣∣y − 1
3 [1− (1− y)3]

∣∣ ≤My2.

(i) When y − 1
3 [1 − (1 − y)3] > 0, then we need to show f(y) := y − 1

3 [1 − (1 − y)3] − My2 ≤ 0. In fact,
f ′(y) = 1−(1−y)2−2My = 2(1−M)y−y2, By settingM ≥ 1, we know f ′(y) < 0. Therefore, f(y) ≤ f(0) = 0
for all 0 ≤ y < 1.

(ii) When y − 1
3 [1 − (1 − y)3] ≤ 0, then we need to show f(y) := 1

3 [1 − (1 − y)3] − y − My2 ≤ 0. In fact,
f ′(y) = (1− y)2 − 1− 2My = −(1 + 2M)y − (1− y)y < 0, then f(y) ≤ f(0) = 0 for all 0 ≤ y < 1.

Next we consider x ≥ α, then we want to show
∣∣x− α

3

∣∣ ≤ Mx2

α , or equivalently
∣∣ x
α −

1
3

∣∣ ≤ Mx2

α2 . Let y = x
α ≥ 1,

we only need to show
∣∣y − 1

3

∣∣ ≤ My2. Since y > 1, we must show y − 1
3 ≤ My2. By setting M ≥ 1, this trivially

holds. In summary, we can choose M = 1, which completes the proof.

B Proof of Theorem 2

We will use the following lemma to prove this theorem. The proof of this lemma can be found in subsection B.1.

Lemma 1. Under the same setting as Theorem 2, with a probability at least 1− 3δ, we have

sup
f∈F
|Λ(f)− Λ(f∗)| ≤ Cβ(F , α) log(2/δ)

(
γ2(F , de)√

n
+
γ1(F , dm)

n

)
,

where Λ(f) = P (φα(f))− Pn(φα(f)), C is a universal constant.

Proof of Theorem 2. By (6), we know f̂ = arg minf∈F Pn(φα(f)), and thus Pn(φα(f̂)) − Pn(φα(f∗)) ≤ 0, where
f∗ = arg minf∈F P (f). Then we have

P (f̂)− P (f∗) =[P (f̂)− P (φα(f̂))] + [P (φα(f̂))− Pn(φα(f̂))] + [Pn(φα(f̂))− Pn(φα(f∗))]

+ [Pn(φα(f∗))− P (φα(f∗))] + [P (φα(f∗))− P (f∗)]

≤[P (f̂)− P (φα(f̂))] + [P (φα(f̂))− Pn(φα(f̂))] + [Pn(φα(f∗))− P (φα(f∗))]

+ [P (φα(f∗))− P (f∗)]

≤[P (φα(f̂))− Pn(φα(f̂))] + [Pn(φα(f∗))− P (φα(f∗))] +
2Mσ2

α
.

where the last inequality is derived using the fact that E[|X − φα(X)|] ≤ E
[
M
α X

2
]

for a random variable X . Then
by Lemma 1, with a probability at least 1− 3δ,

P (f̂)− P (f∗) ≤ Cβ(F , α) log(2/δ)

(
γ2(F , de)√

n
+
γ1(F , dm)

n

)
+

2Mσ2

α
.

B.1 Proof of Lemma 1

Proof. This proof is similar to the analysis in Proposition 5 and Lemma 6 from [1]. For completeness, we include it
here. For any f, f ′ ∈ F , we first know that n(Λ(f) − Λ(f ′)) is the summation of the following independent random
variables with zero mean:

Ci(f, f
′) = φα(f(Zi))− φα(f ′(Zi))− [E[φα(f(Z))]− E[φα(f ′(Z))]] ≤ 2β(F , α)dm(f, f ′),

where the last inequality is due to φα is Lipschitz continuous and β(F , α) = supf,Z φ
′
α(f(Z)). On the other hand,

n∑
i=1

E[Ci(f, f
′)2] ≤

n∑
i=1

E[(φα(f(Zi))− φα(f ′(Zi)))
2] ≤ nβ2(F , α)d2

e(f, f
′).



