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Abstract

This paper presents novel mixed-type Bayesian
optimization (BO) algorithms to accelerate the
optimization of a target objective function by
exploiting correlated auxiliary information of
binary type that can be more cheaply obtained,
such as in policy search for reinforcement learn-
ing and hyperparameter tuning of machine
learning models with early stopping. To achieve
this, we first propose a mixed-type multi-output
Gaussian process (MOGP) to jointly model the
continuous target function and binary auxiliary
functions. Then, we propose information-based
acquisition functions such as mixed-type en-
tropy search (MT-ES) and mixed-type predic-
tive ES (MT-PES) for mixed-type BO based
on the MOGP predictive belief of the target
and auxiliary functions. The exact acquisition
functions of MT-ES and MT-PES cannot be
computed in closed form and need to be ap-
proximated. We derive an efficient approxima-
tion of MT-PES via a novel mixed-type random
features approximation of the MOGP model
whose cross-correlation structure between the
target and auxiliary functions can be exploited
for improving the belief of the global target
maximizer using observations from evaluating
these functions. We propose new practical con-
straints to relate the global target maximizer to
the binary auxiliary functions. We empirically
evaluate the performance of MT-ES and MT-
PES with synthetic and real-world experiments.

1 INTRODUCTION

Bayesian optimization (BO) has recently demonstrated
with notable success to be highly effective in optimizing
an unknown (possibly noisy, non-convex, and/or with

no closed-form expression/derivative) target function us-
ing a finite budget of often expensive function evalua-
tions (Shahriari et al., 2016). As an example, BO is used
by Snoek et al. (2012) to determine the setting of input
hyperparameters (e.g., learning rate, batch size of data) of
a machine learning (ML) model that maximize its valida-
tion accuracy (i.e., output of the unknown target function).
Conventionally, a BO algorithm relies on some choice
of acquisition function (e.g., improvement-based (Shahri-
ari et al., 2016) such as probability of improvement or
expected improvement (EI) over currently found maxi-
mum, information-based (Villemonteix et al., 2009) such
as entropy search (ES) (Hennig and Schuler, 2012) and
predictive entropy search (PES) (Hernández-Lobato et al.,
2014), or upper confidence bound (UCB) (Srinivas et al.,
2010)) as a heuristic to guide its search for the global tar-
get maximizer. To do this, the BO algorithm exploits the
chosen acquisition function to repeatedly select an input
for evaluating the unknown target function that trades off
between sampling at or near to a likely target maximizer
based on a Gaussian process (GP) belief of the unknown
target function (exploitation) vs. improving the GP belief
(exploration) until the budget is expended.

In practice, the expensive-to-evaluate target function of-
ten correlates well with some cheaper-to-evaluate binary
auxiliary function(s) that delineate the input regions po-
tentially containing the global target maximizer and can
thus be exploited to boost the BO performance. For ex-
ample, automatically tuning the hyperparameters of a
sophisticated ML model (e.g., deep neural network) with
BO is usually time-consuming as it may incur several
hours to days to evaluate the validation accuracy of the
ML model under each selected hyperparameter setting
when training with a massive dataset. To accelerate this
process, consider an auxiliary function whose output is
a binary decision of whether the validation accuracy of
the ML model under the selected input hyperparameter
setting will exceed a pre-specified threshold, which is
recommended by some early/optimal stopping mecha-
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nism (Müller et al., 2007) after a small number of training
epochs. Such auxiliary information of binary type is
cheaper to obtain and can quickly delineate the input re-
gions containing the best hyperparameter setting, hence
incurring less time for exploration. Similarly, to find
the best reinforcement learning policy for an AI agent
in a game or a real robot in a task with binary outcomes
(e.g., success or failure) (Tesch et al., 2013), maximizing
the success rate (i.e., the unknown target function with a
continuous output type) averaged over multiple random
environments can be accelerated by deciding whether the
selected setting of input policy parameters is promising
in a single environment (i.e., the auxiliary function with
a binary output type). To search for the optimal setting
of a system via user interaction (Shahriari et al., 2016),
gathering implicit/binary user feedback (e.g., click or not,
like or dislike) is often easier than asking for an explicit
rating/ranking of a shown example. The above practi-
cal examples motivate the need to design and develop a
mixed-type BO algorithm that can naturally trade off be-
tween exploitation vs. exploration over the target function
with a continuous output type and the cheaper-to-evaluate
auxiliary function(s) with a binary output type for finding
or improving the belief of the global target maximizer,
which is the focus of our work here.

In this paper, we generalize information-based acquisi-
tion functions like ES and PES to mixed-type ES (MT-
ES) and mixed-type PES (MT-PES) for mixed-type BO
(Section 4). To the best of our knowledge, these are the
first BO algorithms that exploit correlated binary auxil-
iary information for accelerating the optimization of a
continuous target objective function. Different from con-
tinuous auxiliary functions which have been exploited by
a number of multi-fidelity BO algorithms (Huang et al.,
2006; Swersky et al., 2013; Kandasamy et al., 2016, 2017;
Poloczek et al., 2017; Sen et al., 2018), the binary aux-
iliary functions in our problem make the widely used
Gaussian likelihood inappropriate and prevent a direct
application of existing multi-fidelity BO algorithms.1

To resolve this, we first propose a mixed-type multi-output
GP to jointly model the unknown continuous target func-
tion and binary auxiliary functions. Although the exact
acquisition function of MT-PES cannot be computed in
closed form, the main contribution of our work here is to
show that it is in fact possible to derive an efficient approx-
imation of MT-PES via (a) a novel mixed-type random
features (MT-RF) approximation of the MOGP model
whose cross-correlation structure between the target and
auxiliary functions can be exploited for improving the be-
lief of the global target maximizer using the observations
from evaluating these functions (Section 5.1), and (b) new

1We discuss other related works in Appendix A.

practical constraints relating the global target maximizer
to the binary auxiliary functions (Section 5.2). We empir-
ically evaluate the performance of MT-ES and MT-PES
with synthetic and real-world experiments (Section 6).

2 PROBLEM SETUP

In this work, we have access to an unknown target objec-
tive function f1 andM−1 auxiliary functions f2, . . . , fM
defined over a bounded input domain D ⊂ Rd such that
each input x ∈ D is associated with a noisy output yi(x)
for i = 1, . . . ,M . As mentioned in Section 1, a cost λi(x)
is incurred to evaluate function fi at each input x ∈ D
and the target function is more costly to evaluate than the
auxiliary functions, i.e., λ1(x) > λi(x) for i = 2, . . . ,M .
Then, the objective is to find the global target maximizer
x∗ , arg maxx∈D f1(x) with a lower cost by exploiting
the cheaper auxiliary function evaluations, as compared to
evaluating only the target function. Our problem differs
from that of the conventional multi-fidelity BO in that
only the target function returns continuous outputs (i.e.,
y1(x) ∈ R) while the auxiliary functions return binary
outputs (i.e., yi(x) ∈ {1,−1} for i = 2, . . . ,M ).

3 MIXED-TYPE MULTI-OUTPUT GP

Various types of multi-output GP models (Cressie, 1993;
Wackernagel, 1998; Webster and Oliver, 2007; Skolidis,
2012; Bonilla et al., 2007; Teh and Seeger, 2005; Álvarez
and Lawrence, 2011) have be used to jointly model target
and auxiliary functions with continuous outputs. How-
ever, none of them can be used straightforwardly in our
problem to model the mixed output types due to the non-
Gaussian likelihood p(yi(x)|fi(x)) of the auxiliary func-
tions. To resolve this issue, we generalize the convolved
multi-output Gaussian process (CMOGP) to model the
correlated functions with mixed continuous and binary
output types by approximating the non-Gaussian likeli-
hood using expectation propagation (EP), as discussed
later. The CMOGP model is chosen for generalization
due to its convolutional structure which can be exploited
for deriving an efficient approximation of our acquisition
function, as described in Section 5.

Let the target and auxiliary functions f1, . . . , fM be
jointly modeled as a CMOGP which defines each function
fi as a convolution between a smoothing kernel Ki and a
latent function2 L with an additive bias mi:

fi(x) , mi +

∫
x′∈D

Ki(x− x′) L(x′) dx′ . (1)

2To ease exposition, we consider a single latent function.
Note, however, multiple latent functions can be used to improve
the modeling (Álvarez and Lawrence, 2011). More importantly,
our proposed MT-RF approximation and MT-PES algorithm
can be easily generalized to handle multiple latent functions, as
shown in Appendix G.



