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Abstract

Medical concept normalization aims to map a variable length message such as, ‘unable
to sleep’ to an entry in a target medical lexicon, such as ‘Insomnia’. Current approaches
formulate medical concept normalization as a supervised text classification problem. This
formulation has several drawbacks. First, creating training data requires manually mapping
medical concept mentions to their corresponding entries in a target lexicon. Second, these
models fail to map a mention to the target concepts which were not encountered during
the training phase. Lastly, these models have to be retrained from scratch whenever new
concepts are added to the target lexicon. In this work we propose a method which overcomes
these limitations. We first use various text and graph embedding methods to encode medical
concepts into an embedding space. We then train a model which transforms concept
mentions into vectors in this target embedding space. Finally, we use cosine similarity to
find the nearest medical concept to a given input medical concept mention. Our model
scales to millions of target concepts and trivially accommodates growing target lexicon size
without incurring significant computational cost. Experimental results show that our model
outperforms the previous state-of-the-art by 4.2% and 6.3% classification accuracy across
two benchmark datasets. We also present a variety of studies to evaluate the robustness of
our model under different training conditions.

1. Background

Social media is being increasingly used for patient care, patient support (Attai et al.,
2015), pharmacovigilance (Nikfarjam et al., 2015), treatment (Hawn, 2009), enhancement
of professional networks (Ventola, 2014), public health monitoring (Paul et al., 2016) and
medical education (Cheston et al., 2013). Medical social media is the subset of social media
where the interests of the group is dedicated to healthcare. Medical social media spans
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generic channels such as web logs, chat rooms, Twitter, Facebook, YouTube, and LinkedIn,
as well as specific portals which are restricted to healthcare issues such as Mayo Clinic Social
Media Network, patient.info and caregiving.com.

Identifying the medical concepts from medical social media posts is of great value to
several organizations. For instance, pharmaceutical firms could use them to identify the
adverse events associated with a particular drug (pharmacovigilance). Hospitals and clinics
could use them to identify what are patient groups discussing and offer timely advice.
Governments could use it to study and improve population health.

The authors of medical social media are usually multi-lingual, multi-cultural and have
varying expertise levels and backgrounds. It is therefore difficult for them to adhere to a
common standard medical terminology. The variability in medical language, excessive usage
of acronyms, jargon, and spell variations allows one to express the same concept in a variety
of different ways. These factors make identification and disambiguation of medical concepts
a very hard task. Embeddings trained on medical text (Moen and Ananiadou, 2013; Zhu
et al., 2018; Alsentzer et al., 2019) have been proved to be useful for such tasks. The task of
Medical Concept Normalization (MCN) aims to map a variable length message, such as ‘it
feels like ma head is bursting’ to a medical concept in a target lexicon, such as ‘Headache’!.

Limsopatham and Collier (2015) proposed the use of phrase based machine translation
model for this task. They trained a model which translates a medical concept mention
(informal text) to its corresponding medical term (formal text). Limsopatham and Collier
(2016) were amongst the first to set MCN as a supervised text classification task. They
have trained multiple deep neural models using pretrained word embeddings along with
Convolutional Neural Networks(CNN) and Recurrent Neural Networks (RNN). Tutubalina
et al. (2018) proposed a model which uses attention mechanism with Recurrent Neural
Networks. The aforementioned models use word-level neural network methods, which are
efficient at learning informal expression features but fail to learn character structure features
inside words and ignore the Out-of-vocabulary (OOV) words. In order to overcome this
problem, Niu et al. (2019) present a multi-task character-level attentional network model for
MCN.

Recently, Miftahutdinov and Tutubalina (2019) proposed three models for this task. The
first model uses Gated Recurrent Units (GRU) and Long Short Term Memory (LSTM) with
an attention mechanism and a hyperbolic tangent activation function on top of pretrained
word embeddings to obtain vector representation of concept mentions. The second model
uses a bidirectional layer with attention on top of deep contextualized word representations
ELMo (Peters et al., 2018) and the third model uses the multilayer bidirectional transformer
encoder BERT (Devlin et al., 2018) to extract the vector representation of concept mentions.
Finally, they train a softmax based classifier using these representations. They also propose a
variant for each of the aforementioned models where they concatenate these representations
with semantic similarity features based on prior knowledge from the UMLS Metathesaurus
(Bodenreider, 2004). Out of the three models, the BERT based model is the current state-
of-the-art for MCN and it achieves the highest classification accuracy of 79.83% and 77.52%
across two benchmark datasets.

