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Abstract

Finding the reduced-dimensional structure is critical to understanding complex
networks. Existing approaches such as spectral clustering are applicable only when
the full network is explicitly observed. In this paper, we focus on the online factor-
ization and partition of implicit large-scale networks based on observations from an
associated random walk. We formulate this into a nonconvex stochastic factoriza-
tion problem and propose an efficient and scalable stochastic generalized Hebbian
algorithm. The algorithm is able to process dependent state-transition data dynam-
ically generated by the underlying network and learn a low-dimensional representa-
tion for each vertex. By applying a diffusion approximation analysis, we show that
the continuous-time limiting process of the stochastic algorithm converges globally
to the “principal components” of the Markov chain and achieves a nearly optimal
sample complexity. Once given the learned low-dimensional representations, we fur-
ther apply clustering techniques to recover the network partition. We show that when
the associated Markov process is lumpable, one can recover the partition exactly with
high probability. We apply the proposed approach to model the traffic flow of Man-
hattan as city-wide random walks. By using our algorithm to analyze the taxi trip
data, we discover a latent partition of the Manhattan city that closely matches the
traffic dynamics.
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1 Introduction

Network data arise in many applications and research areas, including but not limited to
social science, economics, transportation, finance, power grid, artificial intelligence, etc.
Examples include protein-protein interaction networks [12], phone communication net-
works [21], collaboration networks [4], and the gravitational interaction network of dark
matter particles in cosmology [23, 15, 20]. Due to the highly complex nature of these
networks, many efforts have been devoted to investigating their reduced-order represen-
tations from high-dimensional data (e.g. [7, 24, 22, 5]).

In this paper, we focus on learning from the dynamic “state-transition” data, which are
snapshots of a random walk associated with the implicit network. For example, records
of taxi trips can be used to reveal the traffic dynamics of a metropolitan. Each trip can
be viewed as a fragmented sample path realized from a city-wide Markov chain that
characterizes the traffic dynamics [14, 3]. None of the existing works has considered
how to recover the latent network partition of an urban area from the taxi trip data. For
another example, reinforcement learning applications such as autonomous driving and
game AI are modeled as Markov decision processes [26], which unfortunately suffer from
the curse of dimensionality of the state space. Given trajectories of game snapshots or
a game simulator, it is of vital interest to identify the low-dimensional representation of
the “state” of game. For the general problem of finding reduced-order representations,
popular approaches such as principal component analysis and spectral clustering do not
utilize the Markov nature of state-transition data. Existing computational methods often
require explicit knowledge and pre-computation of large matrices, which cannot scale to
large-scale problems and is not even possible for online learning applications. Efficient
methods are in demand.

Motivated by the need to analyze state-transition data, we propose an efficient and
scalable approach for online factorization and partition of implicit complex networks.
We start by employing a stochastic gradient-type algorithm, namely the generalized Heb-
bian algorithm (GHA), and tailor it towards processing Markov transition data. Then we
show that the GHA learns low-dimensional representations of the network in an online
fashion, and by further applying clustering techniques, we can recover the underlying
partition structure with high probability. Our analysis is based on a diffusion approx-
imation approach, which is widely used in stochastic analysis of complicated discrete
processes such as queueing networks (see [10] for more related literature on diffusion ap-
proximation). By properly rescaling of time, we approximate the discrete-time dynamics
generated by the GHA algorithm using its continuous-time limiting process, which is the
solution to an ordinary differential equation (ODE). Though the stochastic optimization
problem is highly nonconvex, we show that the limiting stochastic process of the GHA
converges geometrically to the global optima, even if the initial solution is chosen uni-
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formly at random. We further show that the process after sufficiently large time is well
approximated by an Ornstein-Uhlenbeck process, whose stochastic fluctuation can be
precisely characterized. Despite of the spherical geometry and many unstable equilibria
of the optimization problem, we establish global convergence with a near-optimal sample
complexity guarantee in an asymptotic manner.

Our work is partly motivated by [29], which establishes the connection between net-
works and a class of lumpable Markov chains. It proposes an optimization framework to
identify the partition structure when the transition matrix is known a priori. Our method
is also related to the class of online eigenvalue decomposition methods for representa-
tion learning [1, 13, 30, 2, 11]. However, none of the existing methods and analysis are
applicable to Markov transition data and online network partition.
Notation: We denote [n] = {1,2, . . . ,n}. Given two matrices U ∈ Rm×r1 ,V ∈ Rm×r2 with
orthonormal columns, where 1 ≤ r1 ≤ r2 ≤m, we denote the principle angle between two
matrices by Θ (U ,V ) = diag

[
cos−1 (σ1(U>V )) , cos−1 (σ2(U>V )), . . ., cos−1

(
σr1(U>V )

) ]
,

where σi(A) is the i-th largest singular value of matrix A. We also use cos(·) and sin(·)
to act on matrices and denote entry-wise functions. For a matrix V , we denote by V∗j its
j-th column vector and by Vi∗ its i-th row vector. We denote by V∗1:r the sub-matrix of
the first r columns. We denote by ‖·‖F the Frobenius norm of a matrix, and denote by ‖·‖2
the Euclidean norm of a vector or the spectral norm of a matrix. We denote by ei ∈Rs the
i-th standard unit vector for any s ≥ i: (ei)i = 1 and (ei)j = 0 for j , i. We also denote by
0m×n ∈Rm×n the matrix with all 0 entries.

2 Preliminaries

Let us review the basics of networks and the associated Markov chains.

Networks and Associated Markov Chains: Let G = (S,E) be a connected network with
m vertices (a weighted directed graph), where S = {s1, s2, . . . , sm} denotes the vertex set,
E =

{
wi,j ≥ 0 : i, j ∈ [m]

}
denotes the edge set, andwi,j denotes the weight of the edge (si , sj).

Consider the random walk that is naturally associated with the network G: We denote
by P =

(
pi,j

)
∈ Rm×m its probability transition matrix, where each state of the Markov

chain corresponds to a vertex in G. Since G is a connected network, all states of the
Markov chain are recurrent. The Markov chain generated by the network G satisfies
P

[
s(t) = sj

∣∣∣s(t−1) = si
]

= pi,j . Suppose that G is undirected (i.e., wij = wji), then ∀i, j : pi,j =
wi,j
wi

and wi =
∑
j∈[m]wi,j . The stationary distribution of the Markov chain is µi = wi∑

j∈[m]wj
.

The corresponding Markov chain is reversible and satisfies the following detailed balance
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condition

∀i , j, µipi,j = µjpj,i and
∑

i∈[m]

µipi,j = µj , (1)

i.e., DP = PD, where D = diag(µ1,µ2, . . . ,µm). Note that our subsequent analysis does
not require the undirectedness assumption of the underlying network. In this paper, we
focus on connected and undirected networks where µi > 0 for all i ∈ [m]. For a non-
connected network, our method still applies with the caveat that it recovers the structure
of a connected component determined by the initial state.