Let D+
i , {〈x, i〉}x∈D and D+ ,

⋃M
i=1D

+
i . As shown

by Álvarez and Lawrence (2011), if {L(x)}x∈D is a GP,
then {fi(x)}〈x,i〉∈D+ is also a GP, that is, every finite sub-
set of {fi(x)}〈x,i〉∈D+ follows a multivariate Gaussian
distribution. Such a GP is fully specified by its prior
mean µi(x) , E[fi(x)] and covariance σij(x, x′) ,
cov[fi(x), fj(x

′)] for all 〈x, i〉, 〈x′, j〉 ∈ D+, the lat-
ter of which characterizes both the correlation structure
within each function (i.e., i = j) and the cross-correlation
between different functions (i.e., i 6= j). Specifically,
let {L(x)}x∈D be a GP with zero mean, prior covariance
σxx′ , N (x−x′|0,Γ−1), andKi(x) , σsiN (x|0, P−1i )
where σ2

si is the signal variance controlling the intensity
of the outputs of fi(x), Γ and Pi are diagonal precision
matrices controlling, respectively, the degrees of correla-
tion between outputs of latent function L(x) and cross-
correlation between outputs of L(x) and fi(x). Then,
µi(x) = mi and

σij(x, x
′) = σsiσsjN (x−x′|0,Γ−1+P−1i +P−1j ) . (2)

In this work, we assume the Gaussian and probit likeli-
hoods for the target and auxiliary functions, respectively:

p(y1(x)|f1(x)) , N (f1(x), σ2
n1

) ,

p(yi(x)|fi(x)) , Φcdf(yi(x)fi(x))
(3)

for i = 2, . . . ,M . Supposing a column vector yX ,
(yi(x))>〈x,i〉∈X of outputs are observed by evaluating each
i-th function fi at a set Xi ⊂ D+

i of input tuples where
X ,

⋃M
i=1Xi, the predictive belief/distribution of fZ ,

(fi(x))>〈x,i〉∈Z for any set Z ⊆ D+ \ X of input tuples
can be computed by

p(fZ |yX) =

∫
p(fZ |fX) p(fX |yX) dfX . (4)

For conventional CMOGP with only continuous out-
put types, (4) can be computed analytically since both
p(fZ |fX) and p(fX |yX) are Gaussians (Álvarez and
Lawrence, 2011). Unfortunately, the non-Gaussian like-
lihood in (3) makes the integral in (4) intractable. To re-
solve this issue, the work of Pourmohamad and Lee (2016)
has proposed a sampling strategy based on a sequential
Monte Carlo algorithm which, however, is computation-
ally inefficient and makes the approximation of our pro-
posed acquisition function (Section 5) prohibitively ex-
pensive. In contrast, we approximate the non-Gaussian
likelihood using EP to derive an analytical approxima-
tion of (4), as detailed later. EP will be further exploited
in Section 5 for approximating our proposed acquisition
function efficiently.

3.1 MIXED-TYPE CMOGP PREDICTIVE
INFERENCE

Let XB ,
⋃M
i=2Xi be a set of input tuples of the auxil-

iary functions. The posterior distribution p(fX |yX) in (4)

can be computed by

p(fX1 , fXB
|yX1 , yXB

)

∝ p(fX1
, fXB

) p(yX1
|fX1

) p(yXB
|fXB

)

= p(fX1
|fXB

)p(fXB
)p(yX1

|fX1
)
∏

〈x,i〉∈XB

p(yi(x)|fi(x))

= p(fX1 |fXB
) p(yX1 |fX1) q(fXB

)
(5)

where q(fXB
) , p(fXB

)
∏
〈x,i〉∈XB

p(yi(x)|fi(x))
can be approximated with a multivariate Gaussian
N (fXB

|µ̃B , Σ̃B) using EP by approximating each non-
Gaussian likelihood as a Gaussian. Let

p(yi(x)|fi(x)) = Φcdf(yi(x)fi(x))

≈ Z̃i(x) N (fi(x)|µ̃i(x), σ̃2
i (x))

(6)

for all 〈x, i〉 ∈ XB . Following the EP procedure in Sec-
tion 3.6 of Rasmussen and Williams (2006), the param-
eters µ̃i(x) and σ̃2

i (x) can be computed analytically and

µ̃B = ΣXBXB
(Σ̃−1µ̃+ Σ−1XBXB

µXB
)

Σ̃B = (Σ̃−1 + Σ−1XBXB
)−1

(7)

where µ̃ , (µ̃i(x))>〈x,i〉∈XB
, Σ̃ is a diagonal matrix with

diagonal components σ̃2
i (x) for 〈x, i〉 ∈ XB , ΣAA′ ,

(σij(x, x
′))〈x,i〉∈A,〈x′,j〉∈A′ , and µA , (µi(x))>〈x,i〉∈A

for any A,A′ ⊆ D+.

By combining (7), (5), and (3) with (4) (Appendix B), the
predictive belief p(fZ |yX) can be approximated by a mul-
tivariate Gaussian N (µZ|X ,ΣZZ|X) with the following
posterior mean vector and covariance matrix:

µZ|X , µZ + ΣZXΛ−1(ỹX − µX)

ΣZZ|X , ΣZZ − ΣZXΛ−1ΣXZ
(8)

where Λ ,

[
ΣX1X1

+ Σn ΣX1XB

ΣXBX1
ΣXBXB

+ Σ̃

]
, ỹX ,

[yX1
; µ̃], and Σn is a |X1| × |X1| diagonal matrix with

diagonal components σ2
n1

. Consequently, the approx-
imated predictive belief of yi(x) for any input tuple
〈x, i〉 ∈ D+ can be computed using p(yi(x)|yX) =∫
p(yi(x)|fi(x)) p(fi(x)|yX) dfi(x). Due to (3) and (8),

p(y1(x)|yX) ≈ N (y1(x)|µ{〈x,1〉}|X , σ2
〈x,1〉|X+σ2

n1
)

p(yi(x) = 1|yX) ≈ Φcdf

(
µ{〈x,i〉}|X/

√
1 + σ2

〈x,i〉|X

)
(9)

for i = 2, . . . ,M where σ2
〈x,i〉|X , Σ{〈x,i〉}{〈x,i〉}|X for

i = 1, . . . ,M .

4 BO WITH BINARY AUXILIARY
INFORMATION

To achieve the objective described in Section 2, our BO
algorithm repeatedly selects the next input tuple 〈x, i〉



for evaluating the i-th function fi at x that maximizes a
choice of acquisition function α(yX , 〈x, i〉) per unit cost
given the past observations (X, yX):

〈x, i〉+ , arg max〈x,i〉∈D+\X α(yX , 〈x, i〉)/λi(x)

and updates X ← X ∪ {〈x, i〉+} until the budget is
expended. Since the costs of evaluating the target vs. aux-
iliary functions differ, we use the above cost-sensitive ac-
quisition function such that the cheaper auxiliary function
evaluations can be exploited. We will focus on design-
ing the acquisition function α first and the estimation of
λi(x) in real-world applications will be discussed later in
Section 6.

Intuitively, α should be designed to enable its BO al-
gorithm to jointly and naturally optimize the non-trivial
trade-off between exploitation vs. exploration over the
target and auxiliary functions for finding or improving the
belief of the global target maximizer x∗ by utilizing in-
formation from the mixed-type CMOGP predictive belief
of these functions (8). To do this, one may be tempted to
directly use the conventional EI (Mockus et al., 1978) and
EIπ (Tesch et al., 2013) acquisition functions for select-
ing inputs to evaluate the target and auxiliary functions,
respectively. EIπ is a variation of EI and, to the best of
our knowledge, the only acquisition function designed
for optimizing an unknown function with a binary out-
put type. However, this does not satisfy our objective
since EIπ aims to find the global maximizer of the aux-
iliary function which can differ from the global target
maximizer if the target and auxiliary functions are not
perfectly correlated. To resolve this issue, we propose
to exploit information-based acquisition functions and
generalize them to our mixed-type BO problem such that
input tuples for evaluating the target and auxiliary func-
tions are selected to directly maximize only the unknown
target objective function, as detailed later.

4.1 INFORMATION-BASED ACQUISITION
FUNCTIONS FOR MIXED-TYPE BO

Information-based acquisition functions like ES and PES
have been designed to enable their BO algorithms to im-
prove the belief of the global target maximizer. In mixed-
type BO, we can similarly define a belief of the maximizer
x∗i of each i-th function fi as p(x∗i |yX) , p(fi(x∗i) =
maxx∈D fi(x)|yX) for i = 1, ...,M . To achieve the ob-
jective of maximizing only the target function in mixed-
type BO, ES can be used to measure the information gain
of only the global target maximizer x∗ (i.e., x∗1) from
selecting the next input tuple 〈x, i〉 for evaluating the i-th
(possibly binary auxiliary) function fi at x given the past
observations (X, yX):

α(yX ,〈x, i〉),H(x∗|yX)−Ep(yi(x)|yX)[H(x∗|yX∪{〈x,i〉})].
(10)

Similar to the multi-task ES algorithm (Swersky et al.,
2013) which is designed for BO with continuous aux-
iliary information, we can use Monte Carlo sampling
to approximate (10) by utilizing information from the
mixed-type CMOGP predictive belief (i.e., (8) and (9))
of the target and auxiliary functions. To make the Monte
Carlo approximation tractable and efficient, we need to
discretize the input domain and assume that the search
space for evaluating (10) is pruned to a small set of input
candidates which, following the work of Swersky et al.
(2013), can be selected by applying EI to only the target
function. Such a form of approximation, however, faces
two critical limitations: (a) Computing (10) incurs cubic
time in the size of the discretized input domain and is
thus expensive to evaluate with a large input domain (or
risks being approximated poorly), and (b) the pruning of
the search space artificially constrains the exploration of
auxiliary functions and requires a parameter in EI (i.e.,
to control the exploration-exploitation trade-off) to be
manually tuned to fit different real-world applications.