Then by using Bernstein’s inequality we have for any f, f ′ ∈ F and θ > 0,

Pr(|Λ(f)− Λ(f ′)| > θ) ≤ 2 exp

(
− nθ2

2(β2(F , α)d2
e(f, f

′) + θβ(F , α)dm(f, f ′)/3)

)
.

Then by using Theorem 12 and inequality (14) from [1], let f ′ = f∗ we get

sup
f∈F
|Λ(f)− Λ(f∗)| ≤ Cβ(F , α) log(2/δ)

(
γ2(F , de)√

n
+
γ1(F , dm)

n

)
,

where C is a constant.

C Proof of Corollary 3

Proof. By assumption we know that there exists a constant D > 0 such that maxX∈X ,h,h′∈H |h(X) − h′(X)| ≤ D.
Then for any X ∈ X , by the Lipschitz continuity of ` function, we know that

|`(h(X), Y )− `(h′(X), Y )| ≤ L|h(X)− h′(X)| ≤ LD.

where L is the Lipschitz constant of `() with respect to its first argument. By the definition of H, Since for any
f, f ′ ∈ F , we have dm(f, f ′) ≤ Ldm(h, h′), where f = `(h(·), ·) and f ′ = `(h′(·), ·). Hence an ε/L-cover of H
under the metric dm induces an ε-cover of F under the metric dm. Therefore, we have

logN(F , ε, dm) ≤ logN(H, ε/L, dm).

SinceH is a compact set under distance measure dm by the assumption, its covering number is finite [2]. Then

γ1(F , dm) ≤
∫ 1

0

logN(F , ε, dm)dε ≤
∫ 1

0

logN(H, ε/L, dm)dε <∞.

Similarly,

γ2(F , de) ≤
∫ 1

0

logN(F , ε, de)1/2
dε ≤

∫ 1

0

logN(F , ε, dm)
1/2
dε ≤

∫ 1

0

logN(H, ε/L, dm)
1/2
dε

≤ ∞

By setting α ≥ Ω(
√
n) in Theorem 2, we get the result.

D Proof of Theorem 4

We will use the following lemma to prove this theorem. The proof of this lemma can be found in subsection D.1.

Lemma 2. Under the same setting as Theorem 4, with a probability at least 1− 3δ, we have

sup
f∈F
|Λ(f)− Λ(f∗)| ≤ Cβ(F , α) max(Γδ,∆(F , de))

√
log
(

8
δ

)
n

,

where Λ(f) = P (φα(f))− Pn(φα(f))], C is a universal constant.

Proof of Theorem 4. Similar to the proof of Theorem 2, we have

P (f̂)− P (f∗) ≤ [P (φα(f̂))− Pn(φα(f̂))] + [Pn(φα(f∗))− P (φα(f∗))] +
2Mσ2

α
.

Then by Lemma 2, with a probability at least 1− 3δ,

P (f̂)− P (f∗) ≤ Cβ(F , α) max(Γδ,∆(F , de))

√
log
(

8
δ

)
n

+
2Mσ2

α
.



Then by setting α ≥
√
nσ2/(2 log(1/δ)), we get

P (f̂)− P (f∗) ≤ O

(
max(Γδ,∆(F , de))

√
log(8/δ)

n

)
.

D.1 Proof of Lemma 2

Proof. This proof is similar to the analysis in Theorem 7 from [1]. For completeness, we include it here. First, we
assume Γδ ≥ ∆(F , de). Let (Z ′1, . . . , Z

′
n) be an independent copies of (Z1, . . . , Zn), and we define

Wi(f) =
1

n
φα(f(Zi))−

1

n
φα(f(Z ′i)).