Our Problem of Interest Given a sample trajectory {s(0), s(1), . . . , s(t), . . .} of state transi-
tions of the unknown Markov chain, our objective is to develop an online learning method
to extract reduced-order information about the Markov chain and recover the latent net-
work partition.

We are interested in complex networks that can be approximated using reduced-order
representations. To be general, we consider networks with associated Markov chains
nearly low-rank, which is defined as follows:

Definition 1 (Nearly Low-Rank Markov Chains). A Markov chain with transition matrix
P is nearly low-rank if there exist matrices F1,F2 ∈ Rm×m, where rank(F1) = r and ‖F2‖2 <
σr (F1) such that

DP = F1 +F2 and F>1 F2 = 0m×m, (2)

and F1 = UΣV >, where Σ = diag(σ1,σ2, . . . ,σr) is a diagonal matrix with 1 ≥ σ1 ≥ σ2 ≥ . . . ≥
σr > 0, and U ,V ∈Rm×r are matrices with orthonormal columns.

Consider the following representation matrix

M :=D−1V ∈Rm×r , (3)

each row of which can be viewed as an r-dimensional representation of a vertex of G. The
matrixM gives a set of approximate “principal components” of the Markov chain, which
has a similar spirit as spectral clustering [7]. Note that Markov chains that are nearly
low-rank are not necessarily reversible. When a Markov chain is both nearly low-rank
and reversible, the conditions in Definition 1 shall hold with U = V .

In particular, we also consider an important special case of nearly low-rank Markov
chains - “lumpable” Markov chains, which is introduced by [16] and formally in [29] as
follows.

Definition 2 (Special Case: Lumpable Markov chains [29]). A reversible Markov chain on
states S with transition matrix P is lumpable with respect to the partition S = S1∪S2 . . .∪Sr
if the top r eigenvectors of DP are piecewise constant with respect to the S1, . . . ,Sr .
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We can view S1,...,Sr as“meta states” of the Markov chain. When the lumpability
condition holds, the transitions between these sets satisfy the strong Markov property,
i.e., for any sk , sh ∈ Si , ∀ j, ∑

s`∈Sj
pk,` =

∑

s`∈Sj
ph,`.

Intuitively speaking, the meta states suffice to characterize the macro dynamics of a com-
plex Markov chain. When the Markov chain is lumpable, it is nearly-low rank as in
Definition 1 with U = V . In this case, the matrix U becomes a block matrix. For any
i, j ∈ [r], the vector U∗i restricted on coordinates Sj has constant values across all entries.
The work [29] showed when the Markov chain is lumpable with respect to a partition
S = S1∪S2 . . .∪Sr , one can recover the exact partition by clustering its r-dimensional rep-
resentations (rows of M = D−1V ). An example of a network and its lumpable Markov
chain is given in Section 5.1.

3 Method

Recall that we are interested in learning from Markov transition data. In particular, con-
sider the scenario where we only observe state-to-state transitions of a Markov process
over S: s(1), s(2), s(3), . . . , s(n−1), s(n), . . ., without knowing the transition matrix P in advance.
For notational convenience, we simplify the notation of the states to S = {1,2, . . .m}.

3.1 A Nonconvex Optimization Model for Markov Chain Factorization

To handle the dependency of the Markov process, we need to downsample the data.
Specifically, we divide the trajectory of n state transitions into b blocks with block size
τ for some τ ≥ 2:

s(1), s(2), ..., s(τ)

︸           ︷︷           ︸
the 1−st block

, s(τ+1), s(τ+2), ..., s(2τ)

︸                  ︷︷                  ︸
the 2−nd block

, . . . , s(b−1)τ+1, s(b−1)τ+2, . . . s(bτ)

︸                          ︷︷                          ︸
the b−th block

.

For the k-th block, we select the last two samples and construct Z(k) ∈ Rm×m to be the
matrix with one entry equaling 1 and all other entries equaling 0, i.e.,

Z
(k)
s(kτ−1),s(kτ) = 1 and Z

(k)
s,s′ = 0 for all (s, s′) ,

(
s(kτ−1), s(kτ)

)
. (4)

Here we choose a large enough τ such that ∀k ≥ 1, E
[
Z(k)

∣∣∣s(0)
]
≈ DP = F1 + F2,where

F1 =U>ΣV and F2 are given in Definition 1. Intuitively, the choice of τ shall be related
to how fast the Markov chain mixes. We will specify the choice of τ in Section 4.
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Let us formulate the Stochastic Transition Matrix Decomposition Problem as

(U ∗,V ∗) = argmax
Ũ ,Ṽ ∈Rm×r

tr
[
Ũ>EZṼ

]
subject to Ũ>Ũ = Ṽ >Ṽ = Ir . (5)

where the expectation

EZ := lim
n→∞n

−1
n∑

k=1

Z(k) =DP

is taken over the invariant distribution of the Markov chain. Note that U ∗ and V ∗ are
global optima to (5), and they satisfy U ∗ = UO and V ∗ = V O for some orthonormal
matrix O ∈ Rr×r . By using a self-adjoint dilation, we recast (5) into a symmetric decom-
position problem as follows

W ∗ = argmax
W∈R2m×r

tr
[
W>EAW

]
subject to W>W = Ir , (6)

where EA =
[

0m×m EZ
EZ> 0m×m

]
∈R2m×2m and W = 1√

2
[U>,V >]> ∈R2m×r .

3.2 Algorithm for Online Factorization of Markov Chains

To solve (6), we adopt the Generalized Hebbian Algorithm (GHA) which was originally
developed for training neural nets and principal component analysis [25]. GHA, also
referred as Sanger’s rule, is essentially a stochastic primal-dual algorithm. Specifically,
let L (W ,L) be the Lagrangian function of Eq. (6) given by

L (W ,L) = tr
[
W>EAW

]
− tr

[
L

(
W>W − Ir

)]
,

where L ∈ Rr×r is the Lagrangian multiplier matrix. By checking the Karush-Kuhn-
Tucker (KKT) conditions of the problem maxW minLL (W ,L), we obtain

EAW ∗ +W ∗L∗ = 0 and W ∗>W ∗ − Ir = 0, (7)

where L∗ is the optimal Lagrangian multiplier. The above KKT conditions further imply

L∗ = −W ∗>EAW ∗. (8)

GHA is essentially an stochastic approximation method for the solving the equations (7)
and (8). Specifically, we use the k-th block of transition data to compute the sample
matrix

A(k) =
[

0m×m Z(k)

Z(k)> 0m×m

]
∈R2m×2m. (9)
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Then the k-th iteration of GHA takes the form

Dual Update : L(k) = W (k)>A(k)W (k)
︸             ︷︷             ︸

Markov sample of W (k)>EAW (k)

(10)

Primal Update : W (k+1) =W (k) + η (A(k)W (k) −W (k)L(k))
︸                      ︷︷                      ︸

Markov sample of ∇WL(W (k),Λ(k))

(11)

where η > 0 is the learning rate. Combing (10) with (11), we get a dual-free update of
GHA as follows,

W (k+1) =W (k) + η(A(k)W (k) −W (k)W (k)>A(k)W (k)).