To circumvent the above-mentioned issues, we can exploit
the symmetric property of conditional mutual information
and rewrite (10) as

α(yX ,〈x, i〉)=H(yi(x)|yX)−Ep(x∗|yX)[H(yi(x)|yX , x∗)]
(11)

which we call mixed-type PES (MT-PES). Intuitively, the
selection of an input tuple 〈x, i〉 to maximize (11) has
to trade off between exploration of every target and aux-
iliary function (hence inducing a large Gaussian predic-
tive entropy H(yi(x)|yX)) vs. exploitation of the cur-
rent belief p(x∗|yX) of the global target maximizer x∗
to choose a nearby input x of function fi (i.e., convolu-
tional structures and maximizers of the target and auxil-
iary functions are similar or close (Section 3)) to be evalu-
ated (hence inducing a small expected predictive entropy
Ep(x∗|yX)[H(yi(x)|yX , x∗)]) to yield a highly informa-
tive observation that in turn improves the belief of x∗.
Note that the entropy of continuous random variables (i.e.,
differential entropy) and discrete/binary random variables
(i.e., Shannon entropy) are not comparable3. So, the differ-
ential entropy terms in (11) for i = 1 are not comparable
to the Shannon entropy terms in (11) for i = 2, . . . ,M .
Fortunately, the difference of the two entropy terms in
(11) is exactly the information gain of the global target
maximizer x∗ in (10) which is comparable between i = 1
vs. i = 2, . . . ,M regardless of whether the output yi(x)
is continuous or binary. Next, we will describe how to
evaluate (11) efficiently.

3For example, the Shannon entropy is always non-negative
while the differential entropy can be negative. A detailed discus-
sion of their difference and connection is available in Chapter 8
of Cover and Thomas (2006).



5 APPROXIMATION OF MIXED-TYPE
PREDICTIVE ENTROPY SEARCH

Due to (9), the first Gaussian predictive/posterior entropy
term in (11) can be computed analytically:

H(y1(x)|yX) , 0.5 log(2πe(σ2
〈x,1〉|X + σ2

n1
))

H(yi(x)|yX) , −
∑

yi(x)∈{1,−1}

p(yi(x)|yX) log p(yi(x)|yX)

(12)
for i = 2, . . . ,M . Unfortunately, the second term in (11)
cannot be evaluated in closed form. Although this second
term appears to resemble that in PES (Hernández-Lobato
et al., 2014), their approximation method, however, can-
not be applied straightforwardly here since it cannot ac-
count for either the binary auxiliary information or the
complex cross-correlation structure between the target
and auxiliary functions. To achieve this, we will first
propose a novel mixed-type random features approxima-
tion of the CMOGP model whose cross-correlation struc-
ture between the target and auxiliary functions can be ex-
ploited for sampling the global target maximizer x∗ more
accurately using the past observations (X, yX) from eval-
uating these functions (especially when the target function
is sparsely evaluated due to its higher cost), which is in
turn used to approximate the expectation in (11). Then,
we will formalize some practical constraints relating the
global target maximizer to the binary auxiliary functions,
which are used to approximate the second entropy term
within the expectation in (11).

5.1 MIXED-TYPE RANDOM FEATURES

To approximate the expectation in (11) efficiently by
averaging over samples of the target maximizer from
p(x∗|yX) in a continuous input domain, we will derive
an analytic sample of the unknown function fi given
the past observations (X, yX), which is differentiable
and can be optimized by any existing gradient-based
optimization method to search for its maximizer. Un-
like the work of Hernández-Lobato et al. (2014) that
achieves this in PES using the single-output random fea-
tures (SRF) method for handling a single continuous out-
put type (Lázaro-Gredilla et al., 2010; Rahimi and Recht,
2007), we have to additionally consider how the binary
auxiliary functions and their complex cross-correlation
structure with the target function can be exploited for
sampling the target maximizer x∗ more accurately. To
address this, we will now present a novel mixed-type ran-
dom features (MT-RF) approximation of the CMOGP
model by first deriving an analytic form of the latent
function L with SRF and then an analytic approximation
of fi using the convolutional structure of the CMOGP
model. The results of EP (6) can be reused here to ap-

proximate the non-Gaussian likelihood p(yi(x)|fi(x)) for
i = 2, . . . ,M .

Using SRF (Rahimi and Recht, 2007), the latent func-
tion L modeled using GP can be approximated by a
linear model L(x) ≈ φ(x)>θ where φ(x) is a random
vector of an m-dimensional feature mapping of the in-
put x for L(x) and θ ∼ N (0, I) is an m-dimensional
vector of weights. Then, interestingly, by exploiting
the convolutional structure of the CMOGP model in (1),
fi(x) can also be approximated analytically by a linear
model: fi(x) ≈ mi + φi(x)>θ where the random vec-
tor φi(x) , σsi diag(exp(−0.5W>P−1i W )) φ(x) can
be interpreted as input features of fi(x), W is a d ×m
random matrix which is used to map x → φ(x) in SRF,
and function diag(A) returns a diagonal matrix with the
same diagonal components as A. The exact definition of
φ(x) and the derivation of φi(x) are in Appendix C.

Then, a sample of fi can be constructed using f (s)i (x) ,

mi + φ
(s)
i (x)>θ(s) where φ(s)i (x) and θ(s) are vectors

of features and weights sampled, respectively, from the
random vector φi(x) and the posterior distribution of
weights θ given the past observations (X, yX), the latter
of which is approximated to be Gaussian by exploiting
the conditional independence property of MT-RF and the
results of EP (6) from the mixed-type CMOGP model:

p(θ|yX) = N (θ|A−1Φ(Λ− ΣXX)−1(ỹX − µX), A−1)

where A , Φ(Λ − ΣXX)−1Φ> + I and Φ ,
(φj(x))〈x,j〉∈X , as detailed in Appendix C.2.

Consequently, the expectation in (11) can be approxi-
mated by averaging over S samples of the target maxi-
mizer x(s)∗ of f (s)1 to yield an approximation of MT-PES:

α(yX , 〈x, i〉) ≈ H(yi(x)|yX)− 1

S

S∑
s=1

H(yi(x)|yX , x(s)∗ )

(13)
where x(s)∗ , x

(s)
∗1 and x(s)∗i , arg maxx∈D f

(s)
i (x) for

i = 1, . . . ,M . Drawing a sample of x(s)∗ incurs O(m3 +
m2|X|) time if m ≤ |X| and O(|X|3 + |X|2m) time if
m > |X|, which is more efficient than using Thompson
sampling to sample fi over a discretized input domain
that incurs cubic time in its size since a sufficiently fine
discretization of the entire input domain is typically larger
in size than the no. |X| of observations.

5.2 APPROXIMATING THE PREDICTIVE
ENTROPY CONDITIONED ON THE
TARGET MAXIMIZER

We will now discuss how the second entropy term in (13)
is approximated. Firstly, the posterior distribution of
yi(x) given the past observations and target maximizer is



computed by

p(yi(x)|yX , x∗)=

∫
p(yi(x)|fi(x)) p(fi(x)|yX , x∗) dfi(x)

(14)
where p(yi(x)|fi(x)) is defined in (3) and
p(fi(x)|yX , x∗) will be approximated by EP, as
detailed later. As shown in Section 3, the Gaussian
predictive belief p(fi(x)|yX) (8) can be computed
analytically. Then, p(fi(x)|yX , x∗) can be considered
as a constrained version of p(fi(x)|yX) by further
conditioning on the target maximizer x∗. It is intuitive
that the posterior distribution of fi(x) is constrained
by fi(x) ≤ fi(x∗i),∀〈x, i〉 ∈ D+. However, since
only the target maximizer x∗ is of interest, how should
the value of fi(x) be constrained by x∗ instead of
x∗i if i = 2, . . . ,M? To resolve this, we introduce a
slack variable ci to formalize the relationship between
maximizers of the target and auxiliary functions:

fi(x) ≤ fi(x∗) + ci ∀x ∈ D, i 6= 1 (15)

where ci , Ep(x∗i |yX)[fi(x∗i)]−Ep(x∗|yX)[fi(x∗)] mea-
sures the gap between the expected maximum of fi and
the expected output of fi evaluated at x∗ and can be ap-
proximated efficiently using our MT-RF method even
though fi is unknown, as detailed later. Consequently,
the following simplified constraints instead of (15) will
be used to approximate p(fi(x)|yX , x∗):

C1. fi(x)≤ fi(x∗) + δici for a given 〈x, i〉∈D+where
δi equals to 0 if i = 1, and 1 otherwise.

C2. f1(x∗) ≥ ymax + ε1 where ε1 ∼ N (0, σ2
n1

) and
ymax , max〈x,1〉∈X1

y1(x) is the largest among the
noisy outputs observed by evaluating the target func-
tion f1 at X1.

