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Abstract

Multi-language speech datasets are scarce and often have small sample sizes in the medical
domain. Robust transfer of linguistic features across languages could improve rates of
early diagnosis and therapy for speakers of low-resource languages when detecting health
conditions from speech. We utilize out-of-domain, unpaired, single-speaker, healthy speech
data for training multiple Optimal Transport (OT) domain adaptation systems. We learn
mappings from other languages to English and detect aphasia from linguistic characteristics
of speech, and show that OT domain adaptation improves aphasia detection over unilingual
baselines for French (6% increased F1) and Mandarin (5% increased F1). Further, we
show that adding aphasic data to the domain adaptation system significantly increases
performance for both French and Mandarin, increasing the F1 scores further (10% and 8%
increase in F1 scores for French and Mandarin, respectively, over unilingual baselines).

1. Introduction

Aphasia is a form of language impairment that affects speech production and/or compre-
hension. It occurs due to brain injury, most commonly from a stroke, and affects up to
2 million people in the US alone NAA (2016). Evaluation of speech is an important part
of diagnosing aphasia and identifying sub-types. Aphasic speech exhibits several common
patterns; e.g., omitting short words (“a”, “is” ), using made-up words, etc. Prior work has
shown that it is possible to detect aphasia with machine learning (ML) from patterns of
linguistic features in spontaneous speech Fraser et al. (2014), but a vast majority of research
is restricted to a single language Fraser et al. (2014); Le et al. (2017); Qin et al. (2018).
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Cross-Language Aphasia Detection

Cross-linguistic studies for aphasia detection and screening Bates et al. (1991); Soroli
et al. (2012); Kristen et al. (2014) are important for translating developments made in
resource-rich languages (e.g., English) to other languages. Cross-lingual aphasia detection is
a hard task, mainly because there is little prior research indicating what features of language
affected by impairment are transferable and due to the small size of datasets in the field
(typically between 100-500 subjects).

Existing research on cross-language translation of text, word embeddings and audio
has demonstrated the value in using large amounts of paired and unpaired data (with
dataset size varying from 5k to 1.5M) by imposing constraints such as cycle-consistency or
incorporating domain-knowledge Xu et al. (2018); Yang et al. (2018); Conneau et al. (2018);
Jia et al. (2019); Weng and Szolovits (2018); Weng et al. (2019). These allow translation of
representations across languages for a variety of tasks, even with no aligned data between
languages, which is of interest for our prediction task.

In this work, we study cross-linguistic transfer of aphasia detection models trained
on English speech from a multi-lingual dataset of healthy and aphasic speech, Aphasia-
Bank MacWhinney et al. (2011). We featurize our speech via the proportions of 8 standard
linguistic Part-of-Speech (POS) tags from speech transcripts of each language using the Stan-
fordNLP library Qi et al. (2018), motivated by prior work on automatic aphasia detection
with text features Fraser et al. (2014). We adapt features from different languages to English
using a state-of-the-art technique for domain adaptation, Optimal Transport (OT), with a
large single-speaker, unpaired multilingual dataset of TED talk transcripts Tiedemann (2012).
OT is a method of domain adaptation where the cost of moving samples from source to
target probability distributions is minimized (Sec. 4.1). In our case, probability distributions
are the distributions of linguistic features in each language.

We benchmark performance of models Pedregosa et al. (2011); Flamary and Courty
(2017) trained on English AphasiaBank and tested on French and Mandarin AphasiaBank
using different levels of capacity, including support vector machines (SVM), Random Forests
(RF), and fully-connected neural networks (NN). We compare unilingual models, which suffer
due to the limited size of the French and Mandarin datasets, to two kinds of domain adaption:
a baseline multi-lingual autoencoder, and OT based domain adaption. While a multi-lingual
autoencoder works well for the similar languages of French and English, it performs poorly
for Mandarin. In contrast, OT-based adaption systems perform well across both languages.
We additionally study the impact of various settings on the OT-domain adaptation system,
such as inclusion of paired data, addition of in-domain data and speech-accent, against
both unilingual baselines and an autoencoder-based domain adaption model. We show that
OT-domain adaptation with Earth Movers Distance (EMD) and entropic regularization
achieves 10% and 8% increase in F1 scores over the unilingual baselines in French and
Mandarin respectively. From our analysis, we identify that large datasets, which could be
unpaired across languages, but also include some samples of aphasic speech are essential for
higher detection rates.