Note that the columns of W (k) are not necessarily orthogonal. But when W (0) has or-
thonormal columns, then W (k) tends to have orthonormal columns as η→ 0. The formal
procedure is presented in Algorithm 1.

Algorithm 1 SGA for Online Factorization of Markov Chains

Output: A stream of Markov transition data s(1), s(2), s(3), . . . , s(n−1), s(n), . . .

Initialize:
Sample matrix G ∈R2m×r with i.i.d. entries fromN (0,1);
W (0)←QR(G), k← 0;

Repeat:
For every τ state transitions, obtain A(k) using Eqs. (4),(9);
W (k+1)←W (k) + η

[
A(k)W (k) −W (k)W (k)>A(k)W (k)

]
;

k← k + 1;
Until stopping condition is satisfied
Output [Û ; V̂ ]←√2W (k)

Algorithm 1 is a globally convergent method which does not require any warm-up
initialization or prior knowledge. The initial solution W (0) is drawn uniformly from the
set of all orthonormal matrices by applying a QR decomposition to a matrix with i.i.d.
Gaussian entries. Algorithm 1 makes update online and uses O(mr) space, while a batch
method needs O(m2) space to store the explicit transition matrix.

3.3 Recovering The Network Partition from Random Walks

Recall that in Definition 1 the m × r matrix M = D−1V gives a reduced-order represen-
tation for each vertex of the network. As long as we can estimateD,V , we would be able
to partition the network by applying a clustering algorithm such as the k-means. Let us
describe the overall procedure:
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(1) Run Algorithm 1 on the Markov transition data and obtain [Û ; V̂ ].
(2) Let µ̂ be the empirical estimate of the stationary distribution, i.e., µ̂i =

∑n
k=1 I(s(k) =

i)/n. Let D̂ = diag(µ̂1, µ̂2, . . . , µ̂m). Now each row of M̂ = D̂−1V̂ gives an approximate
r-dimensional representation for the corresponding state/vertex.
(3) Find a set of centers C = {c1, c2, . . . , cr} ⊂Rr by solving the following problem:

Ĉ = argmin
C

m∑

i=1

min
c∈C

d2(M̂i∗, c), (12)

where d(M̂si∗, cj) = ||M̂si∗ − cj ||2 is the Euclidean distance.
(4) Output the partition by assigning each state to its closest center.

4 Theory

In order to show the convergence of Algorithm 1, we uses the idea of diffusion approxi-
mation (e.g. [10]). (1) We show that the dynamics of our algorithm can be approximated
by an ordinary differential equation (ODE); (2) To analyze the convergence rate, we show
that after proper rescaling of time, the algorithm’s dynamics can be characterized by the
solution of a Stochastic Difference Equation (SDE). The SDE allows us to analyze the error
fluctuation when the iterates are within a small neighborhood of the global optimum.

4.1 Reducing Dependency by Down Sampling

Recall our goal is to estimate Markov chain factorization from random walks. In the on-
line learning setting, the data comes in a stream and are highly independent. To handle
the dependency, our algorithm replies on down sampling the data points. Next we in-
troduce some important measures for a Markov chain. For notational convenience, we
denote µ(Ω) =

∑
i∈Ωµi for any subset of states Ω ⊂ S. We introduce the merging conduc-

tance [18] of a Markov chain by

Φ = min
Ω⊂[m]

∑
j∈Ω,`∈Ωc

∑
i∈[m]

µjpj,iµ`p`,i
µi∑

j∈Ωµj
subject to µ(Ω) ≤ 1/2,

where Ωc is the complement of Ω. The parameter Φ is a generalization of the Cheeger’s
constant, which characterizes the bottleneck of a network. For recurrent Markov chains
that are rapidly mixing, Φ can be treated as a constant. Besides, we let

µmax = max
i∈[m]

µi , µmin = min
i∈[m]

µi .

We then choose block length τ in Algorithm 1 as follows:

τ ≥
[

2
Φ2 log

(√
µmax

µmin

1
η

)]
.
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As we will shown in section A.3, by choosing such a down-sampling block length, our
data samples are sufficiently close to i.i.d. samples drawn from the stationary distribution
of the underlying Markov chain. This allows us to approximate algorithm by another
auxiliary procedure of fully independent samples. In the next two sub-sections, we show
the limiting procedure of the algorithm based on this down-sampling rate.

4.2 ODE Characterization of Algorithm 1

Let R ∈R2m×2m be the matrix of eigenvectors of EA in (6). We consider a transformation
by R:

W
(k)

=RW (k) and A
(k)

=R>A(k)R.

Let Λ = diag(σ1,σ2, . . . ,σ2m) = EA with that σ1 ≥ σ2 ≥ . . .σ2m. To demonstrate an ODE
characterization for the trajectory of the algorithm, we introduce a continuous time t.

Recall where η is the learning rate. We denote W (t) = W
(bt/ηc)

. For notation simplicity,
we may drop (t) if it is clear from the context. For r + 1 ≤ i ≤ 2m, we define the cosine
subspace angle as

γ
(η)
i (t) =

∥∥∥∥e>i R
>
W

∥∥∥∥
2

=
∥∥∥e>i W

∥∥∥
2
,

where ei ∈ R2m is the i-th standard unit vector. We use (η) as a superscript to emphasize

the dependence on η. To show a global convergence of γ
(η)
i (t), we characterize its upper

bound in the following lemma.

Lemma 1 (Principle Angle Upper Bound). Let E = (e1,e2, . . . ,er) ∈ R2m×r . Suppose that
W has orthonormal columns and E>W is full rank. For any X ∈ R2m×s with s ≥ 1, we have
‖X>W ‖F ≤

∥∥∥X>W · (E>W )−1
∥∥∥

F
.

Accordingly, we define

γ̃
(η)
i =

∥∥∥∥e>i W ·
(
E>W

)−1∥∥∥∥
2
.

Since W (0) has orthonormal columns, for any fixed t > 0, the columns of W (t) are or-

thonormal almost surely as η → 0. Thus γ̃
(η)
i becomes a uniform upper bound of γ

(η)
i

almost surely as η→ 0. The next theorem establishes the continuous time limit for γ̃
(η)
i .