For any f ∈ F , we define

W (f) =

n∑
i=1

εiWi(f),

where ε1, . . . , εn are independent Rademacher random variables. Based on Hoeffding’s inequality, we have for all
f, g ∈ F and any θ > 0,

Pr(|W (f)−W (g)| > θ) ≤ 2 exp

(
− θ2

2ds,s′(f, g)

)
,

where the probability is taken over Rademacher variables conditional on Zi and Z ′i, and ds,s′(f, g) =√∑n
i=1(Wi(f)−Wi(g))2. Then by using Proposition 14 of [1], we have for all λ > 0, and a universal constant

C

E

[
exp

(
λ sup
f∈F
|W (f)−W (f∗)|

)]
≤ 2 exp

(
λ2C2γ(F , ds,s′(f, f∗))2/4

)
, (4)

By the definition of ds,s′(f, g), we have

ds,s′(f, g) =

√√√√ n∑
i=1

(Wi(f)−Wi(g))2

=

(
1

n2

n∑
i=1

[φα(f(Zi))− φα(f(Z ′i))− (φα(g(Zi))− φα(g(Z ′i)))]
2

) 1
2

≤ 1

n

(
n∑
i=1

[φα(f(Zi))− φα(g(Zi))]
2

) 1
2

+
1

n

(
n∑
i=1

[φα(f(Z ′i))− φα(g(Z ′i))]
2

) 1
2

≤ 1√
n
β(F , α)

(
1

n

n∑
i=1

[f(Zi)− g(Zi)]
2

) 1
2

+
1√
n
β(F , α)

(
1

n

n∑
i=1

[f(Z ′i)− g(Z ′i)]
2

) 1
2

,

where the second inequality uses the fact that φα(x) is Lipschitz continuous. Thus, we have

γ(F , ds,s′(f, g)) ≤ 1√
n
β(F , α)γ(F , ds(f, g)) +

1√
n
β(F , α)γ(F , ds′(f, g)). (5)



Then we have

Pr

(
sup
f∈F
|W (f)−W (f∗)| ≥ θ

)

≤Pr

(
sup
f∈F
|W (f)−W (f∗)| ≥ θ | γ(F , ds) ≤ Γδ and γ(F , ds′) ≤ Γδ

)
+ 2Pr (γ(F , ds) > Γδ)

≤E

[
exp

(
λ sup
f∈F
|W (f)−W (f∗)|

)
| γ(F , ds) ≤ Γδ and γ(F , ds′) ≤ Γδ

]
exp(−λθ) + 2Pr (γ(F , ds) > Γδ)

≤2 exp
(
λ2C2Γ2

δ/n
)

exp(−λθ) + 2Pr (γ(F , ds) > Γδ)

≤2 exp

(
λ2C2Γ2

δ

n
− λθ

)
+
δ

4

where the second inequality uses Markov inequality, the third inequality uses the results of (4) and (5), where the last
inequality is due to the definition of Γδ which satisfies Pr(γ(F , ds) > Γδ) ≤ δ/8.

Let θ = 2CΓδ

√
log(8/δ)

n and λ =

√
n log(8/δ)

CΓδ
then

λ2C2Γ2
δ

n
− λθ =

λ2C2Γ2
δ

n
− 2CΓδ

√
log(8/δ)

n
λ = − log(8/δ).

Therefore,

Pr

(
sup
f∈F
|W (f)−W (f∗)| ≥ θ

)
≤ δ

4
+
δ

4
=
δ

2

By Lemma 3.3 from [4], we get

Pr

(
sup
f∈F
|Λ(f)− Λ(f∗)| ≥ 2θ

)
≤ 2Pr

(
sup
f∈F
|W (f)−W (f∗)| ≥ θ

)
≤ δ

and for any f ∈ F , Pr
(
supf∈F |Λ(f)− Λ(f∗)| ≥ θ

)
≤ 1

2 . On the other hand, by using E[Λ(f) − Λ(f∗)] = 0 and
Lipschitz continuous of φα(x), we have

Var(Λ(f)− Λ(f∗))

θ2
≤ β2(F , α)

E[f(Z)− f∗(Z)]2

nθ2
≤ β2(F , α)

∆2(F , de)
nθ2

.

By applying Chebyshev’s inequality, it suffices to get

θ ≥
√

2/nβ(F , α)∆(F , de).

If we assume C > 1 and choose δ < 1/3, then Cβ(F , α)Γδ

√
log(8/δ)

n ≥
√

2/nβ(F , α)∆2(F , de). Therefore, we
get

Pr

(
sup
f∈F
|Λ(f)− Λ(f∗)| ≥ 2Cβ(F , α)Γδ

√
log(8/δ)

n

)
≤ δ

We can get the similar result for Γδ < ∆(F , de) instead of Γδ by using the similar analysis. We then complete the
proof.