1. We use italics to denote mentions and typewriter to denote medical concept
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Previous approaches such as (Limsopatham and Collier, 2016; Tutubalina et al., 2018;
Miftahutdinov and Tutubalina, 2019) formulate MCN as a supervised text classification
problem. This formulation has several drawbacks. First, creating training data requires
manually mapping medical concept mentions to entries in a target lexicon such as SNOMED-
CT? which is effort intensive. Second, these models fail to map a mention to target concepts
which were not encountered during the training phase. The number of medical concepts
increase with advancements in human knowledge. Figure 1 depicts the number of unique
medical concepts in SNOMED-CT from 2002 to 2019. Current models have to be retrained
from scratch whenever new concepts are added to the target lexicon, which is computationally
expensive. In this work, we build an MCN model which overcomes these limitations. Our
model scales to millions of target concepts and trivially accommodates growing target lexicon
size without incurring significant computational cost. Experimental results show that our
models outperforms the previous state-of-the-art on two benchmark datasets. We also
present a variety of studies to evaluate the robustness of our model under different training
conditions. We would release the code and the trained models to facilitate research in this
direction.
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Figure 1: Number of unique SNOMED-CT Concepts across the last 18 years. A base-10
logarithmic scale is used for the Y-axis. Findings, Disorders and Procedures are
the major concept types in SNOMED-CT. Color viewing advised.

2. Method

Our method is divided into two stages. In the first stage, we encode all SNOMED-CT
medical concepts such as Headache, SCTID: 25064002 into fixed size embeddings, such
that similar concepts are closer in the embedding space. In the second stage, we train

2. SNOMED-CT is an acronym for Systematized Nomenclature of Medicine — Clinical Terms. The Jan 2019
version of International SNOMED-CT contains more than 450,000 unique medical concepts
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Figure 2: A sample subgraph of the SNOMED-CT Depicting the connected Medical Concepts

a model which transforms a given input concept mention such as it feels like ma head is
bursting into an embedding in the above mentioned space. Finally, we use cosine similarity
to find the nearest medical concept to a given input medical concept mention.

We now describe various methods to encode target concepts into embeddings. Our aim
is to map medical concepts to embeddings such that related concepts are closer in the target
embedding space. The idea of mapping the target labels to vectors has been previously used
to solve text and image classification problems (Akata et al., 2013; Lin et al., 2014; Wang
et al., 2018; Akata et al., 2015). However, our work is the first to explore target embeddings
for MCN. For the extent of this work, we assume that the target lexicon is SNOMED-CT.
SNOMED-CT contains medical concepts indexed by a unique concept ID (such as 42539006).
Each medical concept is associated with a concept description (such as Parkinson disease).
We work with two distinct views of SNOMED-CT. First, SNOMED-CT as a collection of
strings representing the medical concepts and second, SNOMED-CT as a graph where each
vertex is a unique medical concept and related concepts are connected through labeled edges.
Figure 2 depicts a sample graph view of SNOMED-CT concepts.

Sections 2.1 and 2.2 propose different methods to encode SNOMED-CT concepts by
exploiting the lexical and semantic relationships between them.

2.1. Text Embedding Methods

AvgEmb method encodes text by averaging the pre-trained word embeddings of all the
words present in it. For the extent of this work, we use the pretrained embeddings released
by Mikolov et al. (2013).

BERT uses bidirectional transformer based neural model to solve the task of masked
language modeling (Devlin et al., 2018). It generates low dimensional contextualized token
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embeddings which were shown to be useful for several NLP tasks such as text classification,
sentiment analysis, etc. BERT model uses sub-word level information to generate token
embeddings, thereby circumventing the problem of OOV words.

Universal Sentence Encoders (USE) use transformer based encoders to encode sen-
tences into embedding vectors (Cer et al., 2018). The encoder uses attention to compute
context-aware word embeddings which are then aggregated to obtain the sentence embedding.
The sentence embedding is fed to several downstream tasks such as natural language inference
and sentence classification. The encoder is trained to foster transfer learning to other NLP
tasks.

Embeddings from Language Models (ELMo) uses bi-directional LSTM based en-
coders to encode a sentence into a fixed size representation (Peters et al., 2018). The model
is trained to obtain context aware word embeddings by working on sequence of characters
thereby avoiding the problem of OOV words at inference stage.

We obtain embeddings for each SNOMED-CT concept by encoding the corresponding
concept description using the pretrained AvgEmb, BERT, USE and ELMo models.