Theorem 1 (ODE Convergence). Given W
(0)

with orthonormal columns and that E>W (0)

is invertible, for all r < i ≤ 2m, γ̃ (η)
i (t) converges weakly to the solution of the following ODE,

dγ̃2
i (t)
dt

= biγ̃
2
i (t)

as η→ 0, where bi is some constant satisfying bi ≤ 2(σi − σr).
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Theorem 1 suggests the global convergence of the algorithm. Specifically, the solution
to the above ODE is

γ̃i(t) = γ̃i(0)ebit/2 ≤ γ̃i(0)e(σi−σr )t, ∀ r < i ≤ 2m,

which implies γ
(η)
i (t)→ 0 for any r < i ≤ 2m as η→ 0 and t→∞. Since

∥∥∥∥sinΘ
(
E,W (t)

)∥∥∥∥
2

F
=

∑
i>r γ

(η)2
i (t), we obtain

∥∥∥∥sinΘ
(
Û (t),U

)∥∥∥∥
2

F
+
∥∥∥∥sinΘ

(
V̂ (t),V

)∥∥∥∥
2

F
≤ 2

∥∥∥∥sinΘ
(
E,W (t)

)∥∥∥∥
2

F

≤ 2
∑

i>r

γ̃i(0)e(σr+1−σr )t→ 0. (13)

4.3 SDE Characterization of Algorithm 1

Our ODE approximation of the algorithm shows that after sufficiently many iterations
with sufficiently small η, the algorithm solution can be arbitrarily close to the true sub-
space, span(R∗1,R∗2, . . . ,R∗r). To obtain the “rate of convergence”, however, we need to
study the variance of the trajectory at time t. Note that such a variance is of order O(η),
and vanishing under the limit of η → 0. To characterize the variance, we need to rescale
the updates by a factor of η−1/2, i.e., after rescaling, the variance is of order O(1). Specifi-
cally, the rescaled update is defined as

ζ
(η)
i (t) = η−1/2 ·W (bt/ηc)> · ei ∈Rr .

Note that given W (k) such that span(W (k)) = span(R∗1,R∗2, . . . ,R∗r), we have

E
(
W (k+1)|W (k)

)
=W (k).

Namely, any matrix in span(R∗1,R∗2, . . . ,R∗r) is a fixed point for Equation (19), in expec-
tation. We consider a regime, where the algorithm has already run for sufficient many
iterations such that

∥∥∥∥sinΘ
(
R∗1:r ,W

(N1)
)∥∥∥∥

2

F
=

∥∥∥∥∥sinΘ
(
E,W

(N1)
)∥∥∥∥∥

2

F
≤ η1/c,

for some constant c > 1. By restarting the counter, we denote W
(0)

:= R
>
W (N1). Now

we define W
(0)>

ΛW
(0)

= Γ > · Λ̃r · Γ , where Γ ∈ Rr×r is an orthonormal matrix and Λ̃r =
diag

(
σ ′1,σ

′
2, . . . ,σ

′
r

)
, with σ ′1 ≥ σ ′2 ≥ . . . ≥ σ ′r ≥ 0.

Denote ζ
(η)
i,j (t) = η−1/2

(
e′>j Γ ·W (bt/ηc)> · ei

)
, for i = r + 1, r + 2, . . . ,2m and j = 1,2, . . . , r,

where e′j ∈ Rr denotes the j-th standard unit vector in Rr . We establish the following
theorem.
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Theorem 2 (SDE Convergence). Given
∥∥∥∥∥sinΘ

(
E,W

(bt/ηc))∥∥∥∥∥
2

F
≤ O(η1/c) for all t ≥ 0, then for

any i > r and j ∈ [r], the trajectory of ζ(η)
i,j (t) weakly converges to the solution of the following

SDE, as η→ 0,

dζi,j = Ki,jζi,jdt +Gi,jdBi,j (14)

where Bi,j is the standard Brownian motion (not necessarily i.i.d. across i, j) and constants
Ki,j ≤ (σi − σr),

∑2m
i>rG

2
i,j ≤ B for any j ∈ [r], with some absolute constant B.

Notice that (14) is a Fokker-Plank equation, which admits the following solution,

ζi,j(t) = ζi,j(0)exp
[
Ki,jt

]
+Gi,j

∫ t
0

exp
[
Ki,j(s − t)

]
dBi,j(s). (15)

Therefore, we show that each ζ
(η)
i,j (t) weakly converges to an Ornstein-Uhlenbeck (OU)

process, which is widely studied in existing literature [17]. Since the drifting term is
driven by Ki,j < 0, the OU process eventually becomes a pure random walk, i.e., the first

term of R.H.S. in (15) goes to 0. Recall that ζ
(η)
i,j (t) characterizes the sin angle of the

subspaces, i.e.,

∥∥∥∥∥sinΘ
(
E,W

(bt/ηc))∥∥∥∥∥
2

F
= η

∑2m
i>r

∑r
j=1ζ

(η)2
i,j (t). (16)

Thus the fluctuation of ζ
(η)
i,j (t) is essentially the error fluctuation of the algorithm after

sufficiently many iterations. By (15), we obtain

E
∥∥∥∥∥sinΘ

(
E,W

(bt/ηc))∥∥∥∥∥
2

F
� η

2m∑

i>r

r∑

j=1

G2
i,j

∫ t

0
exp

[
2Ki,jt

]
dt

= O


ηr∣∣∣Ki,j

∣∣∣


 = O

(
ηr

σr(F1)− ‖F2‖2

)
.

Given the error parameter ε > 0, we need η to satisfy O
(

ηr
σr (F1)−‖F2‖2

)
� ε. Combining with

a Markov inequality and Equation (13), we obtain the following lemma,

Lemma 2 (Error Analysis of the Limiting Process). Given a sufficiently small ε > 0, let

N = O
(

rB

ε (σr(F1)− ‖F2‖2)2 log

∑
i>r γ̃

2
i (0) ·B

ε (σr(F1)− ‖F2‖2)

)
and t =Nη.

Let [Û (t), V̂ (t)]←W (t). We then have

lim
ε→0

P
[∥∥∥∥sinΘ

(
Û (t),U

)∥∥∥∥
2

F
+
∥∥∥∥sinΘ

(
V̂ (t),V

)∥∥∥∥
2

F
> ε

]
≤ 1

10
.
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Remark 1. With standard characterizations of the random matrices (e.g. [27]), we obtain the
value of

∑
i>r γ̃

2
i (0) = poly(m) with probability close to 1 whenm is large. If the ODE and SDE

faithfully approximates the algorithm at sufficiently small η, i.e., the approximation error of
ODE/SDE to the algorithm updates is smaller than the desired precision ε, then the number of
down-sampling steps of the algorithm is

N = O
(

rB

ε (σr(F1)− ‖F2‖2)2 log

∑
i>r γ̃

2
i (0) ·B

ε (σr(F1)− ‖F2‖2)

)
.