Healthcare Relevance: Medical speech datasets for many languages are small and few
in number. As a result, most of the prior work on computational methods for detecting signs
of aphasia focuses on ML-models developed for a single language Fraser et al. (2014); Le
et al. (2017); Qin et al. (2018), or cross-language feature patterns for a single feature Bates
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et al. (1991). In this work, we study both feature transfer across similar and dissimilar
languages when participant speech is represented by multiple linguistic features, as well
as cross-linguistic transfer of ML-models for detecting aphasia from linguistic features for
translating developments made in English to other languages.

Technical Sophistication: We benchmark the utility of unpaired speech datasets with
OT to demonstrate a use of cross-language domain adaptation to account for sparsely labeled
languages in a clinical speech task. We perform rigorous ablation studies to investigate
the effect of paired data (inclusion of paired data does not increase F1-scores significantly),
the effect of aphasic samples in domain adaptation (improves F1-scores significantly over
unilingual baselines and domain adaptation with unpaired data, performs on the same or
significantly higher level than multi-lingual baselines) and the effect of diversity of speech
samples in terms of accents (more diverse data for OT is better). While we only compare
OT-domain adaptation with a multi-lingual autoencoder, and do not compare against other,
more recent techniques, such as adversarial domain adaptation Tzeng et al. (2017),we
demonstrate that a state-of-the-art technique for domain adaptation, Optimal Transport,
can be used to improve aphasia detection in a cross-language evaluation setting.

2. Background & Related Work

Existing studies have considered machine learning (ML) based approaches to aphasia
detection Fraser et al. (2014); Le et al. (2017), but a summary of previous work reveals
these have been largely restricted to single language settings (Tab. 1). While Fyndanis and
Themistocleous (2018) considers multiple languages, only non-speech-related features were
used and there was no model transfer across languages. To the best of our knowledge, there
is no prior work where cross-language transfer has been used in the detection of aphasia.

Table 1: Summary of aphasia analysis in various languages, including usage of any external
corpus in addition to the N reported (indicative of training/test size), feature modalities
and performance

Methods Language(s) Features Subjects/Samples (N,M) External corpus (Y/N) Performance

Fraser et al. (2014) English Linguistic 26, 26 N 1.00 (Accuracy)
Fyndanis and Themistocleous (2018) German, Italian and Greek Linguistic, cognitive performance indices 26, 104 N 0.79 (AUC)
Law et al. (2018) Cantonese Lexical and semantic 65, 65 N -
Qin et al. (2018) Cantonese Text and acoustic 82, 328 N 0.90 (F1-score)
Ishkhanyan et al. (2017) French Lexical 15, 45 N -

Ours French Text 24, 24 Y 0.87 (F1-score)
Ours Mandarin Text 60, 55 Y 0.69 (F1-score)

2.1. Domain Adaptation

Optimal Transport for Domain Adaptation: Diverse methods have been explored for
domain adaption. Methods involving adversarial loss have been developed for multi-lingual
word embeddings and language translation Conneau et al. (2018); Xu et al. (2018); some
of them specialized to clinical machine translation Weng and Szolovits (2018). We use
Optimal Transport, an embedding-based method of domain adaptation (Sec. 4.1). Variants
of the base OT approaches have been proposed for a variety of NLP tasks in prior work
Chen et al. (2019); Courty et al. (2017), including aligning representations across domains
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in an unsupervised manner Bhushan Damodaran et al. (2018). OT-based sequence-to-
sequence learning techniques have outperformed strong baselines in machine translation and
abstractive summarization Chen et al. (2019), while modifications to the base OT algorithms
have set new benchmarks for unsupervised word translation Alvarez-Melis et al. (2019).

Cross-linguistic Adaptation: Recent work in dementia detection, rather than aphasia,
used paired samples from the OpenSubtitles Lison and Tiedemann (2016) dataset to train a
regression model between independently engineered features from Mandarin and English
transcripts Li et al. (2019). In contrast, we use unpaired data and learn mappings between
distributions of the same linguistic features between different source languages and English.
We utilize unpaired datasets in our study since this approach is more general and more
useful when paired datasets are not available between a resource-rich and other languages.
OT overcomes the requirement of paired data by aligning probability distribution functions
of the linguistic features, rather than the features themselves.

3. Data Sources and Pre-processing

In this section, we provide details regarding all our data sources and text preprocessing
steps.

3.1. AphasiaBank

All datasets of speakers of English, French and Mandarin are obtained from Aphasia-
Bank 1 MacWhinney et al. (2011). The aphasic speakers have various subtypes of aphasia -
broca, wernicke, anomic, etc. (See App. A) All participants perform multiple speech-based
tasks, such as describing pictures, story-telling, free speech and discourse. We combine all
tasks to a single transcript in our analysis. Detailed statistics for each language are in Table
2. All samples are manually transcribed, following the CHAT protocol Ratner (1993). We
classify speech samples to two classes - healthy and aphasic, where aphasic constitutes all
sub-types mentioned above, using extracted linguistic features.