2.2. Graph Embedding Methods

Graph embedding methods embed vertices of a graph such that the similarity in the original
graph is approximated by the similarity in the embedding space. The similarities between any
two vertices is defined based on whether or not the vertices are connected, share neighbours
or have similar structural roles.

DeepWalk (Perozzi et al., 2014) uses random walks to generate sequences of vertices
(vertex sentences) which are subsequently fed to a skip-gram model to learn the embeddings
corresponding to the vertices.

Node2Vec (Grover and Leskovec, 2016) uses biased random walks to optimize a neighbor-
hood preserving objective function such that the nodes which are highly interconnected and
the nodes with similar roles in the graph are closer in the embedding space.

LINE (Tang et al., 2015) tries to directly optimize the vertex embeddings based on one hop
and two hop random walk probabilities. Their objective function is designed to preserve
first and second order proximity thereby preserving the local and global network structure
respectively.

HARP (Chen et al., 2018) proposes a meta-strategy for embedding vertices of a graph
such that they preserve the higher-order structural features. They use graph coarsening
to create a hierarchy of smaller graphs such that the smaller graphs preserve the global
structure of original graph. The vertex embeddings of the coarsest graph are then obtained
using DeepWalk, Node2Vec or LINE. They then iteratively prolong and refine the vertex
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embeddings from the coarsest to the finest graph and finally obtain the vertex embeddings
corresponding to the finest (original) graph.

A comprehensive survey of various graph embedding approaches, their performance
analysis, time and space complexities are detailed by Goyal and Ferrara (2018). We
formulate SNOMED-CT as a directed graph as shown in Figure 2, where vertices are the
concepts and relationships between the concepts form the edges. We then train DeepWalk,
Node2Vec, LINE and HARP models to obtain the concept embeddings. To the best of our
knowledge, our work is the first to explore SNOMED-CT graph embeddings for MCN.

2.3. Transforming Concept Mentions into Embeddings

For each mention, we first obtain the mention representation m; by passing it through
the pre-trained RoBERTa model (Liu et al., 2019), which is a 12-layered transformer
encoder. We transform this representation into an embedding using Equations 1 and 2 where
Ww, bw, W, and b, are trainable parameters. In order to avoid overfitting, we use dropout
layer (Srivastava et al., 2014) to modify m; and u;.

u; = tanh(Wym; + by) (1)

ri = Wyu; + by (2)

We train the model parameters using stochastic optimizer AdamW (Loshchilov and Hutter,
2018) which aims to minimize the cosine embedding loss shown in Equation 3 between the
projected representation r; and the corresponding target embedding t;. We keep the target
embeddings of the concepts fixed throughout the training.

loss =1 — Cosine Similarity(ri,t;) (3)

3. Datasets

CADEC: CSIRO Adverse Drug Event Corpus (CADEC) (Karimi et al., 2015) is one of
the first publicly available datasets for MCN. It contains medical forum posts sourced from
AskAPatient® which describe adverse drug events resulting from the usage of Diclofenac
and Lipitor. These posts are largely written in colloquial language and often deviate from
formal English grammar and punctuation rules. In this dataset, human annotators have
marked the candidate medical concept mentions, such as nt able 2 sleep 2nite. Subsequently,
each mention was manually mapped to a medical concept in the SNOMED-CT lexicon.
Overall, it contains 6754 concept mentions which are mapped to 1029 SNOMED-CT concepts.
Limsopatham and Collier (2016) randomly split this dataset into five folds and report the
classification accuracy using five fold cross validation. However, Tutubalina et al. (2018);
Miftahutdinov and Tutubalina (2019) discover that these folds contain nearly 66% redundant
samples which causes high overlap between training and testing split, which in turn results
in highly optimistic classification accuracy. In order to avoid this, Tutubalina et al. (2018)
create custom folds without any overlap. These folds are made publicly available*.

3. https://www.askapatient.com
4. https://yadi.sk/d/GZoWmlwBxzyW_w
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PsyTAR: Psychiatric Treatment Adverse Reactions (PsyTAR) corpus (Zolnoori et al.,
2019) is another publicly available dataset for MCN which contains 887 posts sourced from
AskAPatient about psychiatric medications: Zoloft, Lexapro, Effexor and Cymbalta. In
this dataset, 6556 concept mentions were extracted from these posts and were manually
mapped to 618 SNOMED-CT codes. Miftahutdinov and Tutubalina (2019) discovered that
this dataset also contains about 56% redundant examples and therefore random folds create
a high overlap between train and test splits. In order to overcome this, they create custom
folds with minimal overlap. These folds are also made publicly available®.