Our numerical experiments verify this sample complexity empirically in Section 5.

4.4 Recovery of Network Partition By Clustering

We have been established bounds for obtaining sate embeddings in the last two sections.
Next we show that one can recover the partition structure of the underlying network,
provided that the Markov chain is lumpable and the sample size is sufficiently large.

Theorem 3 (Recovery of Partition Structure for Lumpable Markov Chains). Suppose that
the estimated eigen-matrices Û , V̂ , and empirical distribution µ̂ satisfy

||sinΘ(Û ,U )||2F + ||sinΘ(V̂ ,V )||2F ≤ ε and max
i∈[m]

∣∣∣µ̂i −µi
∣∣∣ ≤ √εµi . (17)

for some ε ∈ (0,1). Let M̂ := diag(µ̂)−1V̂ and M as defined in Definition 1. Then for any
si , sj ∈ S, ∣∣∣∣∣

∥∥∥∥M̂si∗ −M̂sj∗
∥∥∥∥

2

2
−
∥∥∥∥Msi∗ −Msj∗

∥∥∥∥
2

2

∣∣∣∣∣ ≤ Cε
µ2

min
.

Moreover, suppose that the Markov chain is lumpable with respect to the partition S1, . . . ,Sr .
Then the procedure of Section 3.3 exactly recovers the network partition as long as

∀l, si ∈ Sl , sj ∈ Scl :
∥∥∥∥Msi∗ −Msj∗

∥∥∥∥
2

2
> 2Cε
µ2

min
.

Theorem 3 implies that our proposed partition approach can exactly recover the par-
tition of a lumpable Markov chain, as long as the random walk trajectory is long enough
to tell the blocks apart. It is possible to extend our analysis to approximately lumpable
Markov chains, which is left for future research. The proof is given in Section A.4.

5 Experiments
We experiment with the proposed method on two data sets.
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5.1 Simulated Data

Consider a 12-vertex lumpable network that has 3 meta-states (see Figure 1(a)). We let its
probability transition matrix be Pex (which is specified in (18)). We generate the Markov
transition data by simulating the random walk according to Pex. We test our algorithms
on the simulated transition data using 104 samples for 100 independent trials. In every
single trial, the meta states are correctly recovered. Figure 1(b) shows that the conver-
gence rate of subspace angle are consistent with Remark 1. For comparison, we test a
convex relaxation algorithm (MSG [2]) for online solution of Problem (5) (there is no
theoretic guarantee for applying MSG to depend data). Figure 1(c) shows that our algo-
rithm significantly outperforms MSG in wall-clock time complexity using both fixed and
diminishing stepsizes.

Pex =



0 84
625

463
10000

101
1250

463
10000

84
625

463
10000

101
1250

101
1250

84
625

101
1250

84
625

323
2000 0 323

2000
17

250
323

2000
273

10000
323

2000
17

250
17

250
273

10000
17

250
273

10000
463

10000
84

625 0 101
1250

463
10000

84
625

463
10000

101
1250

101
1250

84
625

101
1250

84
625

147
1000

103
1000

147
1000 0 147

1000
103

1000
147

1000 0 0 103
1000 0 103

1000
463

10000
84

625
463

10000
101

1250 0 84
625

463
10000

101
1250

101
1250

84
625

101
1250

84
625

323
2000

273
10000

323
2000

17
250

323
2000 0 323

2000
17

250
17

250
273

10000
17

250
273

10000
463

10000
84

625
463

10000
101

1250
463

10000
84

625 0 101
1250

101
1250

84
625

101
1250

84
625

147
1000

103
1000

147
1000 0 147

1000
103

1000
147

1000 0 0 103
1000 0 103

1000
147

1000
103

1000
147

1000 0 147
1000

103
1000

147
1000 0 0 103

1000 0 103
1000

323
2000

273
10000

323
2000

17
250

323
2000

273
10000

323
2000

17
250

17
250 0 17

250
273

10000
147

1000
103

1000
147

1000 0 147
1000

103
1000

147
1000 0 0 103

1000 0 103
1000

323
2000

273
10000

323
2000

17
250

323
2000

273
10000

323
2000

17
250

17
250

273
10000

17
250 0




. (18)

The transition matrix on the three meta states is,

Pr =




0 0.5880 0.4120
0.3233 0.1389 0.5378
0.2720 0.6461 0.0819



.

The stationary distribution of Pex is

µex = {0.105,0.0874,0.105,0.0577,0.105,0.0874,

0.105,0.0577,0.0577,0.0874,0.0577,0.0874},
and the merging conductance is roughly 0.06. Using 104 sample state transitions, we
obtain a fairly close estimate of stationary distribution given by

µ̂ex ={0.106,0.088,0.107,0.057,0.102,0.087,

0.105,0.059,0.057,0.087,0.058,0.087}.
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(a) Lumpble Markov Chain (b) Dynamics of SGD (c) SGD v.s. MSG

Figure 1: (a) An illustration of lumpable Markov chain: the full network (Top) and 3
meta-states in the simplified network (Bottom); (b) The convergence in subspace angle
of 100 simulations: fixed stepsize (Top) and diminishing step size (Bottom); (c) Time
complexity, nonconvex SGD v.s. convex MSG: fixed stepsize (Top) and diminishing step
size (Bottom).

(a) Online: 4 states; (b) Online: 10 states; (c) Online: 15 states; (d) Batch: 4 states.

Figure 2: The meta-states partition of Manhattan traffic network based on taxi trip records. Each
color or symbol represents a meta-state.

5.2 Manhattan Taxi Data

We experiment using a real dataset that contains 1.1×107 trip records of NYC Yellow cabs
from January 2016 [28]. Each entry records the coordinates of the pick-up and drop-off
locations, distance and length of trip, and taxifares. We discretize the map into a fine
grid (with cell size roughly 10m) and model each taxi trip as a single state transition of
a Markov chain. For example, a taxi picks up a customer at cell s1 and drops off the cus-
tomer at cell s2, then picks up a customer at s3... We can view s1, s2, s3 . . . , as the path of
states visited by an implicit city-wide random walk. In order to guarantee recurrence of
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the random walk, we removed cells that are rarely visited. We end up with 2017 locations
and a total of 107 effective trips. We apply Algorithm 1 and the partition procedure of
Section 3.3 to the taxi trip data and illustrate the results in Figure 2(a)–2(c). Our method
reveals a very informative partition of the Manhattan city according to traffic dynamics.
We compare our online algorithm with a batch partition procedure and observe that they
generate highly similar results (Figure 2(d)) when r = 4. A practically impressive obser-
vation is: our algorithm uses less than 1 Mbytes memory for r = 4,10,15. In contrast, the
batch partition uses about 200 Mbytes memory even for r = 4.