3.2. TED Talks

We use a large dataset of TED talks with multi-lingual transcripts Tiedemann (2012) to
train our domain adaption systems. In total, there are recordings available for 1178 talks,
with various speaker accents and styles. We use transcripts from Mandarin, French and
English languages. So that our domain adaption system is not biased by seeing paired
data, which is not present in our aphasia classification task, we ensure there is no overlap
between speech transcripts of English and French/Mandarin by dividing the talks into two
sets and ensuring that the English transcripts for training the domain adaptation models are
obtained from the first set, while those for French/Mandarin are obtained from the second
set.2 Additionally, similar to the methodology of Li et al. (2019), we attempt to create
a larger dataset by dividing each narration into segments by considering 25 consecutive

1. https://aphasia.talkbank.org/

2. We also performed experiments to validate that this choice does not significantly affect results, finding
that using either fully paired or fully unpaired (as described here) data yields statistically insignificantly
different results.
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utterances as one segment. We choose 25 because we observed that the features stabilize
with this number of utterances (see App. B for details).

Table 2: Number of samples from AphasiaBank and the TED Talks corpus. Number of
participants indicated in parentheses.

Corpus Language Healthy samples Aphasic samples

AphasiaBank English 246 (192) 428 (301)
AphasiaBank French 13 (13) 11 (11)
AphasiaBank Mandarin 42 (40) 18 (15)
TED Talks English 2875 (589) -
TED Talks French 2976 (589) -
TED Talks Mandarin 2742 (589) -

3.3. Transcript Pre-processing and Feature Extraction

The transcripts provided in AphasiaBank consist of transcribed speech following the CHAT
protocol MacWhinney et al. (2011). Hence, there are several annotations such as repetitions,
markers for incorrect word usage etc. To extract features, an important pre-processing step
is to remove these various additional annotations. We utilize the pylangacq Lee et al. (2016)
library for this step, due to its capabilities of handling CHAT transcripts. Additional pre-
processing steps include stripping the various utterances of punctuations before POS-tagging.
We extract the proportion of 8 POS3 – nouns, verbs, subordinating conjunctions, adjectives,
adverbs, coordinating conjunctions, determiners and pronouns – over the whole transcript
of speech. Though aphasic speakers perform one additional speech task (where they provide
details regarding their stroke) more than control speakers, these 8 features are agnostic to
total length and content of transcripts, and rely more on the sentence complexity. These
simple features are used because they are general and have been identified to be important
in prior work Fraser et al. (2013); Li et al. (2019); Law et al. (2013) across languages. These
features are extracted from all languages in AphasiaBank.

To analyse the variance in features across languages, we study if they differ significantly
between healthy and aphasic speakers across languages (Tab. 5 in the App.). We observe
that every feature varies significantly between healthy and aphasic speakers of English and
Mandarin. We anticipate, hence, that raw, non-adapted cross-language transfer of models
trained on English speech to Mandarin would lead to low performance.

4. Methods

We describe the domain adaptation system, which uses Optimal Transport. Overall pipeline
in Fig. 1.

4.1. Cross-linguistic Representation Learning with Optimal Transport

Optimal transport (OT) consists of finding the best transport strategy from one probability
distribution function (PDF) to another. This is done by minimizing the total cost of
transporting a sample from the source to that in the target. Thus, there needs to be a metric

3. https://universaldependencies.org/u/pos/
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Aphasia detection

Non-english English

EMD/ EMDR / Gaussian Kernel

Domain Adaptation with Optimal Transport

               Training dataset: Multi-language TED Talks

   Training dataset:
English AphasiaBank

RF

SVM

NN

There xyz rain...um 
oh right. Well 
umbrella it is xyz. 
Sure ah it ah see. I 
just ah right. 
Happen rain xyz, 
correct xyz.

Transcript

  Feature
Extraction

Figure 1: Pipeline for processing a speech transcript from a non-English language. Features
are extracted as detailed in Sec. 3.3, cross-lingual representations are obtained with multiple
Optimal Transport algorithms, and aphasia detection classification performed with different
ML models.

to quantify the different distances between samples in the two probability distributions, as
well as solvers to solve the optimization problem of minimizing the total cost of transport,
where cost is related to distance between source and target. We use optimal transport for
domain adaptation here because we extract the same features across languages, though their
distributions (in terms of feature values, e.g. proportion of nouns) vary from one language
to another.