C3. Φcdf(fj(x∗) + cj) ≥ 0.5 for j = 2, . . . ,M .4

The first constraint C1 keeps the influence of x∗ to the
next input tuple 〈x, i〉 to be selected by MT-PES. Instead
of constraining all unknown functions over the entire in-
put domain, C2 and C3 relax (15) to be valid only for the
outputs observed from evaluating these functions. When
the target and auxiliary functions are highly correlated
(i.e., small cj), C3 means that a positive label can be
observed with high probability by evaluating an auxil-
iary function at the target maximizer x∗. Using these
constraints, p(fi(x)|yX , x∗) ≈ p(fi(x)|yX , C1, C2, C3)
which can be approximated analytically using EP. To

4Like the work of Swersky et al. (2013) (Section 2.2), we
assume the cross-correlation between the target and auxiliary
functions to be positive. An auxiliary function that is negatively
correlated with the target function can be easily transformed to
be positively correlated by negating all its outputs.

achieve this, we will first derive a tractable approximation
of the posterior distribution p(fi(x∗)|yX , C2, C3) which
does not depend on the next selected input x. Note that
such terms can be computed once and reused in the ap-
proximation of p(fi(x)|yX , x∗) in (14) which depends
on x, as detailed later.

Approximating terms independent of x. Let f∗j ,

fj(x∗) and f∗ , (f∗j )>j=1,...,M . We can use the cdf of
a standard Gaussian distribution and an indicator func-
tion to represent the probability of C2 and C3, respec-
tively. Then, the posterior distribution p(f∗|yX) can be
constrained with C2 and C3 by

p(f∗|yX , C2, C3)

∝ p(f∗|yX) Φcdf

(
f∗1 − ymax

σn1

) M∏
j=2

I(f∗j + cj ≥ 0) .
(16)

Interestingly, by sampling the target and auxiliary maxi-
mizers x∗ and x∗j using our MT-RF method proposed in
Section 5.1, the value of cj in (16) can be approximated
by Monte Carlo sampling5:

cj = Ep(x∗j |yX)[fj(x∗j )]− Ep(x∗|yX)[fj(x∗)]

≈ S−1
∑S
s=1

(
f
(s)
j (x

(s)
∗j )− f (s)j (x

(s)
∗ )
)
.

With the multiplicative form of (16) , p(f∗|yX , C2, C3)
can be approximated to be a multivariate Gaussian
N (f∗|µ,Σ) using EP by approximating each non-
Gaussian factor (i.e., Φcdf and I) in (16) to be a Gaussian,
as detailed in Appendix D. Consequently, the posterior
distribution p(f∗i |yX , C2, C3) can be approximated by a
Gaussian N (f∗i |µi, τi) where µi is the i-th component of
µ and τi is the i-th diagonal component of Σ.

Approximating terms that depend on x. In C2 and C3,
f∗i is the only term that is related to C1. It follows that
fi(x) is conditionally independent of C2 and C3 given
f∗i . Let f+ , [fi(x∗); fi(x)]. So, p(f+|yX , C2, C3) =
p(fi(x)|yX , f∗i ) p(f∗i |yX , C2, C3) = N (f+|µ+,Σ+)
where µ+ and Σ+ can be computed analytically using
µi, τi, and (8), as detailed in Appendix E.

To involve C1, an indicator function I(fi(x) ≤ fi(x∗) +
δici) is used to represent the probability that C1 holds.
Then, p(fi(x)|yX , x∗) ≈

∫
p(f+|yX , C1, C2, C2) df∗i

where

p(f+|yX , C1, C2, C3)

≈ Z ′−1p(f+|yX , C2) I(fi(x) ≤ fi(x∗) + δici) .
(17)

Since the posterior of fi(x∗) has been updated according
to C2 and C3 (16), ci in (17) is updated likewise:

ci ≈ S−1
∑S
s=1

(
f
(s)
i (x

(s)
∗i )− µ(s)

i

)
5When j = 1, cj is equal to 0 since x∗j = x∗.



where µ(s)
i is computed in (16) using a sampled x

(s)
∗ .

Similar to that in (Hernández-Lobato et al., 2014), a one-
step EP can be used to approximate (17) as a multivariate
Gaussian with the following posterior mean vector and
covariance matrix:

µf+ , µ+ − (γ/
√
v)Σ+a

Σf+ , Σ+ − v−1γ(γ − (η − δici)/
√
v) Σ+aa>Σ+

(18)

where γ , φ((δici − η)/
√
v)/Φcdf((δici − η)/

√
v),

η , a>µ+, v , a>Σ+a and a = [−1; 1]. The deriva-
tion of (18) is in Appendix F. So, the posterior mean
and variance of p(fi(x)|yX , x∗) can be approximated, re-
spectively, using the 2-th component of µf+ and (2, 2)-th
component of Σf+ denoted by µfi and vfi . As a re-
sult, the posterior entropy H(yi(x)|yX , x(s)∗ ) in (13) can
be approximated using (12) by replacing µ{〈x,i〉}|X and
σ2
〈x,i〉|X in (12) with, respectively, µ(s)

fi
and v(s)fi where

µ
(s)
fi

and v(s)fi are computed in (18) using a sampled x(s)∗ .

6 EXPERIMENTS AND DISCUSSION

This section empirically evaluates the performance of our
MT-PES algorithm against that of (a) the state-of-the-art
PES (Hernández-Lobato et al., 2014) without utilizing the
binary auxiliary information and (b) MT-ES performing
Monte Carlo approximation of (10). In all experiments,
we use m , 200 random features and S , 50 samples
of the target maximizer in MT-PES. The input candi-
dates with top 30 EI values are selected for evaluating
MT-ES. The mixed-type MOGP (MT-MOGP) hyperpa-
rameters are learned via maximum likelihood estimation.
The performance of the tested algorithms are evaluated
using immediate regret (IR) |f1(x∗) − f1(x̃∗)| where
x̃∗ , arg maxx∈D µ{〈x,1〉}|X is their recommended tar-
get maximizer. In each experiment, one observation of the
target function is randomly selected as the initialization.

6.1 SYNTHETIC EXPERIMENTS

The performance of the tested algorithms are firstly evalu-
ated using synthetic and benchmark functions.

Synthetic functions. The synthetic functions are gen-
erated using M , 2 and D , [0, 1]2. To do this, the
CMOGP hyperparameters with one latent function are
firstly fixed as the values shown in Appendix H.1, which
are also used in the tested algorithms as optimal hyperpa-
rameters. Then, a set X of 450 input tuples are uniformly
sampled from D+ and their corresponding outputs are
sampled from the CMOGP prior. The target function is
set to be the predictive mean µ{〈x,1〉}|X of the CMOGP
model. The outputs of the auxiliary function are set to be
1 if µ{〈x,2〉}|X ≥ 0, and −1 otherwise. An example of
the synthetic functions can be found in Figs. 1a to 1c. As

can be seen in Figs. 1b and 1c, we can generate multiple
auxiliary functions with different proportions of positive
outputs from a target function (Fig. 1a) by varying the
bias m2. All these auxiliary functions correlate well with
the target function but delineate the input regions con-
taining the target maximizer differently and thus result in
different MT-PES performance, as will be shown later.

Empirical analysis of MT-MOGP and MT-RF. Firstly,
we verify that the MT-MOGP model and MT-RF can out-
perform the conventional GP model and single-output
RF by exploiting cross-correlation structure between the
target and auxiliary function aux1 (i.e., Figs. 1a and 1b).
Figs. 1d and 1e show the predictive mean and the sampled
maximizers of the target function using randomly sam-
pled observations. By comparing Figs. 1d and 1e with
Fig. 1a, it can be observed that the MT-MOGP model
and MT-RF can predict the target function and sample the
target maximizer more accurately than the conventional
GP model and single-output RF using an additional 50
observations from evaluating aux1.

Empirical analysis of mixed-type BO. Next, the perfor-
mance of the tested BO algorithms are evaluated using ten
groups (i.e., one target function, two auxiliary functions
aux1 and aux2 with different m2) of synthetic functions
generated using the above procedure. We adjust m2 such
that around 20% of auxiliary outputs are positive for each
aux1 and set m2 = 0 for each aux2. An averaged IR is
obtained by optimizing the target function in each of them
with 10 different initializations for each tested algorithm.

Fig. 2 shows the results of all tested algorithms for syn-
thetic functions with a cost budget of 2500. From Fig. 2a,
MT-PES can achieve a similar averaged IR with a much
lower cost than PES, which implies that the BO per-
formance can be accelerated by exploiting the binary
auxiliary information of lower evaluation cost. MT-ES
achieves lower averaged IR than PES with a cost less
than 1000 but unfortunately performs less well in the re-
maining BO iterations. Even though the cheap auxiliary
outputs provide additional information for finding the tar-
get maximizer at the beginning of BO, the multimodal
nature of the synthetic function (see Fig. 1a) causes MT-
ES to be trapped easily in some local maximum since its
search space has been pruned using EI for time efficiency.

To investigate how the performance of MT-PES will be
affected by the proportion of positive outputs in different
auxiliary functions, we vary the number and bias m2 of
the auxiliary function(s) and show the results in Fig. 2b. It
can be observed that MT-PES using aux2 as the auxiliary
function does not converge as fast as MT-PES using aux1,
which is expected since aux2 with a larger proportion of
positive outputs is less informative in delineating the input
regions containing the target maximizer than aux1. Also,
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Figure 1: (a-c) Example of the synthetic functions where ‘4’ is the global target maximizer, (d) target function predicted
by conventional GP model and the target maximizers (‘+’ ) sampled by RF with 5 observations from evaluating the
target function, and (e) target function predicted by MT-MOGP model and the target maximizers (‘+’ ) sampled by
MT-RF with 5 and 50 observations from evaluating the target and aux1 functions, respectively.
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Figure 2: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for (a-b) synthetic functions and (c)
Hartmann-6D function. The type and cost of functions used in each experiment are shown in the title and legend of
each graph where ‘t’ denotes target function and ‘a1’ and ‘a2’ denote aux1 and aux2 functions, respectively. The error
bars are computed in the form of standard error.