6 Conclusions and Discussions

We have developed an online learning method for analyzing dynamic transition data
generated by a random walk on a network. Out method finds the low-dimensional rep-
resentation of an implicit network and reveals its latent partition structure. Our method
has superior space and computation complexity. We show that it achieves near-optimal
global convergence and sample complexity by using an ODE-SDE argument.

Our algorithm and analysis can be adapted to work for the more general online sin-
gular value decomposition poblem, which has been considered by [11, 13, 1, 30, 2, 6].
The most critical distinction between our result and existing ones is that ours applies to
random walk data and network partition. We summarize other technical improvements
of our results:
(1) All the existing analyses require i.i.d samples, while ours applies to dependent Markov
samples; (2) [11, 13, 1, 6] analyzed Oja’s algorithm for PCA problem, which conducts QR
factorization in each iteration. Our algorithm does not require such decomposition -
each iteration uses only vector-to-vector inner products; (3) [30] analyzed a similar algo-
rithm as ours but their results require a sufficiently near-optimal initial solution, which
is not available in our problems. (4) [2] investigated a method based on convex relax-
ation of SVD but they achieves a sub-optimal sample complexity - Õ(1/ε2). Moreover,
their algorithm needs to compute an expensive Fantope projection with a computational
complexity O(m3) per iteration.

In summary, Markov transition data carries rich information about the underlying
structure of complex networks and stochastic systems. We hope this work will motivate
more research in this area and faster algorithms for applications in networks and rein-
forcement learning.
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A Proof Details

A.1 Proof of Theorem 1

We first assume that the sampleA(k)s are i.i.d. to each other. In particular, we assume s(i)

is generated from the stationary distribution µ and s(i+1) is generated from distribution
Ps(i)∗. Later on, we will remove this requirement. We denote D as the distribution for
the i.i.d samples described above. It can be verified that D satisfies the following two
properties.

Assumption 1 (Subgaussian moments). Suppose A ∼ D. Then for each r ∈N+,

EA = Σ and E‖(A)r‖2 ≤ Cr1,

for some constants C1 dependents only on m.

For our distribution D, we observe that

Σ =
[

0m×m DP

P>D> 0m×m

]
∈R2m×2m.

Assumption 2 (Rotational Invariant Variance). Suppose A ∼ D. Then for any set of or-
thonormal vectors v1,v2, . . . ,v2m,

2m∑

j=2

E
(
v>1Avj

)2 ≤ B,

for some constant B.

We also introduce the following notations,

Er = (e1,e2, . . . ,er) ∈R2m×r and E = (er+1,er+2, . . . ,e2m) ∈R2m×(2m−r)

where ei is the i-th standard unit vector in Rm. Let

Σ =RΛR
>
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be the eigenvalue decomposition of Σ, i.e., R = (v1,v2, . . . ,v2m) are the eigenvectors of
Σ and Λ = diag(σ1,σ2, . . . ,σm,−σm,−σm−1, . . . ,−σ1). Initialize with a random matrix W (0) ∈
R2m×r with orthonormal columns. Let η > 0 be the choice of the learning rate. The update
for step k is

W (k+1)←W (k) + η
(
A(k)W (k) −W (k) ·W (k)>A(k)W (k)

)
.

Let W =R>W and A =R>AR, we obtain,

W
(k+1)←W

(k)
+ η

(
A

(k)
W

(k) −W (k) ·W (k)>
A

(k)
W

(k)
)
. (19)

Proof of Lemma 1. Since E and W have orthonormal rows, we have that ‖E>W ‖2 ≤ 1.
Then we immediately have

∥∥∥X>W
∥∥∥

F
≤

∥∥∥∥X>W ·
(
E>W

)−1 (
E>W

)∥∥∥∥
F

≤
∥∥∥∥X>W ·

(
E>W

)−1∥∥∥∥
F

∥∥∥E>W
∥∥∥

2
,

as desired.

Proof of Lemma 1 (On Independent Sample). First we note that ifE>W (k)
is invertible, then,

for sufficiently small η, E>W (k+1)
is invertible with probability 1. Further we will show

that γ̃
(η)
i (t) is monotonically decreasing, which implies γ̃

(η)
i (t) is finite for all t > 0. Thus

E>W (k)
is invertible for all k > 0.

It is easy to verify that
(
W

(k)
, γ̃

(η)
i (ηk)

)n
k=1

form a sequence satisfying strong Markov

property. By Corollary 4.2 in §7.4 of [9], if

bi = limη→0E



∆
(
γ̃

(η)2
i

)

η

∣∣∣∣∣∣∣
W


 ≤∞ and σ2

i = limη→0E




[
∆
(
γ̃

(η)2
i

)]2

η

∣∣∣∣∣∣∣∣
W


 = 0,

where

∆
(
γ̃

(η)2
i

)
= γ̃

(η)2
i (t + η)− γ̃ (η)2

i (t)

=
∥∥∥e>i (W +∆W )(E>W +E>∆W )−1

∥∥∥2
2
−
∥∥∥e>i (W )(E>W )−1

∥∥∥2
2
.

then the sequence of updates converges to the solution of the following ODE in probabil-
ity

dγ2
i (t) = bidt.

By a simple calculation,

∆
(
γ̃

(η)2
i

)
= 2e>i ∆W

(
E>W

)−1 (
W
>
E

)−1
W
>
ei

− 2e>i W
(
E>W

)−1 (
E>∆W

)(
E>W

)−1 (
W
>
E

)−1
Wei +O

(
η2

∥∥∥A
∥∥∥2

2

)
;

[
∆γ̃

(η)2
i

]2
= O

(
η2

∥∥∥A
∥∥∥2

2

)
.
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Plugging (19) in to ∆W , we have,

1
η
E

[
∆
(
γ̃

(η)2
i

)∣∣∣∣∣W
]

= 2σie
>
i W

(
E>W

)−1 (
W
>
E

)−1
W
>
ei

− 2e>i W
(
E>W

)−1 (
EΛW

)(
EW

)−1 (
W
>
E

)−1
Wei +O(η);

= 2σie
>
i W

(
E>W

)−1 (
W
>
E

)−1
W
>
ei

− 2e>i W
(
E>W

)−1 (
ΛrE

>W
)(
E>W

)−1 (
W
>
E

)−1
Wei +O(η);

≤ 2(σi − σr)e>i W
(
E>W

)−1 (
W
>
E

)−1
W
>
ei +O(η)

= 2(σi − σr)γ̃2
i +O(η); (20)

and

E

([
∆
(
γ̃

(η)2
i

)]2∣∣∣∣∣W
)

= O(η2). (21)

Thus we have

bi ≤ 2(σi − σr)γ̃i2 and σi = 0,

as desired.