We use three solvers and distance functions between PDFs based on optimal transport:

Earth Movers Distance OT (EMD) EMD or Wasserstein distance between the two
distributions is minimized using an optimal transport Network Flow Bonneel et al.
(2011).

Gaussian Optimal Transport Mapping (Gaussian kernel) The Earth Movers Dis-
tance (EMD) or Wasserstein distance between the two distributions is minimized same
as in 4.1. However, the transport map is approximated with a gaussian kernelized
mapping to obtain smoother transport maps Perrot et al. (2016).

Entropic Regularization OT solver (EMD-R) Optimal transportation problem with
EMD regularized by an entropic term, turning the linear program into a strictly
convex problem that can be solved with the Sinkhorn-Knopp matrix scaling algorithm
Sinkhorn and Knopp (1967). Linear solver proposed by Cuturi (2013) is used.

We employ open-source implementations of these algorithms Flamary and Courty (2017).
We will refer to each of these OT algorithms as EMD, Gaussian kernel, EMD-R respectively
as above. Detailed hyperparameter settings for early stopping tolerance, regularization terms
(in EMD-R) are are in Appendix D.
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OT mappings from each source language (French/Mandarin) to English are learned for
each algorithm, trained on language pairs (English-French/English-Mandarin) from the TED
Talks dataset.

5. Experiments

We consider the classification of speech as aphasic or healthy from speech transcripts (as
featurized via POS proportions), and we are primarily interested in whether performance can
be improved for low-resource languages. This classification task is performed across several
baseline settings, including a unilingual task, direct feature transfer, and an autoencoder-
mediated multilingual encoding, as well as various domain adaptation settings (Sec. 5.2),
where features are mapped from low resource languages to English using Optimal Transport.
A suite of ML models, including SVM, RF and NN are used for this task (see Sec. 5.4 for
hyperparameters).

We evaluate task performance primarily using macro-averaged F1 scores, a measure
that is known to be robust to class imbalance. We also report AUROC scores, since it is
often used as a general measure of performance irrespective of any particular threshold or
operating point Richardson and Domingos (2006); Liu and Shriberg (2007).

Due to the lack of baselines on the multilingual AphasiaBank dataset in prior work, we
establish our own unlingual and multilingual baselines, detailed in the section below.

5.1. Baseline Domain Adaptation Systems

Unilingual Training: Unilingual baselines for each language using 10-fold cross-validation
(CV), stratified by subject so that each subject’s samples do not occur in both training and
testing sets in each fold. We estimate that this would be a lower bound on performance for
French and Mandarin AphasiaBank, since it is likely, given the small size of the dataset,
that models would underfit and have low generalizable performance across subjects.

Feature Transfer from English with raw, non-adapted features: We also identify
transfer baselines, wherein models trained on English AphasiaBank are evaluated on other
languages with no fine-tuning. We hypothesize that this baseline would be more performant
than the uni-lingual baseline, at least amongst the more-similar Romance languages of
French and English, since it utilizes the comparatively larger dataset of English AphasiaBank
for training.

Multilanguage Embedding with an Autoencoder: A common representation is ob-
tained for all three languages by encoding the linguistic features using a high capacity
autoencoder. This autoencoder, trained on English, French and Mandarin TED Talks
datasets (unpaired), maps linguistic features extracted from multilingual transcripts into
a shared latent space. The autoencoder consists of 4 hidden layers (2 hidden layers in
encoder and decoder respectively) with 5, 3, 3 and 5 units each for the following experiment.
Hyperparameters are set using a 90-10 train-dev split of samples from each language. All
ML classifiers then are trained on the encoded versions of English AphasiaBank, and tested
on encoded versions of French and Mandarin AphasiaBank. Comparison of other training
regimes to this baseline would determine if learning a shared representation across multiple
languages is better than OT.
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5.2. Training Regimes for OT Adapted-transfer

We evaluate two OT-training regimes for both French and Mandarin, each tested across all
varieites of OT (e.g., OT-EMD, OT-Gaussian, and OT-EMD-R).

Feature Transfer from English with OT domain adaptation, with TED Talks
for OT: Models trained on English AphasiaBank evaluated on other languages with OT
adaptation (EMD, EMD-R, Gaussian mapping) with no fine-tuning. OT models here are
trained only on the multi-language unpaired TED Talks dataset, i.e, with no aphasic data.