E Proof of Proposition 1

Proof. Let define zi = w>xi − yi, then ∇Fα(w) = 1
n

∑n
i=1∇w(φ(α)(z

2
i /2)) = 1

n

∑n
i=1 φ

′
(α)(z

2
i /2)zixi and

∇2Fα(w) = 1
n

∑n
i=1∇w(φ′(α)(z

2
i /2)zixi) = 1

n

∑n
i=1 φ

′′
(α)(z

2
i /2)z2

i xix
>
i + φ′(α)(z

2
i /2)xix

>
i . By the assumptions,



there exists a constant κ > 0, such that ‖∇2Fα(w)‖ ≤ (κ+ 1)R2, indecating that Fα(w) has a (κ+ 1)R2-Lipschitz
continous gradient. Then we have

Fα(wt+1) ≤Fα(wt) +∇Fα(wt)
>(wt+1 −wt) +

(κ+ 1)R2

2
‖wt+1 −wt‖2

=Fα(wt)− ηt∇Fα(wt)
>φα((w>t xi − yi)2) +

(κ+ 1)R2η2
t

2
‖φα((w>t xi − yi)2)‖2

=Fα(wt)− ηt∇Fα(wt)
>φα((w>t xi − yi)2)

+
(κ+ 1)R2η2

t

2
‖∇φα((w>t xi − yi)2)−∇Fα(wt) +∇Fα(wt)‖2

Taking expectation on both sides we have

E[Fα(wt+1)− Fα(wt)] ≤
(κ+ 1)R2η2

t − 2ηt
2

E[‖∇Fα(wt)‖2] +
(κ+ 1)R2η2

t σα
2

≤− ηt
2

E[‖∇Fα(wt)‖2] +
(κ+ 1)R2η2

t σα
2

,

where the last inequality uses the fact that ηt ≤ 1
(κ+1)L2 . Summing up t over 1, . . . , T , we have

T∑
t=1

ηtE[‖∇Fα(wt)‖2] ≤ 2(Fα(w1)− Fα(w∗)) +

T∑
t=1

(κ+ 1)R2η2
t σα. (6)

By setting ηt = 1
(κ+1)R2

√
T

, we have

ER[E[‖∇Fα(wt)‖2]] ≤ 2(κ+ 1)R2(Fα(w1)− Fα(w∗))√
T

+
σα√
T
, (7)

where R is a uniform random variable supported on {1, . . . , T}. To achieve an approximate stationary point
E[‖∇Fα(wt)‖2] ≤ ε2, the iteration complexity is T = O(σ2

α/ε
4).

Remark. The condition of
∣∣x2φ′′α(x2/2)

∣∣ ≤ κ for three different truncation functions presented in Preliminaries

subsection can be easily checked. Example 1:
∣∣∣x2φ

′′(1)
α (x2/2)

∣∣∣ =
∣∣∣− x2/α

(1+x2/(2α))2

∣∣∣ = x2/α
1+x2/α+x4/(2α)4 ≤ 1;

Example 2:
∣∣∣x2φ

′′(2)
α (x2/2)

∣∣∣ =
∣∣∣ x4/(2α2)+x6/(8α3)

(1+x2/(2α)+x4/(8α2))2

∣∣∣ = x4/(2α2)+x6/(8α3)
1+x2/α+x4/(2α2)+x6/(8α3)+x8/(64α4) ≤ 1; Example 3:∣∣x2φ′′hα (x2/2)

∣∣ =
∣∣∣ 2x2(1−x2/(2α))

α

∣∣∣ = (2α−x2)x2

α2 ≤ 1 when 0 ≤ x2/2 ≤ α, otherwise
∣∣x2φ′′hα (x2/2)

∣∣ = 0.

F Proof of Theorem 5

Proof. We will use the following lemma in our proof.