Lemma 3. Suppose W ∈R2m×r is a matrix with ‖W>W − Ir‖∞ = O(δ). If
∥∥∥∥E
>
W

∥∥∥∥
2

F
≤ O(δ),

then
σmin

(
W (0)>ΛW (0)

)
≥ σr −O(δ).

A.2 Proofs of Theorem 2

Proof of Lemma 3. Since ‖E>W ‖2F ≥ r −O(δ), for any 1 ≤ i ≤ r, we have
∥∥∥We′i

∥∥∥2
2
≥ 1−O (δ) ,

where e′i ∈Rr is the i-th r-dimensional standard unit vector. Therefore,

e′>i W
>ΛWe′i = e′>i W

> (EΛrE
> +EΛrE

>)
We′i

≥ σre′>i W>EE>We′i −O(δ)

≥ σr −O(δ),

Here Λr = diag(σ1,σ2, . . . ,σr) and Λr = diag(σr+1,σr+2, . . . ,σ2m). Hence,

σmin

(
W>ΛW

)
≥ σr −O(δ).
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Proof of Theorem 2 (On independent sample). Let

ζi,j = lim
η→0

η−1/2
(
e′>j ΓW

(bt/ηc)>
ei

)
.

Then
dζi,j = lim

η→0
∆ζ

(η)
i,j .

Since

∆ζ
(η)
i,j =

(
e′>j Γ∆Wei

)

η1/2

= η1/2
[
e′>j Γ

(
W
>
A−W>

AW ·W>)
ei

]
.

Therefore, we have

1
η1/2

E
(
∆ζ

(η)
i,j

∣∣∣∣W
)

= η1/2E
[
e′>j

(
ΓW

>
Aei − ΓW>

AWW
>
ei

)]

= η1/2
[
σie
′>
j ΓW

>
ei − e′>j ΓW

>
ΛWW

>
ei

]

= η1/2
[
σie
′>
j ΓW

>
ei − σ ′je′>j ΓW

>
ei

]

≤ η (σi − σr)ζ(η)
i,j +O(ηδ),

where we relies on W>W = Ir (which is true under the limit of η → 0). We now turn to
compute the infinitesimal variance Gi,j .

(
∆ζ

(η)
i,j

)2
=

1
η

(
e′>j Γ∆W>ei

)2
.

And

E
[(
e′>j Γ∆W>ei

)2∣∣∣∣W
]

= η2E
[(
e′>j ΓW

>
A(I −WW

>
)ei

)2
∣∣∣∣∣W

]
.

We further observe that W Γ >e′j is perpendicular to (I −WW
>

)ei for any r < i ≤ 2m, and
that ∥∥∥∥(I −WW

>
)ei

∥∥∥∥ ≤ 1.

Thus, for any j = 1,2, . . . , r,

2m∑

i=r+1

E
[(
e′>j ΓW

>
A(I −WW

>
)ei

)2
∣∣∣∣∣W

]
≤ B.

By Corollary 4.2 in §7.4 of [9], we obtain the desired SDE with

Ki,j ≤ (σi − σr) and
2m∑

i>r

G2
i,j ≤ B,

which completes the proof.
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A.3 Dependent Data

We now proceed to present the results for dependent data. Before the proof of Theorem 1
we first present the mixing lemma of Markov chain.

Lemma 4 (Markov Chain Mixing Time, [18]). Suppose P ∈ Rm×m is the transition matrix of
a Markov chain. Let µ be the stationary distribution of the chain. Denote

Φ = min
Ω⊂[m]

∑
j∈Ω,`∈Ωc

∑
i∈[m]

µjpj,iµ`p`,i
µi∑

j∈Ωµj
subject to µ(Ω) ≤ 1/2,

as the merging conductance of the Markov chain. Then the mixing time, defined as

τ(ε) = min
t

{
t : ∀t′ > t,max

i,j

∣∣∣(P t′ )i,j −µj
∣∣∣ ≤ ε

}
,

satisfies,

τ(ε) ≤ 2
Φ2 log

(√
µmax

µmin

1
ε

)
.

We now proceed with the proof of Theorem 1.

Full Proof of Theorem 1. Let s(0), s(1), s(2), . . . , s(k), . . . s(n) be samples from the Markov chain.
We next show that the statements in Lemma 1 and Lemma 2 are true for Markov Samples:
s(τ−1), s(τ), s(2τ−1), s(2τ), . . . , s(kτ−1), s(kτ) . . ., where τ = τ(η). We start with Lemma 1. We first
observe that the updates of the Algorithm combining with Markov samples satisfy strong
Markov property. Denote

A(i) =
[

0 Z(k)

Z(k)> 0

]
∈R2m×2m.

Assumption 1 and Assumption 2 can be verified, conditioning on s(0). By definition of
τ = τ(η), we also observe that,

E
(
A(k)

∣∣∣s(0)
)

=
[

0 DP + ÊP
P>D +P>Ê 0

]
∈R2m×2m.

where Ê is a diagonal matrix with

∀i ∈ [m] :
∣∣∣Êi,i

∣∣∣ ≤ η.
Therefore, the spectrum of E

(
A(k)|s(0)

)
differs with independent case by at most an ad-

ditive O(η) term. Thus Equation (20) holds, hence the rest of the proof of Theorem 1 is
exactly the same as proof of the independent case.

Theorem 2 follows similarly by observing that the spectrum of E
(
A(i)

)
differs with

independent case by at most an additive O(η) term.
The rest of proof of this theorem is the same as that of Theorem 1.
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A.4 Proof of Theorem 3

Proof. Suppose we have

∥∥∥∥V
>
V̂

∥∥∥∥
2

F
=

r∑

j,j ′=1



m∑

i=1

vi,j v̂i,j ′




2

=
m∑

i,i′=1



r∑

j=1

vi,j v̂i′ ,j




2

≥ r − ε and

µ̂i ∈ (1± ε′)µi .

Let
V >V̂ = Ũ>T Ũ ′,

where T = diag(σ̂1, σ̂2, . . . , σ̂r) and Ũ ,Ũ ′ are orthonormal matrices. Since for each i, |σ̂i | ≤ 1,
we have

r − ε ≤
r∑

i=1

σ̂2
i ≤ r.