Feature Transfer from English with OT domain adaptation, with TED Talks
and AphasiaBank for OT: Models trained on English AphasiaBank evaluated on other
languages with OT adaptation (with EMD, EMD-R, Gaussian mapping) with no fine-tuning.
The OT models here are trained on the multi-language TED Talks dataset, and multi-
language AphasiaBank i.e, with aphasic data. We ensure that there is no overlap in the
proportion of AphasiaBank used for learning OT mappings and for evaluating the classifiers
by employing 2-fold cross-validation where one fold is included in the training set for OT and
another for evaluation. Since OT involves source and target domain probability estimation,
we hypothesize that adding in-domain data, particularly that of speech-impaired participants,
would improve results significantly.

5.3. Impact of Including Diverse Speech Samples in OT Training

Since literature shows that accents can have a significant effect on POS features Runnqvist
et al. (2013), we hypothesize that there is an observable effect of diversity in terms of accents
in the OT training set. To study this effect, we manually annotate accents for the English
TED Talks dataset (details in App. G) as ‘North American’(NA) accent or ‘other’ accent. In
total in the TED Talks English set, there are 373 NA accented and 215 ‘other’ accented talks.
We study the impact of increasing the diversity of accents used for training OT algorithms,
keeping the size of the dataset constant (see Tab. 4).

5.4. Hyperparameter Settings

Hyperparameters for classification models are tuned using grid search with 10-fold cross
validation on the training set (English AphasiaBank) across all settings. We use an SVM
(RBF kernel with regularization parameter C = 0.1 and γ = 0.001), Random Forest (RF;
200 decision trees with a maximum depth of 2), and Neural Network (NN; 2 hidden layers
of 100 units each) classifiers for the cross-linguistic classification taskPedregosa et al. (2011).
Since the training set is highly imbalanced (see Tab. 2), the minority class is oversampled
synthetically with SMOTE Chawla et al. (2002) with k = 3. Prior to oversampling, the
training set is normalized and scaled using the median and interquartile range, a common
mechanism to center and scale-normalize data which is robust to outliers Pedregosa et al.
(2011). The same median and interquartile (obtained from the training set) bounds are used
to scale the evaluation set in each case.

All ML classifiers are trained completely only on English AphasiaBank, while the OT
models are trained on unpaired samples across English and another language (French or
Mandarin) from the TED talks corpus Tiedemann (2012).
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6. Results

In Tab. 3, we compare the performance of various OT-algorithms to their respective baselines
for cross-language representation learning for the aphasia detection prediction task.

Baselines We see that baseline performance varies significantly between languages. For
French, using a multilingual encoding or direct feature transfer largely offers significant
improvements over unilingual training, yielding a maximal lift of 15 for RF mean F1, and
achieving maximal overall classifier performance using multilingual encoding with an SVM
model. In general for French, the multilingual encoding outperforms the feature transfer
baseline, but both improve on unilingual results.

For Mandarin, these results are very different; here, either baseline approach to adaption
hurts overall performance as compared to a unilingual baseline, often yielding solutions for
which the model will predict just a single class exclusively.

Table 3: F1 macro and AUROC mean and standard deviation scores across languages for
different model settings in OT training, averaged across multiple runs. Note that zero
standard deviations occur when a single class is predicted or when standard deviation < 0.01.
The standard deviations are an artefact of the small sample sizes in the evaluation set (24
and 60 for French and Mandarin respectively), as seen in prior literature Fraser et al. (2013).
Highest F1 scores are shown in bold for each language and classifier. Overall, the highest
mean F1 scores are obtained with OT adaptation with the EMD variants, with aphasic
samples included in OT training, along with the multilingual TED Talks dataset. . A study
on the effect of data size on uni-lingual performance in English is in App. F for comparison.