Fig. 2b shows that MT-PES is able to exploit multiple
auxiliary functions with different costs to achieve a lower
averaged IR than PES with a much lower cost.

Remark. From the results in Fig. 2b, one may expect MT-
PES to converge faster using an auxiliary function with
a smaller proportion of positive outputs, which is not al-
ways the case. If the auxiliary function has sparse positive
outputs, MT-PES will face difficulty finding a positive
output when exploring the auxiliary function and start to
evaluate the target function after only several negative
outputs are observed from evaluating the cheap auxiliary
function. These negative outputs may not be informative
enough to guide the algorithm to directly evaluate the
target function near to the likely target maximizer. To
reduce the negative effect of such an unexpected behav-
ior in real-world applications with an unknown auxiliary
function, we can set MT-PES to evaluate only the aux-
iliary function using a small amount (e.g., 10%) of the
budget at the beginning of BO so that positive auxiliary
outputs are highly likely to be observed before MT-PES
chooses to evaluate the expensive target function.

To provide more insight into the approximations of MT-
PES, we follow the PES paper (Hernández-Lobato et al.,
2014) and show the accuracy of the EP approximations
(Section 5.2) compared to that of the ground truth con-
structed using the rejection sampling method. To verify
how sensitive the performance of MT-PES is to different
settings, we have also evaluated the performance of the

tested algorithms using synthetic functions with varying
costs λi, random features dimension m, and sampling
size S. The results are reported in Appendix H.1.

Hartmann-6D function. The original Hartmann-6D
function is used as the target function and to construct the
binary auxiliary function, as detailed in Appendix H.2.
Fig. 2c shows results of the tested algorithms with 10
different initializations. It can be observed that MT-PES
converges faster to a lower averaged IR than PES. How-
ever, MT-ES does not perform well for Hartmann-6D
function which is difficult to optimize due to their multi-
modal nature (i.e., 1 global maximum and 6 local max-
ima) and large input domain. The former causes MT-ES
to be trapped easily in some local maximum while the
latter prohibits MT-ES from finely discretizing the input
domain to remain computationally tractable.

6.2 REAL-WORLD EXPERIMENTS

The tested algorithms are next used in hyperparameter
tuning of a ML model in an image classification task and
policy search for reinforcement learning.

Convolutional neural network (CNN) with CIFAR-10
dataset. The six CNN6 hyperparameters to be tuned
in our experiments are the learning rate of SGD in the
range of [10−5, 1], three dropout rates in the range of

6We use the example code of keras (i.e., cifar10 cnn.py) and
switch the optimizer in their code to SGD.



[0, 1], batch size in the range of [100, 1000], and number
of learning epochs in the range of [100, 1000]. We use
training and validation data of size 50000 and 10000, re-
spectively. The unknown target function to be maximized
is the validation accuracy evaluated by training the CNN
with all the training data. The auxiliary function is the de-
cision made using the Bayesian optimal stopping (BOS)
mechanism in (Dai et al., 2019; Müller et al., 2007) by
setting 0.5 as a threshold of the validation accuracy. In
particular, we train the same CNN model with a smaller
fixed dataset of size 10000 randomly selected from the
original training data and apply the BOS after 20 train-
ing epochs. The BOS will early-stop the training and
return 1 if it predicts that a final validation accuracy of
0.5 can be achieved with a high probability, and −1 oth-
erwise.7 The real training time is not known and varies
with different settings of hyperparameters. To simplify
the setting of the evaluation costs, we use λ1(x) = 1 and
λ2(x) = 0.2×(20/xepochs) where xepochs is the number of
learning epochs in each selected hyperparameter setting.8

For this experiment, we additionally compare the tested
algorithms with multi-fidelity GP-UCB (MF-GP-UCB)
(Kandasamy et al., 2016) that can only exploit continuous
auxiliary functions. The auxiliary function of MF-GP-
UCB is the validation accuracy evaluated by training the
same CNN with the same data used for the auxiliary func-
tion of MT-PES.9 The actual wall-clock time shown in the
results includes the time of both CNN training and BO.
The validation accuracy f1(x̃∗) is evaluated by training
the CNN with x̃∗ for the tested algorithms.

Policy search for reinforcement learning (RL). We ap-
ply the tested algorithms to the CartPole task from Ope-
nAI Gym and use a linear policy consisting of 8 param-
eters in the range of [0, 1]. This task is defined to be a
success (i.e., reward of 1) if the episode length reaches
200, and a failure (reward of −1) otherwise. The target
function to be maximized is the success rate averaged over
100 episodes with random starting states. The auxiliary
function is the reward of one episode with a fixed starting
state (0, 0, 0.02, 0.02). λ1(x) = 100 and λ2(x) = 1 are
used in the experiments. The success rate f1(x̃∗) is eval-
uated by running the CartPole task with x̃∗ as the policy
parameters over 100 episodes for the tested algorithms.

Fig. 3 shows results of the tested algorithms with 5 dif-

7A description of BOS is provided in Appendix H.3.
8We use 20% of the training data for evaluating the auxiliary

function and early-stop the training after around 20 epochs.
9One may consider constructing the auxiliary function of

MF-GP-UCB with an even smaller training dataset such that its
cost is similar to that of the binary auxiliary function. However,
for any smaller training dataset, we can always early-stop the
training and achieve a much cheaper binary auxiliary function,
as compared to the continuous auxiliary function of MF-GP-
UCB constructed using the same dataset.

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

Wall−Clock Time (Hours)

V
al

id
at

io
n

 A
cc

u
ra

cy

(a) CNN

 

 

PES

MT-ES

MT-PES

MF-GP-UCB

baseline

Figure 3: Graphs of (a) validation accuracy vs. wall-clock
time incurred by tested algorithms for CNN and (b) suc-
cess rate vs. no. of episodes incurred by tested algorithms
for RL. The results for the first 50 episodes are zoomed
in for a clearer comparison.

ferent initializations for the CNN hyperparameter tuning
and RL policy search tasks. It can be observed that both
MT-ES and MT-PES converge faster to a smaller IR than
other tested algorithms. MT-PES also converges faster
than MT-ES in both experiments. MT-ES and MT-PES
outperform MF-GP-UCB since evaluating the binary aux-
iliary function by early-stopping the CNN training incurs
much less time than evaluating the true validation accu-
racy for MF-GP-UCB. Using only 1 hour, MT-PES can
improve the performance of CNN over that of the baseline
achieved using the default hyperparameters in the existing
code, which shows that MT-PES is promising in quickly
finding more competitive hyperparameters of complex
ML models.

7 CONCLUSION

This paper describes novel MT-ES and MT-PES algo-
rithms for mixed-type BO that can exploit cheap binary
auxiliary information for accelerating the optimization of
a target objective function. A novel mixed-type CMOGP
model and its MT-RF approximation are proposed for
improving the belief of the unknown target function and
the global target maximizer using observations from eval-
uating the target and binary auxiliary functions. New
practical constraints are proposed to relate the global tar-
get maximizer to the binary auxiliary functions such that
MT-PES can be approximated efficiently. Empirical eval-
uation on synthetic functions and real-world applications
shows that MT-PES outperforms the state-of-the-art BO
algorithms. For future work, our proposed mixed-type BO
algorithms can be easily extended to handle both binary
and continuous auxiliary information, hence generalizing
multi-fidelity PES (Zhang et al., 2017).10
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Álvarez, M. A. and Lawrence, N. D. (2011). Computa-
tionally efficient convolved multiple output Gaussian
processes. JMLR, 12, 1459–1500.

Bonilla, E. V., Chai, K. M. A., and Williams, C. K. I.
(2007). Multi-task Gaussian process prediction. In
Proc. NIPS, pages 153–160.

Cover, T. M. and Thomas, J. A. (2006). Elements of
Information Theory. John Wiley & Sons.

Cressie, N. A. C. (1993). Statistics for Spatial Data. John
Wiley & Sons, Inc., second edition.