Fixing
∑r
i=1 σ̂

2
i , the minimum value of

∑r
i=1 σ̂i is obtained when σ̂1 = σ̂2 = . . . σ̂r−1 = 1 and

σ̂r = 1− ε. Let Ṽ = V Ũ> and ̂̃V = V̂ Ũ ′>. We have

m∑

i=1

Ṽ >i∗
̂̃V i∗ =

m∑

i=1

r∑

j=1

Ṽi,j
̂̃V i,j =

r∑

j=1

Ṽ >∗j
̂̃V ∗j =

r∑

j=1

σ̂j ∈ [r − ε,r]. (22)

For any si , sj ∈ S, the distance

d(si , sj) =

∥∥∥∥∥∥
Vi∗
µi
− Vj∗
µj

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
Ṽi∗
µi
− Ṽj∗
µj

∥∥∥∥∥∥∥

d′(si , sj) =

∥∥∥∥∥∥∥
V̂i∗
µ̂i
− V̂j∗
µ̂j

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
−

̂̃V j∗
µ̂j

∥∥∥∥∥∥∥∥
.

Therefore, by triangle inequality,

d′(si , sj) =

∥∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
− Ṽi∗
µi

+
Ṽi∗
µi
−

̂̃V j∗
µ̂j

+
Ṽj∗
µj
− Ṽj∗
µj

∥∥∥∥∥∥∥∥

∈
∥∥∥∥∥∥∥
Ṽi∗
µi
− Ṽj∗
µj

∥∥∥∥∥∥∥
±
∥∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
− Ṽi∗
µi
−

̂̃V j∗
µ̂j

+
Ṽj∗
µj

∥∥∥∥∥∥∥∥
.

Now consider the second term,
∥∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
− Ṽi∗
µi
−

̂̃V j∗
µ̂j

+
Ṽj∗
µj

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
− Ṽi∗
µi

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
−
̂̃V j∗
µ̂j

+
Ṽj∗
µj

∥∥∥∥∥∥∥∥
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Since we have µ̂i = (1± ε′)µi , where ε′ =
√
ε,

∥∥∥∥∥∥∥∥

̂̃V i∗
µ̂i
− Ṽi∗
µi
−

̂̃V j∗
µ̂j

+
Ṽj∗
µj

∥∥∥∥∥∥∥∥

2

≤ 16

µ2
i

∥∥∥∥̂̃V i∗ − Ṽi∗
∥∥∥∥

2
+

16

µ2
j

∥∥∥∥̂̃V j∗ − Ṽj∗
∥∥∥∥

2
+

16ε′2

µ2
i

∥∥∥∥̂̃V i∗
∥∥∥∥

2

+
16ε′2

µ2
j

∥∥∥∥̂̃V j∗
∥∥∥∥

2
.

Observe that, for any i ∈ [n],

∥∥∥∥̂̃V i∗ − Ṽi∗
∥∥∥∥

2
=

∥∥∥∥̂̃V i∗
∥∥∥∥

2
+
∥∥∥Ṽi∗

∥∥∥2 − 2̂̃V
>
i∗Ṽi∗.

Therefore
m∑

i=1

∥∥∥∥̂̃V i∗ − Ṽi∗
∥∥∥∥

2
= 2r − 2

m∑

i=1

̂̃V
>
i∗Ṽi∗ = 2r − 2

r∑

j=1

σ̂j ≤ 2ε.

Thus, for each i ∈ [n] ∥∥∥∥̂̃V i∗ − Ṽi∗
∥∥∥∥

2
≤ 2ε.

Furthermore, since
ε′2 ≤ ε

we have ∣∣∣d′2(si , sj)− d2(si , sj)
∣∣∣ ≤ 96ε

µ2
min

.

B Use Geometric Median to Boost The Probability of Suc-
cess

In this section we show that the geometric median indeed boosts the probability of suc-
cess. In particular, let V ∈ R2m×r be a fixed matrix with orthonormal columns. Let
k = O

(
log 1

δ

)
andV1,V2, . . .Vk be independent random column-orthonormal matrices from

R2m×r with
∀i ∈ [k] : P

[∥∥∥V >i V
∥∥∥2

F
< r − ε

]
≤ 1

4
.

We denote H be the geometric median of V1V
>

1 ,V2V
>

2 , . . . ,VkV
>
k in Euclidean space, i.e.

H := argmin
Z∈R2m×2m

k∑

j=1

∥∥∥∥VjV >j −Z
∥∥∥∥

F
.

24



Let
Ṽ = argmin

Vi :i∈[k]

∥∥∥ViV >i −H
∥∥∥

F
.

The following proposition guarantees Ṽ to be a good estimation of V .

Proposition 4.

P
[∥∥∥Ṽ >V

∥∥∥2

F
< r −Cε

]
≤ δ,

for some absolute constant C.

Proof. We first show that the quantity
∥∥∥V >i V

∥∥∥2
F

is related to Euclidean distance in R2m×2m:

∥∥∥V >i V
∥∥∥2

F
= tr

(
V >i V V

>
Vi

)
= tr

(
ViV

>
i V V

>)
= r −

∥∥∥∥ViV >i −V V
>∥∥∥∥

2

F

2
.

Thus we obtain,

∀i ∈ [k] : P
[∥∥∥∥ViV >i −V V

>∥∥∥∥
2

F
≥ 2ε

]
≤ 1

4
.

Then by Theorem 3.1 of [19],

P
[∥∥∥∥H −V V >

∥∥∥∥
2

F
≥ C1ε

]
≤ δ

2
for some absolute constant C1 and appropriately chosen k. Since the Vis are independent,
we obtain

P
[
∀i ∈ [k] :

∥∥∥∥ViV >i −V V
>∥∥∥∥

2

F
≥ 2ε

]
≤ 1

4k
≤ δ

2
,

for appropriately chosen k. Let E be the following event,
∥∥∥∥H −V V >

∥∥∥∥
2

F
< C1ε and ∃i∗ :

∥∥∥∥Vi∗V >i∗ −V V
>∥∥∥∥

2

F
< 2ε.

By union bound, P[E] ≥ 1− δ. For the rest of the proof, we condition on E. Thus
∥∥∥∥Ṽ Ṽ > −V V >

∥∥∥∥
F

=
∥∥∥∥Ṽ Ṽ > −H +H −V V >

∥∥∥∥
F

≤
∥∥∥Ṽ Ṽ > −H

∥∥∥
F

+
∥∥∥∥V V

> −H
∥∥∥∥

F

≤
∥∥∥Vi∗V >i∗ −H

∥∥∥
F

+
√
C1ε

≤
√
C1ε+

∥∥∥∥Vi∗V >i∗ −V V
>∥∥∥∥

F
+
∥∥∥∥V V

> −H
∥∥∥∥

F

≤
(
2
√
C1 +

√
2
)√
ε.

Thus
∥∥∥∥Ṽ Ṽ > −V V >

∥∥∥∥
2

F
≤

(
2
√
C1 +

√
2
)2
ε⇒

∥∥∥V >i V
∥∥∥2

F
≥ r −

(
2
√
C1 +

√
2
)2

2
ε.

The proof is completed by setting C = (2
√
C1+
√

2)2

2 .

Moreover, H can be obtained efficiently by running the algorithm presented in [8].
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