Language Method SVM RF NN

F1 AUROC F1 AUROC F1 AUROC

French
Unilingual Baseline 74.00 ± 0.00 80.00 ± 0.00 64.00 ± 5.44 72.50 ± 4.08 76.67 ± 0.00 79.17 ± 2.30
Mutlilingual Encoding 85.58± 3.79 85.52± 4.07 79.57 ± 5.25 79.44 ± 4.90 81.53 ± 4.70 81.96 ± 4.72
Feature Transfer 79.13 ± 0.00 78.61 ± 0.00 77.23 ± 0.00 77.27 ± 0.00 52.93 ± 5.04 58.97 ± 1.81
OT -EMD 79.13 ± 0.00 79.38 ± 0.00 80.49 ± 1.92 81.12 ± 2.57 65.18 ± 1.94 64.80 ± 2.14
OT -Gaussian 53.13 ± 0.00 61.54 ± 0.00 41.89 ± 3.38 56.41 ± 1.81 39.50 ± 0.00 53.85 ± 0.00
OT -EMD-R 83.22 ± 0.00 83.22 ± 0.00 81.76 ± 2.07 81.70 ± 2.14 73.48 ± 1.91 74.94 ± 1.81
OT -EMD - with aphasic 83.10 ± 0.00 84.52 ± 0.00 80.26 ± 2.46 82.14 ± 2.06 78.84 ± 0.00 80.95 ± 0.00
OT -Gaussian - with aphasic 45.96 ± 0.00 58.33 ± 0.00 39.50 ± 0.00 54.17 ± 0.00 39.50 ± 0.00 54.17 ± 0.00
OT -EMD-R - with aphasic 87.23± 0.00 88.09± 0.00 83.10± 0.00 84.52± 0.00 81.68± 2.45 83.33± 2.07

Mandarin
Unilingual Baseline 60.47 ± 0.00 57.92 ± 0.00 57.78 ± 0.54 60.08 ± 1.02 57.66 ± 2.91 57.19 ± 1.22
Mutlilingual Encoding 23.08 ± 0.00 50.00 ± 0.00 30.92 ± 13.38 51.19 ± 4.12 23.08 ± 0.00 50.00 ± 0.00
Feature Transfer 23.08 ± 0.00 50.00 ± 0.00 23.08 ± 0.00 50.00 ± 0.00 23.08 ± 0.00 50.00 ± 0.00
OT -EMD 63.28 ± 0.00 67.06 ± 0.00 55.41 ± 0.06 57.01 ± 0.67 53.79 ± 1.32 59.92 ± 2.34
OT -Gaussian 31.80 ± 0.00 51.98 ± 0.00 30.26 ± 1.09 51.19 ± 0.56 27.11 ± 0.00 49.60 ± 0.00
OT -EMD-R 66.25± 0.00 67.46 ± 0.00 54.43 ± 1.85 58.33 ± 3.29 56.44 ± 2.20 61.11 ± 0.85
OT -EMD - with aphasic 65.59 ± 0.00 70.57± 0.00 69.05± 1.34 68.10± 0.91 55.92 ± 2.84 59.00 ± 3.18
OT -Gaussian - with aphasic 34.75 ± 0.00 54.32 ± 0.00 32.92 ± 0.00 53.18 ± 0.00 26.82 ± 0.00 49.77 ± 0.00
OT -EMD-R - with aphasic 59.32 ± 0.00 59.09 ± 0.00 61.18 ± 0.83 60.23 ± 0.99 62.57± 0.12 64.39± 0.06

English Unilingual Baseline 85.89 ± 0.00 88.93 ± 0.00 82.14 ± 0.31 85.01 ± 0.11 88.07 ± 0.35 88.49 ± 0.52

OT-Variants Among OT-Variants, we see generally stronger performance as compared
to the unilingual models and baseline domain adaption systems as well. In all but one case,
the best-performing OT- variant for a given model/language yields a statistically significant
improvement over the best baseline model according to a paired t-test, the notable exception
being for the SVM model on French text, which does not achieve statistical significance. In
general, EMD variants of OT (including both OT-EMD-R and OT-EMD) tend to perform
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better than OT-Gaussian, and nearly universally, including aphasic speech samples in the
OT model yields significant lifts, yielding best in class mean-F1 of 87.23 for an SVM model
over French samples under the OT-EMD-R model, or 69.05 for a RF model over Mandarin
text via the OT-EMD model.

Speech Diversity We additionally analyze how speech diversity, as measured by frequency
of various accents in the speech data, affects the performance of OT-EMD-R domain adaption
for SVM models in French and Mandarin. Results for this are shown in Table 4. For both
French and Mandarin in this case, we observe that increasing the prevalence of non-North
American accents in the domain adaption task improves downstream aphasia/non-aphasia
classification performance by several F1 points (yielding a score of 87.48 for French and
69.19 for Mandarin). Note that these results are not statistically significantly different than
the best results found previously in Tab. 3.

Table 4: F1 macro scores across languages with OT-EMDR, with varying proportions of
data. Highest scores are shown in bold. Note that we don’t report standard deviation since
it < 0.01 in all cases.