Dai, Z., Yu, H., Low, K. H., and Jaillet, P. (2019).
Bayesian optimization meets Bayesian optimal stop-
ping. In Proc. ICML, pages 1496–1506.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB:
Robust and efficient hyperparameter optimization at
scale. In Proc. ICML, pages 1436–1445.
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A RELATED WORK

Some existing BO works focus on optimizing a target function with a binary output type (González et al., 2017; Tesch
et al., 2013) but have not considered utilizing the binary outputs for optimizing other correlated function which is
more expensive to evaluate. The Bernoulli multi-armed bandit problem (Russo et al., 2018) assumes binary reward
for each action and aims to maximize the cumulative rewards. However, the correlations between the arms and the
cross-correlation between the immediate binary reward and the averaged reward are ignored. Other than the multi-
fidelity BO algorithms (Section 1), the constrained BO algorithms (Hernández-Lobato et al., 2016) also involve multiple
functions (unknown target function and constraints) when optimizing the target function. Different from our mixed-type
BO algorithms that can exploit the cross-correlation structure between the target and binary auxiliary functions, the
constrained BO algorithms only consider continuous output types for the unknown constraints and assume the target
and constraint functions to be independent. Similar to our CNN experiment (Section 6.2), some hyperparameter
optimization methods such as Hyperband (Li et al., 2018) and BOHB (Falkner et al., 2018) have considered speeding
up their optimization process by early-stopping the training of underperforming models and continuing that of only the
highly ranked ones. However, both methods require the outputs (e.g., validation accuracy) to be continuous for ranking
and do not consider the binary auxiliary information. Given the above idea, one may be tempted to exploit the binary
information in a similar way: The binary auxiliary function is evaluated for a batch of inputs, and the target function is
only evaluated at those inputs in the batch that yield positive auxiliary outputs for finding the global maximum. To
achieve this, some important issues need to be considered: (a) Which inputs should we select to evaluate the binary
auxiliary function? (b) How many binary auxiliary outputs should we sample before evaluating the expensive target
function? (c) If a large proportion of inputs in the batch yield positive auxiliary outputs, then evaluating the target
function for all of them can also be very expensive. Which inputs should we select for evaluating the target function
such that the global target maximizer can be found given a limited budget? Our proposed MT-ES and MT-PES have
resolved all the above issues in a principled manner.

B DERIVATION OF (8)

Since f1, . . . , fM are jointly modeled as a CMOGP, we know that

p(fA|fA′) = N (fA|µA + ΣAA′Σ
−1
A′A′(fA′ − µA′), ΣAA − ΣAA′Σ

−1
A′A′ΣA′A) (19)

for any A,A′ ⊆ D+ (Álvarez and Lawrence, 2011). Then,

q(fX) = q(fX1
, fXB

) , p(fX1
|fXB

)q(fXB
)

≈ N (fX |µX + ΣXXB
(ΣXBXB

+ Σ̃B)−1(µ̃− µXB
),ΣXX − ΣXXB

(ΣXBXB
+ Σ̃B)−1ΣXBX)

(20)

due to (7), (19), and equation 9c in (Schön and Lindsten, 2011). As a result, the posterior distribution
p(fX1

, fXB
|yX1

, yXB
) can be approximated with a multivariate Gaussian distribution:

p(fX1 , fXB
|yX1 , yXB

) =
1

Z
p(fX1 |fXB

) p(yX1 |fX1) q(fXB
) =

1

Z
p(yX1 |fX1) q(fX)

≈ N (fX |µX + ΣXXΛ−1(ỹX − µX),ΣXX − ΣXXΛ−1ΣXX) .
(21)

The first equality is due to (5). The last approximation is due to (20), equation 10f in (Schön and Lindsten, 2011), and
p(yX1

|fX1
) , N (yX1

|fX1
, σn) = N (yX1

|MfX ,Σn) where M , [I|X1|×|X1|, 0|X1|×|XB |]. Finally, the predictive
belief in (8) can be obtained using (19), (21), and equation 10c in (Schön and Lindsten, 2011).

C DETAILS OF MIXED-TYPE RANDOM FEATURES (MT-RF)

Using some results of Rahimi and Recht (2007), the prior covariance of the GP modeling L (Section 3) can be rewritten
as

σxx′ = α

∫
p(w) e−jw

>(x−x′) dw = 2α Ep(w,b)[cos(w>x+ b) cos(w>x′ + b)] (22)

where p(w) , s(w)/α, s(w) is the Fourier dual of σxx′ , and b ∼ U [0, 2π]. Let φ(x) denote a random vector of an
m-dimensional feature mapping of the input x:

φ(x) ,
√

2α/m cos(W>x+B) (23)



where W , (wq)q=1,...,m and B , (bq)
>
q=1,...,m with wq and bq sampled from p(w) and p(b), respectively. From (22)

and (23), the prior covariance σxx′ can be approximated by σxx′ ≈ φ(x)>φ(x′) and the latent function L can be
approximated by a linear model:

L(x) ≈ φ(x)>θ . (24)
Next, we will show how to derive the following approximation of fi(x):

fi(x) ≈ mi + φi(x)>θ . (25)

C.1 DERIVATION OF (25)

Firstly, let A be a d × d positive-definite diagonal matrix and x, x′, w, and b be d-dimensional vectors. Then, the
following convolutional result can be derived to be used in our derivation of (25):∫

x′∈D
e−

1
2 (x−x

′)>A(x−x′)ej(w
>x′+b) dx′

= ejb
∫
x′∈D

e−
1
2 (x
>Ax−2x>Ax′+x′>Ax′)+jw>x′ dx′

= e−
1
2x
>Ax+jb

∫
x′∈D

e−
1
2x
′>Ax′+(x>A+jw>)x′ dx′

=

√
(2π)d

|A|
e−

1
2x
>Ax+jbe

1
2 (x
>A+jw>)A−1(x>A+jw>)>

=

√
(2π)d

|A|
e−

1
2x
>Ax+jb+ 1

2x
>Ax+jx>w− 1

2w
>A−1w

=

√
(2π)d

|A|
ej(b+x

>w)− 1
2w
>A−1w.

(26)

The third equality follows from a result generalizing the Gaussian integral described at https://en.wikipedia.
org/wiki/Gaussian_integral#Generalizations.

From (1),

fi(x)

= mi +

∫
x′∈D

Ki(x− x′) L(x′) dx′

≈ mi +

∫
x′∈D

Ki(x− x′) φ(x′)>θ dx′

= mi +
√

2α/m× θ>
(∫

x′∈D
Ki(x− x′) cos(w>q x

′ + bq) dx′
)>
q=1,...,m

= mi + σsi

√
2α

m(2π)d|P−1i |
× θ>

(∫
x′∈D

e−
1
2 (x−x

′)>Pi(x−x′) cos(w>q x
′ + bq) dx′

)>
q=1,...,m

= mi + σsi

√
2α

m(2π)d|P−1i |
× θ>

(
1

2

∫
x′∈D

e−
1
2 (x−x

′)>Pi(x−x′)
(
ej(w

>
q x
′+bq) + e−j(w

>
q x
′+bq)

)
dx′
)>
q=1,...,m

= mi +
1

2
σsi

√
2α

m(2π)d|P−1i |
×

√
(2π)d

|Pi|
× θ>

(
ej(bq+x

>wq)− 1
2w
>
q P
−1
i wq + e−j(bq+x

>wq)− 1
2w
>
q P
−1
i wq

)>
q=1,...,m

= mi + σsi

√
2α

m
× θ>

(
1

2
e−

1
2w
>
q P
−1
i wq

(
ej(bq+x

>wq) + e−j(bq+x
>wq)

))>
q=1,...,m

= mi + σsi
√

2α/m× θ>
(
e−

1
2w
>
q P
−1
i wq cos(w>q x+ bq)

)>
q=1,...,m

= mi + σsi
√

2α/m× θ>diag(e−
1
2W
>P−1

i W ) cos(W>x+B)

= mi + σsiθ
>diag(e−

1
2W
>P−1

i W )φ(x)

https://en.wikipedia.org/wiki/Gaussian_integral#Generalizations
https://en.wikipedia.org/wiki/Gaussian_integral#Generalizations


where wq is the q-th column of W and bq is the q-th component of B. The first approximation is due to (24). The
second and last equalities follow from (23). The third equality is due to the definition of the convolved kernel:
Ki(x) , σsiN (x|0, P−1i ). The fourth and third last equalities follow from the fact that cos(x) = 1

2 (ejx+ e−jx) which
can be derived from the Euler’s formula. The fifth equality is due to (26).

Then, let φi(x) , σsi diag(e−
1
2W
>P−1

i W ) φ(x). We can approximate fi(x) with fi(x) ≈ mi + φi(x)>θ and the
approximated covariance σij(x, x′) ≈ φi(x)>φj(x

′) then characterizes the correlation within each function (i.e., i = j)
and the cross-correlation between different functions (i.e., i 6= j).

C.2 DERIVATION OF THE POSTERIOR DISTRIBUTION OF θ

It follows from (3) and (25) that yXi
is conditionally independent of fX\Xi

, W , and B given fXi
for i = 1, . . . ,M

and fX1
, . . . , fXM

are conditionally independent given θ, W , and B, respectively. Then,

p(yX |θ,W,B) =

M∏
i=1

∫
p(yXi

|fXi
) p(fXi

|θ,W,B) dfXi
.

From Section 3, we know that p(yX1 |fX1) is Gaussian and p(yi(x)|fi(x)) have been approximated as Gaussian using
EP for 〈x, i〉 ∈ XB . As a result, p(yX |θ,W,B) can be approximated analytically as a multivariate Gaussian distribution
and the posterior distribution of θ is

p(θ|yX) = N (θ|A−1Φ(Λ− ΣXX)−1(ỹX − µX), A−1) (27)

where Φ , (φj(x))〈x,j〉∈X and A = Φ(Λ− ΣXX)−1Φ> + I .