Lemma 3. [5] Under the assumption of Theorem 5, the following inequality holds for any w1,w2 ∈ {w : ‖w −
w∗‖2 ≤ r} with probability 1− c exp(c′ log d),

(∇Fα(w1)−∇Fα(w2))>(w1 −w2) ≥ αTλmin(Σx)

16
‖w1 −w2‖22 − τ

log(d)

n
‖w1 −w2‖21, (8)

where αT := min|u|≤T `
′′(u) > 0, τ =

C(αT+κ2)2σ2
xT

2

r2 , and κ2 satisfies `′′(u) ≥ −κ2 for all u.

Then let’s start our proof by setting `(u) := φα(u2/2) = α log(1 + u2/(2α)). It is easy to show that |`′(u)| =

| u
1+u2/(2α) | ≤

√
2α
2 and φ′′α(u) = 1−u2/(2α)

(1+u2/(2α))2 ≥ −
1
8 , then κ2 = 1

8 . Let T ≤
√

2α/2, then αT = 12
25 . Then

(∇Fα(wα)−∇Fα(w∗))
>(wα −w∗) ≥ a‖wα −w∗‖22 − τ

log(d)

n
‖wα −w∗‖21, (9)



where a = 3λmin(Σx)
100 and τ =

Cσ2
xT

2

r2 and C is a constant. Suppose SGD returns an approximate stationary point wα

such that ‖wα −w∗‖2 ≤ r and ‖∇Fα(wα)‖2 ≤ ε. Since wα is a stationary point and w∗ is feasible, we have

∇Fα(wα)>(w∗ −wα) ≥ −ε‖w∗ −wα‖2 (10)

By Proposition 1 of [5], we have

∇Fα(w∗)
>(wα −w∗) ≥ −c

√
2α

2
σx
√

log(d)/n‖wα −w∗‖1 (11)

Combining inequalities (9) (10) and (11), we have

a‖wα −w∗‖22 ≤ε‖w∗ −wα‖2 + c

√
2α

2
σx
√

log(d)/n‖wα −w∗‖1 + τ
log(d)

n
‖wα −w∗‖21

≤ε‖w∗ −wα‖2 + c

√
2α

2
σx
√
d log(d)/n‖wα −w∗‖2 + τ

d log(d)

n
‖wα −w∗‖22

≤ε‖w∗ −wα‖2 + c

√
2α

2
σx
√
d log(d)/n‖wα −w∗‖2 + τr

d log(d)

n
‖wα −w∗‖2

Then we get

‖wα −w∗‖2 ≤ O

(√
αd log d

n
+
T 2d log d

rn
+ ε

)

G Proof of Proposition 2

Proof. For similicity, let `(w) = `(w;x,y). By the defination of truncation function, we know that φα(x) is smooth,
i.e., for any w,v ∈ Rd, there exists a constant Lα such that φα(`(v))+φ′α(`(v))(`(w)−`(v))− Lα

2 |`(w)−`(v)|2 ≤
φα(`(w)). Since ` is convex, i.e. for any w,v ∈ Rd, `(w) ≥ `(v) + ∂`(v)>(w − v), then

φα(`(w))− φα(`(v)) ≥φ′α(`(v))∂`(v)>(w − v)− Lα
2
|`(w)− `(v)|2

≥φ′α(`(v))∂`(v)>(w − v)− G2Lα
2
‖w − v‖2

where the first inequality uses φ′α(`(v)) ≥ 0; the second inequality uses the fact that ‖∂`(w;xi, yi)‖ ≤ G. That
is, Fα(w) is G2Lα-weakly convex. Finally, by employing the result of Theorem 2.1 from [3], we can complete the
proof.

References
[1] C. Brownlees, E. Joly, and G. Lugosi. Empirical risk minimization for heavy-tailed losses. The Annals of Statistics,

43(6):2507–2536, 2015.

[2] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the American mathematical
society, 39(1):1–49, 2002.

[3] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions. SIAM Journal
on Optimization, 29(1):207–239, 2019.

[4] S. A. Geer. Applications of empirical process theory. Cambridge University Press, 2000.

[5] P.-L. Loh. Statistical consistency and asymptotic normality for high-dimensional robustm-estimators. The Annals
of Statistics, 45(2):866–896, 2017.