Language Method OT Dataset Size SVM

F1 AUROC

French
OT -EMD-R 286 NA 83.22 83.22
OT -EMD-R 215 NA, 71 not NA 83.22 83.22
OT -EMD-R 143 NA, 143 not NA 83.22 83.22
OT -EMD-R 71 NA, 215 not NA 87.48 87.76

Mandarin
OT -EMD-R 286 NA 66.25 67.46
OT -EMD-R 215 NA, 71 not NA 62.50 63.49
OT -EMD-R 143 NA, 143 not NA 68.51 70.24
OT -EMD-R 71 NA, 215 not NA 69.19 71.83

7. Discussion

Direct Feature Transfer Only Relevant in Similar Languages In Tab. 3, we observe
that direct feature transfer (i.e., the “Feature Transfer” row) achieves good performance
for the English to French domain adaption task, but not for the English to Mandarin
adaption task. This makes sense as English and French have relatively similar grammatical
patterns Roberts (2012) (e.g., subject, verb, object ordering) whereas Mandarin and English
have a number of significant differences, including, e.g., reduplication, where a syllable or
word is repeated to produce a modified meaning, in Mandarin Li and Thompson (1989).

Relatedly, the multilingual encoding approach likewise yields good performance only
for French. Here, we again note that French and English are relatively similar languages,
compared to English and Mandarin. Thus, our multilingual encoder may be much more
able to jointly encode English and French than it could English and Mandarin.

Inclusion of Aphasic Samples is Highly Impactful on OT-performance We ob-
serve (Tab. 3), that the highest mean F1-score for cross-language classification on the
evaluation set increases to 87.23 (OT-EMD-R with SVM) for French and 69.04 (OT-EMD
with SVM) for Mandarin from 83.22 and 66.25 respectively (both significant increases, with
p < 0.001 and p = 0.015 respectively) with the addition of aphasic samples in the training
set for OT adaptation. This demonstrates that including aphasic samples has a strong
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positive effect on OT- based domain adaption. Note that similar results of performance
improvement due to addition of in-domain, speech-impaired data have also been observed
for multi-lingual topic modelling from speech in prior literature Fraser et al. (2019).

Diverse Speech Samples in Representation Improve Performance As stated in
Section 6, we find that increasing the diversity of our OT dataset (as measured through accent
distribution) has a positive effect on downstream transfer. This resonates with prior findings,
which have shown that accents can have a significant effect on POS features Runnqvist et al.
(2013).

8. Conclusions and Future Work

A limitation of our current work is that it focuses mainly on a single method of domain
adaptation, Optimal Transport. Additionally, the feature set is limited to only include
text-based features and hence, results are dependant on the features extracted, and change
in feature space might have a significant effect on the relative performance of domain
adaptation and multilingual representation learning. In future work, we will empirically
compare OT domain adaptation strategy with other techniques, such as adversarial domain
adaptation Tzeng et al. (2017) for the aphasia detection task. Furthermore, we plan to
study the effect of different featurizations (such as voice acoustics and inclusion of more
linguistic features.) on overall performance with the current setup.

Availability of datasets of an appropriate quality and size is essential in the ML for
Healthcare domain, due to the high cost of errors, as well as to ensure fair decisions for
all individuals Rajkomar et al. (2018). Various solutions have been proposed previously
for mitigating the problem of data availability, including creating novel sources of data,
developing data-efficient algorithms, and employing domain adaptation from low-resource
to resource-rich domains Li et al. (2019); Bull et al. (2018). However, the importance of
standard, diverse, in-domain medical speech datasets is underscored by our observations
made in Sec. 7.

In summary, we show that POS features extracted from speech transcripts from different
languages can be mapped to English to aid in clinical speech classification task. We
find that the OT strategy is successful in domain adaptation, with associated increase in
classification performance for French and Mandarin over unilingual baselines. In comparison
to a multilingual baseline with a high-capacity autoencoder, OT algorithms work on par
for similar, and significantly better for dissimilar languages. Our results suggest that
domain adaption strategies, in particular OT-based domain adaption, can help enable strong
predictive models for aphasia detection in low-resource languages

Acknowledgments

Dr. Marzyeh Ghassemi is funded in part by Microsoft Research, a CIFAR AI Chair at the
Vector Institute, a Canada Research Council Chair, and an NSERC Discovery Grant.

212



Cross-Language Aphasia Detection

References

David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport
with global invariances. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1870–1879, 2019.

Elizabeth Bates, Beverly Wulfeck, and Brian MacWhinney. Cross-linguistic research in
aphasia: An overview. Brain and language, 41(2):123–148, 1991.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct):
2825–2830, 2011.
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Appendix A. Aphasia sub-types

• Broca aphasia or non-fluent aphasia: Individuals with Broca’s aphasia have trouble
speaking fluently but their comprehension can be relatively preserved.