D EP APPROXIMATION FOR (16)

Let t1(f∗1 ) , Φcdf((f1(x∗)− ymax)/σn1) and tj(f∗j ) , I(f∗j + cj ≥ 0) for j = 2, . . . ,M . Then, p(f∗|yX , C2, C3)
can be approximated by a multivariate Gaussian q(f∗) such that each non-Gaussian factor is replaced by a Gaussian
factor, that is, tj(f∗j ) ≈ t̃j(f∗j ) , N (f∗j |µ̃j , τ̃j) for j = 1, . . . ,M . Let µ̃ , (µ̃j)

>
j=1,...,M and Σ̃ be a M ×M diagonal

matrix with Σ̃jj , τ̃j for j = 1, . . . ,M . Then,

p(f∗|yX , C2, C3) =
1

Z
p(f∗|yX)

M∏
j=1

tj(f
∗
j ) ≈ q(f∗) , N (f∗|µ,Σ) =

1

Z
N (f∗|µ0,Σ0)

M∏
j=1

N (f∗j |µ̃j , τ̃j) (28)

where µ , Σ(Σ̃−1µ̃+ Σ−10 µ0) and Σ , (Σ̃−1 + Σ−10 )−1 can be obtained using Gaussian identities, and µ0 and Σ0

are, respectively, the posterior mean vector and covariance matrix of the Gaussian predictive belief p(f∗|yX) computed
analytically using (8). With the multiplicative form of (28), EP (Minka, 2001) can be used to compute the Gaussian
factors t̃j(f∗j ) = N (f∗j |µ̃j , τ̃j) for j = 1, . . . ,M in (28). Briefly speaking, EP will start from some initial values for
(µ̃j , τ̃j) and iteratively refine them, as shown in next subsection.

From (28), the posterior distribution p(fi(x∗)|yX , C2) can be approximated by

p(fi(x∗)|yX , C2) =

∫
p(f∗|yX , C2) df∗1 . . . df

∗
i−1df∗i+1 . . . df

∗
M

≈
∫
q(f∗) df∗1 . . . df

∗
i−1df∗i+1 . . . df

∗
M = N (fi(x∗)|µi, τi)

(29)

where µi is the i-th component of µ and τi is the i-th diagonal component of Σ.

D.1 STEPS FOR EP APPROXIMATION

EP is a procedure that starts from some initial values for the parameters (µ̃j , τ̃j) of the Gaussian factors t̃j(f∗j ) =
N (f∗j |µ̃j , τ̃j) for j = 1, ...,M and iteratively refines these quantities. At each iteration, for every Gaussian factor
t̃j(f

∗
j ), its contribution is removed to form the cavity distribution

q−j(f
∗) ∝ q(f∗)/t̃j(f∗j ) = N (f∗|µ−j ,Σ−j) .



Then, the cavity distribution q−j(f∗j ) follows a Gaussian distributionN (f∗j |µ̄j , τ̄j) with mean µ̄j , τ̄j(τ
−1
j µj− τ̃−1j µ̃j)

and variance τ̄j , (τ−1j − τ̃−1j )−1.

Let q̂(f∗j ) , N (f∗j |µ̂j , τ̂j) ∝ q−j(f∗j )tj(f
∗
j ) denote a new Gaussian distribution whose j-th Gaussian factor t̃j(f∗j ) is

replaced by its corresponding real factor tj(f∗j ). It is well-known that when q(f∗) is Gaussian, the distribution that
minimizes KL(q̂(f∗j )||q(f∗j )) is one whose first and second moments match that of q̂(f∗j ). Let

Zj , log

∫
N (f∗j |µ̄j , τ̄j) tj(f∗j ) df∗j . (30)

Then, the moments can be updated to

µ̂j , µ̄j + τ̄j
∂Zj
∂µ̄j

and τ̂j , τ̄j − τ̄2j

([
∂Zj
∂µ̄j

]2
− 2

∂Zj
∂τ̄j

)
. (31)

The parameters of the Gaussian factor t̃j(f∗j ) = N (f∗j |µ̃j , τ̃j) can be computed with

µ̃j = τ̃j(τ̂
−1
j µ̂j − τ̄−1j µ̄j) and τ̃j = (τ̂−1j − τ̄−1j )−1 . (32)

By applying the results in Appendix B.2 in (Hernández-Lobato et al., 2014) to (30), (31), and (32), the parameters of
t̃1(f∗1 ) can be refined to

µ̃1 = µ̄1 + κ−11 and τ̃1 = β−11 − τ̄1
where

α1 ,
µ̄1 − ymax√
τ̄1 + σ2

n1

, β1 ,
φ(α1)

Φcdf(α1)

[
φ(α1)

Φcdf(α1)
+ α1

]
1

τ̄1 + σ2
n1

, and κ1 ,

[
φ(α1)

Φcdf(α1)
+ α1

]
1√

τ̄1 + σ2
n1

.

Next, we will describe how to update the parameters of t̃j(f∗j ) for j = 2, . . . ,M . Due to (30),

Zj = log

∫
N (f∗j |µ̄j , τ̄j) I(f∗j + cj ≥ 0) df∗j = log Φcdf(

cj + µ̄j√
τ̄j

) . (33)

for j = 2, . . . ,M . Then, the derivative of Zj with respect to the posterior mean µ̄j and variance τ̄j can be computed as
follows:

Zj
∂µ̄j

=
φ(αj)

Φcdf(αj)

1
√
τ̄j

and
∂Zj
∂τ̄j

= − φ(αj)

Φcdf(αj)

cj + µ̄j
2τ̄j
√
τ̄j

where αj , (cj + µ̄j)/
√
τ̄j .

Then, the moments can be updated using (31):

µ̂j , µ̄j + τ̄j
∂Zj
∂µ̄j

= µ̄j +
√
τ̄j

φ(αj)

Φcdf(αj)
, τ̂j , τ̄j − τ̄2j

([
∂Zj
∂µ̄j

]2
− 2

∂Zj
∂τ̄j

)
= τ̄j − τ̄2j βj (34)

where

βj ,
φ(αj)

Φcdf(αj)

[
φ(αj)

Φcdf(αj)
+ αj

]
1

τ̄j
.

Then, due to (32) and (34), the parameters of t̃j(f∗j ) can be refined to

µ̃j = µ̄j + κ−1j and τ̃j = β−1j − τ̄j

where

κj ,

[
φ(αj)

Φcdf(αj)
+ αj

]
1
√
τ̄j

for j = 2, . . . ,M .



E DERIVATION OF POSTERIOR DISTRIBUTION p(f+|yX , C2, C3)

Let X† , X ∪ {〈x∗, i〉}. Then,

p(f+|yX , C2, C3) = p(fi(x)|yX , f∗i ) p(f∗i |yX , C2, C3) = N (f+|µ+,Σ+) (35)

with posterior mean vector µ+ , [µi; Ψ[yX ;µi]] and covariance matrix

Σ+ ,

[
τi τiψ
ψτi σ2

〈x,i〉|X† + ψ2τi

]
where Ψ , Σ{〈x,i〉}X†Σ

−1
X†X†

and ψ is the last component of Ψ. Next, we will give the derivation of µ+ and Σ+.

Firstly, the following lemma is needed:
Lemma 1. Let a, b, c be three random vectors with dimension na, nb, nc and

p(a|c) = N (a|µa,Σa)

p(b|a, c) = N (b|µb|a,c,Σb|a,c)

where µb|a,c ,M1a+M2c+ s = [M1,M2][a; c] + s. Then, the conditional joint distribution of a and b given c is

p(a, b|c) = N ([a; b]|µa,b|c,Σa,b|c)

where

µa,b|c ,

[
µa

[M1,M2][µa; c] + s

]
and Σa,b|c ,

[
Σa ΣaM

>
1

M1Σa Σb|a,c +M1ΣaM
>
1

]
.

Proof. From the definition of multivariate Gaussian distribution,

p(a, b|c) = p(a|c) p(b|a, c) =
(2π)−(na+nb)/2√
|Σb|a,c||Σa|

e−
1
2E (36)

where E , (b− µb|a,c)>Σ−1b|a,c(b− µb|a,c) + (a− µa)>Σ−1a (a− µa).

Let f , b−M1µa −M2c− s and e , a− µa. Then,

E = (b−M1a−M2c− s)>Σ−1b|a,c(b−M1a−M2c− s) + (a− µa)>Σ−1a (a− µa)

= (f −M1e)
>Σ−1b|a,c(f −M1e) + e>Σ−1a e

=

[
a− µa

b−M1µa −M2c− s

]>
R−1

[
a− µa

b−M1µa −M2c− s

] (37)

where

R =

[
M>1 Σ−1b|a,cM1 + Σ−1a −M>1 Σ−1b|a,c
−Σ−1b|a,cM1 Σ−1b|a,c

]−1
=

[
Σa ΣaM

>
1

M1Σa Σb|a,c +M1ΣaM
>
1

]
.

The last equality of (37) can be computed from equation 50 in (Schön and Lindsten, 2011) and the second equality of R
is due to equation 9d in (Schön and Lindsten, 2011). Also,

1

|R|
=

1

|Σa||Σb|a,c|

due to equation 51 in (Schön and Lindsten, 2011). Therefore, (36) can be written as

p(a, b|c)

=
(2π)−(na+nb)/2√

|R|
exp

(
−1

2

[
a− µa

b−M1µa −M2c− s

]>
R−1

[
a− µa

b−M1µa −M2c− s

])

= N

(
[a; b]

∣∣∣∣∣
[

µa
[M1,M2][µa; c] + s

]
, R

)
.