SMMA4H 2017: This dataset is part of a shared task, Social Media Mining for Health
(SMM4H) which was organized by Sarker et al. (2018). It consists of mappings between user
generated medical phrases extracted from Tweets and Medical Dictionary for Regulatory
Activities (MedDRA) concepts. We do not use this dataset in this work as we restrict our
attention to SNOMED-CT target concepts only.

SNOMED-CT Synonyms: The SNOMED-CT lexicon contains synonyms corresponding
to each medical concept. We exploit this resource to generate labeled examples for MCN by
treating each synonym as a medical concept mention. Table 1 depicts few example medical
concepts and their synonyms.

Medical Con- Concept Descrip- SNOMED-CT Synonyms

cept ID tion

3424008 Tachycardia rapid heart rate, increased
heart rate

25064002 Pain in head headache, head pain, cephalal-
gia, cephalgia, cephalodynia

68962001 Myalgia muscle pain, muscle ache, my-
odynia, myosalgia, myoneural-
gia

81680005 Cervicodynia neck pain, painful neck, cervi-
calgia

18963009 Emotionally Labile labile in mood, mood swing,

variable mood, changeable
mood, unstable mood, labile
mood

Table 1: SNOMED-CT Medical Concepts and their Synonyms

4. Experimental Details

For the extent of this work, we use the custom folds released by Tutubalina et al. (2018)
(for CADEC corpus) and Miftahutdinov and Tutubalina (2019) (for PsyTAR corpus). We

5. https://doi.org/10.5281/zenodo.3236318
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augment each train fold with labeled examples obtained from SNOMED-CT Synonyms
dataset described in Section 3. We compute the classification accuracy for each of the five
test folds and finally report the mean classification accuracy across all folds.

In order to obtain the optimal values for hyperparameters, we use 20% of training examples
of each fold as validation set. We perform a random search over the hyperparameter space
and choose the configuration which results in minimum validation loss. We also conduct
experiments by keeping the weights of the pre-trained RoBERTa model fixed. We noticed
that, this adversely affects the performance of our model.

5. Results
Method CADEC PsyTAR
GRU + Attention 66.56 65.98
GRU + Attention with Semantic features 70.05 68.59
ELMO + GRU + Attention 71.68 68.34
ELMO + GRU + Attention with semantic features 74.70 70.05
BERT 79.83 77.52
BERT with Semantic Features 79.25 77.33
RoBERTa with AvgEmb target embedding 79.34 79.76
RoBERTa with ELMo target embedding 80.94 80.36
RoBERTa with USE target embedding 81.62 81.16
RoBERTa with BERT target embedding 80.16 79.66
RoBERTa with Deepwalk target embedding 82.90 81.36
RoBERTa with Node2Vec target embedding 83.18 82.16
RoBERTa with LINE target embedding 82.44 82.42
RoBERTa with HARP target embedding 82.42 81.82

Table 2: The performance of the proposed approach and the state-of-the-art methods in
terms of classification accuracy. The first six rows depict the performance of various
approaches proposed by Miftahutdinov and Tutubalina (2019)

Table 2 details the comparative performance of our approach all the models proposed
by the previous state-of-the-art (Miftahutdinov and Tutubalina, 2019) across CADEC
and PsyTAR datasets. We observe almost all our models outperform the best models of
Miftahutdinov and Tutubalina (2019). The highest performance of 83.18% and 82.42%
was achieved by using graph base embeddings Node2Vec and LINE respectively. The
previous state-of-the-art is a BERT based model which achieves a classification accuracy
of 79.83%, 77.52% across CADEC and PsyTAR respectively. In comparison to this, our
model demonstrates an improvement of 4.2%, 6.3% across these datasets. We observe that,
the performance of graph embedding based methods: DeepWalk, Node2Vec, LINE and
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HARP is superior to that of text embedding based methods. We also notice that Universal
Sentence Encoder (USE) based model consistently performs better as compared to other
text embedding based methods.

6. Analysis and Discussion
6.1. Failure Analysis

We discover that our model based on USE target embeddings is good at mapping mentions
which have a lexical overlap with the target concept description. For instance, mapping
stomach discomfort to Stomach ache. We observed that the model performance decreases
when mapping mentions which do not contain any medical words. For instance, mapping
had me dodging parked cars like © 'm keanu reeves to hallucinations. We also notice that
our model wrongly maps mentions to the medical concepts whose embeddings are closer to
the target embedding.