• Wernicke’s aphasia or fluent aphasia: In this form of aphasia the ability to grasp the
meaning of spoken words is chiefly impaired, while the ease of producing connected
speech is not much affected.

• Anomic aphasia: Individuals with anomic aphasia can understand speech and read
well but frequently are unable to obtain words specific to what they wish to talk about
– particularly nouns and verbs.

• Transcortical aphasia: Individuals with this type of aphasia have reduced speech
output, typically due to a stroke.

• Conduction aphasia: Individuals with can comprehend speech and read well, but have
significant difficulty in repeating phrases.

Appendix B. Choosing Transcript Length from TED Talks

We compare differences in values of the 8 POS speech features from speech samples, for
transcript lengths of 5, 25, 50, 75 and 100 utterances each. We compute t-tests between
features computed from transcripts lengths of 5 and 25, 25 and 50, 50 and 75, and 75 and 100.
We find that while features 5 out of 8 features are significantly different between transcript
lengths of 5 and 25, they stabilize for lengths greater than or equal to 25, i.e, no significant
difference between lengths of 25 and 50 (lowest p-value is 0.22), 50 and 75 (lowest p-value
is 0.32) and 75 and 100 (lowest p-value is 0.59). Thus, we choose 25 utterances to be the
standard length of a transcript from the TED Talks dataset to maximize data available.

Appendix C. Part-of-Speech Proportions Comparisons Across Languages

Table 5: Significant p-values corresponding to T-tests of the 8 features between English and
other languages (after Bonferroni correction). Indicated by ‘*’ if significantly different for
both Mandarin and French, ‘+’ if only significantly different between English and Mandarin,
‘#’ if only significantly different between English and French and ‘-’ if there is no significant
difference.

POS/Feature Aphasia Control

Nouns + +
Verbs * *
Subordinating conjunctions * *
Adjectives + *
Adverbs * *
Co-ordinating Conjunctions + *
Determiners + *
Pronouns + +

217



Cross-Language Aphasia Detection

Appendix D. Hyperparameters

For EMD, method proposed by Ferradans et al. (2014) is used for out of sample mapping to
apply to transport samples from a domain into the other with other default parameters in
Flamary and Courty (2017).

For EMD-R, entropic regularization parameter is set to 3 with all other parameters
default.

For Gaussian mapping, the weight for linear OT loss is set to 1, and maximum iterations
is set to 20, with stop threshold for iterations set to 1e− 05 with other default parameters
in Flamary and Courty (2017).

Appendix E. Paired Data Does Not Improve Performance Significantly

We observe, from Tab. 6, that paired data does not significantly improve performance for
French or Mandarin, over classification with unpaired datasets for OT.

Table 6: F1 macro scores across languages with OT, with paired data.

Language Method SVM RF NN

F1 F1 F1

French
OT -EMD 83.22± 0.00 84.71± 1.95 67.22 ± 2.65
OT -Gaussian 46.67 ± 0.00 41.89 ± 3.38 34.12 ± 3.80
OT -EMD-R 83.22± 0.00 78.84 ± 0.00 74.97 ± 3.41

Mandarin
OT -EMD 59.28 ± 0.00 55.35± 3.38 49.30 ± 2.42
OT -Gaussian 25.97 ± 0.00 25.53 ± 0.63 24.64 ± 0.00
OT -EMD-R 60.11± 0.00 49.25 ± 1.26 56.12± 2.01

Appendix F. Studying Effect of Data on Unilingual Performance

Figure 2: Effect of dataset size on the aphasia detection task.

To study the impact of data on the aphasia detection task, we perform an ablation
study wherein the size of the English AphasiaBank dataset is artificially reduced by integer
factors (while keeping the relative proportion of healthy and aphasic subjects same). We
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perform 10-fold cross-validation for a SVM classifier, with progressively less data. We observe
that speech transcripts from atleast 50 healthy subjects are required for the classification
performance to stabilize, given the current feature set (see Fig. 2). F1 scores (micro and
macro) increase non-linearly with the addition of data.

Appendix G. Accent Annotation

The TED-Talks dataset covers a wide speaker demographic, in terms of sex, age and
accents. Since prior literature shows that accents can have a significant effect on linguistic
features Runnqvist et al. (2013), we manually annotate presence or absence of a North-
American accent for English speech in the TED-Talks dataset. An annotator listens to the
audio associated with each TED-Talk and annotates if the accent is ’North American’ or not.
In cases where the accent is not clear, publicly available information regarding nationality of
speaker is referenced. In future work, we plan to have multiple annotations per audio, and
factor in metrics such as cross-rater agreement into our analysis.
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