(38)



Then, in (35), we know that p(fi(x)|yX , f∗i ) = N (fi(x)|µ〈x,i〉|X† , σ2
〈x,i〉|X†) with µ〈x,i〉|X† ,

Σ{〈x,i〉}X†Σ
−1
X†X†

[yX ; f∗i ] and p(f∗i |yX , C2, C3) = N (f∗i |µi, τi) (29). Therefore, (35) can be easily obtained by
replacing a, b, and c in Lemma 1 with f∗i , fi(x), and yX , respectively.

F DERIVATION OF POSTERIOR COVARIANCE MATRIX IN (18)

Let r , a>f+. From (35) and (17),

Z ′ =

∫
N (f+|µ+,Σ+) I(fi(x)− fi(x∗) ≤ δici) df+

=

∫
N (r|η, v) I(r ≤ δici) dr = Φcdf

(
δici − η√

v

)
.

(39)

Let Z
′
, logZ ′. Then, the derivative of Z

′
with respect to the posterior mean vector µ+ and covariance matrix Σ+ can

be computed as follows:

∂Z
′

∂µ+
=
∂Z
′

∂η

∂η

∂µ+
=

1

Φcdf((δici − η)/
√
v)
φ

(
δici − η√

v

)(
− 1√

v

)
a = − γ√

v
a ,

∂Z
′

∂Σ+
=
∂Z
′

∂v

∂v

∂Σ+
=

1

Φcdf((δici − η)/
√
v)
φ

(
δici − η√

v

)
η − δici
2v
√
v
aa> =

γ(η − δici)
2v
√
v

aa>.

Then,

µf+ = µ+ + Σ+ ∂Z
′

∂µ+
= µ+ − γ√

v
Σ+a

and

Σf+ = Σ+ − Σ+

[ ∂Z ′
∂µ+

][
∂Z
′

∂µ+

]>
− 2

∂Z
′

∂Σ+

Σ+

= Σ+ − Σ+

(
γ2

v
aa> − γ(η − δici)

v
√
v

aa>
)

Σ+

= Σ+ − γ

v

(
γ − η − δici√

v

)
Σ+aa>Σ+.

(40)

The first equality is due to (31).

G GENERALIZING TO MULTIPLE LATENT FUNCTIONS

G.1 CMOGP WITH MULTIPLE LATENT FUNCTIONS

Let {Lq(x)}q=1,...,Q denote a set of Q independent latent functions. Then, CMOGP defines each i-th function fi as

fi(x) , mi +

Q∑
q=1

∫
x′∈D

Kiq(x− x′) Lq(x′) dx′ . (41)

Similar to CMOGP with only one latent function, the work of Álvarez and Lawrence (2011) has shown that if every
{Lq(x)}x∈D is an independent GP for q = 1, . . . , Q, then {fi(x)}〈x,i〉∈D+ is also a GP. Specifically, let {Lq(x)}x∈D
be a GP with prior covariance σqxx′ , N (x− x′|0,Γ−1q ) and Kiq(x) , σsiqN (x|0, P−1i ). Then,

σij(x, x
′) =

Q∑
q=1

σsiqσsjqN (x− x′|0,Γ−1q + P−1i + P−1j ) . (42)

The Gaussian predictive belief in (8) and the subsequent results in Section 5 related to mixed-type CMOGP remain
valid by computing its posterior covariance matrix with (42) instead of (2).



G.2 MT-RF APPROXIMATION WITH MULTIPLE LATENT FUNCTIONS

In this subsection, we will extend the MT-RF approximation described in Section 5.1 to approximate the mixed-type
CMOGP model with multiple latent functions.

Similar to that in Section 5.1, the covariance function of the GP modeling Lq can be written as

σqxx′ = αq

∫
p(wq) e

−jw>q (x−x′) dwq

= 2αq Ep(wq,bq)[cos(w>q x+ bq) cos(w>q x
′ + bq)]

where p(wq) , s(wq)/αq , s(wq) is the Fourier dual of σqxx′ , and bq ∼ U [0, 2π].

Then, each latent function Lq can be approximated by a linear model:

Lq(x) ≈ φq(x)>θq (43)

where φq(x) ,
√

2αq/m cos(W>q x + Bq) for q = 1, . . . , Q, and Wq and Bq consist of m stacked samples from
p(wq) and p(bq), respectively.

Let
fiq(x) ,

∫
x′∈D

Kiq(x− x′) Lq(x′) dx′ . (44)

Then,

fi(x) = mi +

Q∑
q=1

fiq(x) = mi +

Q∑
q=1

φiq(x)>θq = mi + Φi(x)>θ (45)

where θ, (θ>q )>q=1,...,Q, Φi(x), (φiq(x)>)>q=1,...,Q, and φiq(x),sσsiq diag(e−
1
2W
>
q P
−1
i Wq ) φq(x) can be interpreted

as the input features of function fi(x) corresponding to the latent function Lq(x). The first equality is due to (41)
and (44). The second equality is due to (25), (43), and (44).

Since (45) has exactly the same form as (25), all the results in Section 5.1 will remain valid for MT-RF approximation
with multiple latent functions.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 SYNTHETIC FUNCTIONS

The CMOGP hyperparameters for constructing the synthetic functions are fixed as follows: Γ , diag[100, 100], P1 ,
diag[2000, 100], P2 , diag[100, 2000], σs1 , σs2 , 1, σ2

n1
, 0.01, and m1 = 0.

To show the accuracy of the EP approximations for the constraints in Section 5.2, we compare the plot of EP
approximations with that of the ground truth for (11) using our synthetic functions. Similar to that in Hernández-Lobato
et al. (2014), we can construct the ground truth of (11) using the rejection sampling (RS) method since our synthetic
functions are sufficiently simple. Examples of (11) produced by RS and MT-PES using 5 and 50 observations from
evaluating the target and aux1 functions are shown in Fig. 4. As can be seen, the acquisition function achieved by the
EP approximations is quite similar to the ground truth.

Results of MT-PES with varying costs, random features dimension, and sampling size are shown in Fig. 5. It can be
observed from Fig. 5a that MT-PES converges faster than PES when the cost ratio of evaluating the target and auxiliary
functions is larger than 25. Intuitively, MT-RF can achieve a more accurate approximation with a larger random feature
dimension m and sampling size S. Figs. 5b and 5c show that the performance of MT-PES is robust to varying S and
decreases when m is too small (i.e., m = 10).

H.2 HARTMANN-6D FUNCTION

Let x(i) be the i-th component of an input x. The following benchmark functions are used in our experiments:

D , [0, 1]6, f1(x) ,
∑4
j=1 βj exp(

∑6
k=1Ajk(x(k) − Pjk))− 0.2561 where A,P ∈ R4×6 are fixed matrices:



(a) RS (i = 2)
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(b) MT-PES (i = 2)
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Figure 4: Examples of the acquisition function (11) with i = 2 obtained by (a) the rejection sampling (RS) method
and (b) our proposed MT-PES where ‘+’ and ‘∗’ are inputs of the observations from evaluating the target and aux1
functions, respectively.
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Figure 5: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for the synthetic target and aux1 functions
with (a) varying costs λi for i = 1 and 2, (b) varying random feature dimension m, and (c) varying sampling size S.
The error bars are computed in the form of standard error.

A ,


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, P , 10−4 ×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


and βj is the j-th component of the vector β , [1.0, 1.2, 3.0, 3.2]. y1(x) , f1(x) + ε1 where ε1 ∼ N (0, 10−3).
f2(x) , f1(x) and y2(x) is set to be 1 if f2(x) ≥ 0, and −1 otherwise.

H.3 DETAILS OF BAYESIAN OPTIMAL STOPPING IN CNN HYPERPARAMETER TUNING

The training of a CNN under a given hyperparameter setting is an iterative process for some number T of training
epochs. After each training epoch t = 1, . . . , T , the validation accuracy vt of the CNN trained thus far can be evaluated.
As a result, a sequence of the validation accuracies (i.e., v1, . . . , vt) can be obtained after t training epochs and then
used for predicting the final validation accuracy vT .

Therefore, BOS models the training of the CNN as a sequential decision-making problem. After each training epoch,
the BOS algorithm can choose from one of the three actions: a1 = “stop the training and conclude that vT ≥ δ”,
a2 = “stop the training and conclude that vT < δ”, and a3 = “continue to train for one more epoch” where δ is a
performance threshold set as 0.5 in our experiment. BOS maintains a posterior belief p(vT ≥ δ|v1, . . . , vt) of the event
vT ≥ δ and choose the optimal action among a1, a2, and a3 by minimizing an expected loss with respect to p (see the
algorithm in Müller et al. (2007) for details). If either a1 or a2 is taken, then the CNN training is early-stopped and the
corresponding binary auxiliary output (1 for a1 and −1 for a2) is returned. Therefore, in principle, BOS early-stops the
CNN training if it predicts that a final validation accuracy of δ can be achieved with a high probability and the binary
decision is much cheaper since t can be much smaller than T when the CNN training is early-stopped.
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