6.2. Semantic Similarity between Concept Mentions and Medical Concepts

pain

body aches

pains all over my body
stomach discomfort
stomach upset

stomach distress

Concept Mention

farget things all the time
memory lapses

effect on your memory

£
£

Starmach ache

Upset stomach
Upset stomach
Forgetful

Memory impairment
Memory impairment

Generalised aches and pain
Generalised aches and pain

Concept Description

Figure 3: Heatmap depicting the strength of association between concept mentions and
medical concept embeddings using USE based target embeddings.
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Our model projects the concept mentions and the medical concepts to a common
embedding space. As illustrated in Figure 3 these embeddings can be trivially used to
visualize the semantic similarity between concept mentions and medical concepts.

6.3. Model performance when trained on SNOMED-CT Synonyms

Method CADEC PsyTAR
RoBERTa with LINE 59.2 56.0
RoBERTa with Node2Vec 62.9 52.8
RoBERTa with Deepwalk 63.2 53.4
RoBERTa with HARP 64.8 54.6
RoBERTa with USE 58.8 58.4
RoBERTa with BERT 47.5 39.9
RoBERTa with ELMO 53.8 46.0
RoBERTa with AvgEmb 58.3 53.0

Table 3: The performance of all proposed models across CADEC and PsyTAR datasets
when trained on SNOMED-CT synonyms dataset.

In this study we wish to discover how well our model performs in mapping phrases to
medical concepts when the human labeled mappings (such as not able to sleep 2nite and
Insomnia) are not present in the training set. We therefore conduct experiments, where we
train our model using SNOMED-CT Synonyms only and evaluate the model on CADEC
and PsyTAR datasets. Table 3 demonstrates the performance of our approach across these
datasets. We find that our model based on HARP embeddings and USE embeddings achieve
a classification accuracy of 64.8% and 58.4% on these datasets. We also observe that the
classification accuracy in case of CADEC dataset is comparable to the GRU + Attention
based model proposed by the current state-of-the-art (Miftahutdinov and Tutubalina, 2019)
(refer Table 2).

6.4. Model performance on Medical Concepts Not Encountered during
Training

In this study we wish to discover how well our model performs in mapping phrases to medical
concepts which were not present in the training set. We create two groups of mutually
exclusive medical concepts. We train our model on the samples whose target concepts are
present in the first group and evaluate it on examples whose target concept belong to the
second group. As expected, we observed that this adversely affects the performance of our
models. However, we noticed that our models are able to fetch the correct target concept
amongst the top ten predictions. Table 4 shows the performance (Recall at rank 10) of the
proposed models. We find that Deepwalk and USE based embeddings outperform other
models on CADEC and PsyTAR datasets respectively. We also notice that the LINE based
embedding method consistently underperforms compared to other methods. We wish to
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Method CADEC PsyTAR
RoBERTa with LINE 13.23 02.27
RoBERTa with Node2Vec 73.52 28.88
RoBERTa with Deepwalk 75.00 23.40
RoBERTa with HARP 73.52 27.65
RoBERTa with USE 39.70 57.44
RoBERTa with BERT 20.58 29.78
RoBERTa with ELMO 55.88 55.32
RoBERTa with AvgEmb 26.47 42.55

Table 4: The Recall at Rank 10 of all proposed models across CADEC and PsyTAR datasets.
The target labels were not encountered during training phase.

investigate the cause for this phenomenon in future. Our experiments show that although we
cannot completely eliminate the need for labeled examples, our formulation helps minimize
the labeling effort.

7. Conclusions and Future Work

In this work, we propose a novel method for Medical Concept Normalization which maps a
medical concept mention to its corresponding medical concept in a target lexicon. Unlike
previous works, our method scales to millions of concepts and even handles increase in target
lexicon size. Experiments on two major datasets show that our model outperforms the
previous state-of-the-art MCN models. We conduct several studies to study the robustness
of our model under different training conditions.

In this work, we explored two types of methods to encode target knowledge - text and
graph embedding based methods. We reported the performance of eight different target
encoding methods. We see a great scope for improvement using ensemble methods where
multiple embedding types can be combined to obtain heterogeneous concept embeddings.
Our current implementation does not take into account the nature of the relationship
between concepts. In future, we would like to overcome this problem by encoding the target
knowledge using Knowledge Base embeddings. Finally, we would also like to experiment
with other deep learning based approaches to encode SNOMED-CT graph.
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