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Abstract
We initiate a study of learning with computable learners and computable output predictors. Re-
cent results in statistical learning theory have shown that there are basic learning problems whose
learnability can not be determined within ZFC (Ben-David et al. (2017, 2019)). This motivates us
to consider learnability by algorithms with computable output predictors (both learners and pre-
dictors are then representable as finite objects). We thus propose the notion of CPAC learnability,
by adding some basic computability requirements into a PAC learning framework. As a first step
towards a characterization, we show that in this framework learnability of a binary hypothesis class
is not implied by finiteness of its VC-dimension anymore. We also present some situations where
we are guaranteed to have a computable learner.
Keywords: Computability, PAC learning, VC-Dimension

1. Introduction

A recent study came up with a rather surprising result: there are basic learning problems whose
learnability (even in the sense of weak learning) cannot be determined by the common notions of
mathematical proofs, the set theory ZFC (Ben-David et al. (2017, 2019)). One naturally wonders
what could be the reason for such unprovabilty.

A closer look reveals that the notion of learnability refers to the existence of learners, which
are mappings from training samples to, say, classifiers (or other possible learned objects). The
common statistical learning theory, in which we have the fundamental characterization of PAC
learnability by the finiteness of the VC-dimension, allows for the learners to be arbitrary functions.
Had we required learners to be computable, there would have been a finite representation for each
learner (as the code for the program implementing it), ruling out independence of ZFC results of
the type shown in Ben-David et al. (2017, 2019). Another merit of strengthening the definitions
of learnability by allowing only computable learners is that it would better reflect our intention of
modeling automated learning.

In this paper we wish to initiate an investigation of the nature of such notions of computable
learning. We focus our attention on binary classification learning. The purely statistical Vapnik-
Chervonenkis theory provided a characterization of uniform convergence by a combinatorial prop-
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erty of the hypothesis class (the VC-dimension) for which learners were considered as general func-
tions. VC-theory did not impose any requirement on the learners actually being implementable by
algorithms (Vapnik and Chervonenkis, 1971). Valiant’s computational learning theory framework
of PAC learnability combined the statistical success condition with a requirement that learners are
algorithms whose running time is polynomial in 1

ε , log
(
1
δ

)
and some parameter d of the function

class, for example, the Euclidean dimension of the feature space in the case of linear classifiers
(Valiant, 1984; Haussler, 1992). In this work, we aim at introducing an intermediate setup. While
we do not impose any (polynomial) efficiency requirements on the the runtime of our learners, we
will require the learners to be computable. We then demonstrate settings in which such a definition
leads to different conclusions than what we know for the common notion of PAC learning.

In Section 2.2, we develop our modified definition of PAC learnability, which incorporates a
requirement of the learning algorithm and its outputs to be computable. We term this new notion
CPAC learnability. Of course, restricting the set of candidate learners can only result in a decrease
in the scope of learnable classes. Therefore, the first step we take is asking: are there hypotheses
classes of finite VC-dimension (therefore, PAC learnable classes) that are not CPAC learnable? We
then move on to analyze and identify conditions under which such classes exist. We also consider
various variations of the basic setup: proper versus non-proper learning, as well as a notion of
non-uniform learnability.

The main contribution of this work is to show the existence of such classes (that are learnable un-
der the common, unrestricted definition of PAC learning, but cannot be learned by any computable
learner) in the setting of proper learning, that is, under the additional requirement that the learner
output a function from the hypothesis class; the existence of such classes shows that the character-
ization of PAC learnability by the VC-dimension (Vapnik and Chervonenkis, 1971; Vapnik, 2000)
crucially depends on disregarding computability requirements. These results are presented in Sec-
tion 4. In that section, we also identify conditions under which usual PAC learnability does imply
CPAC learnability, that is, under which computable learners exist. We also develop some insights
into the implications of computability requirements in the more challenging (to analyze) case of
improper learning in Section 6. Furthermore, in Section 5 we extend our study to a notion of non-
uniform learnability and show that in this setting there are also classes that are learnable (namely
the class of all computable functions), but not learnable by a computable learner.

2. Setup

2.1. General background

Computability Let Σ = {0, 1} be a binary alphabet and let Σ∗ be the set of all finite words over
Σ. Note that we can naturally identify Σ∗ with the natural numbers N or with the set of all finite
subsets of natural numbers. We will often implicitly assume that we fixed one such encoding.

We further assume that we fix some programming language and thus use the existence of Turing
machines synonymously with the existence of some program or algorithm (in our fixed language).
A function f : Σ∗ → Σ∗ is said to be computable if there exists a program P that halts on every
input σ ∈ Σ∗ and we have P (σ) = f(σ) for every σ ∈ Σ∗. A subset S of Σ∗ is called recursively
enumerable (RE) if there exists a program P that takes natural numbers as input, halts on every
input and whose range is S. We call a set S ⊆ Σ∗ decidable if there exists a program P that halts
on every input σ ∈ Σ∗ and outputs 1 if σ ∈ S and outputs 0 otherwise.
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Learning We now first recall the standard learning theoretic framework. We let X = N denote
the domain and Y = {0, 1} denote the label space. A hypothesis is a function h : X → Y . We will
often identify such binary functions h with the subset of the domain that h maps to 1 and denote
this as Xh = h−1(1). A hypothesis classH ⊆ Y X is a set of hypotheses.

As is common in learning theory, we assume that data is generated by some distribution D over
X × {0, 1}. We denote the error of a hypothesis h with respect to the distribution D by LD(h) =
Prob(x,y)∼D[h(x) 6= y]. A learner is a function that takes in a finite sequence of labeled domain
points S = ((x1, y1), . . . , (xn, yn)) and outputs a hypothesis h. The empirical error of a hypothesis
h with respect to a sample S = ((x1, y1), . . . , (xn, yn)) is defined as LS(h) = 1

n

∑n
i=1 1[h(x) 6= y]

Definition 1 ((Agnostic) PAC learnability) A hypothesis class H is agnostic PAC learnable if
there exists a learner A such that for all ε, δ ∈ (0, 1), there is a sample size m(ε, δ) such that, for
any distribution D, if the input to A is an iid sample S from D of size at least m(ε, δ), then, with
probability at least (1− δ) over the samples, the learner outputs a hypothesis h = A(S) with

LD(h) ≤ inf
h∈H

LD(h) + ε

The class is said to be PAC learnable in the realizable case, if the above holds under the condition
that infh∈H LD(h) = 0.

Definition 2 (Proper learning) A hypothesis class H is proper (agnostic) PAC learnable if it is
(agnostic) PAC learnable with a learner that always outputs a hypothesis h ∈ H from the class.

The standard notion of learnability (as in Definition 1) reflects a guarantee that holds uniformly
for all functions in the hypothesis class H (and uniformly overall data-generating distributions).
Namely, from a certain sample size on, the output of the learner has to compete with the best
hypothesis inH. We now introduce a notion of non-uniform learnability where we allow the sample
size that the learner requires to depend on the hypothesis h ∈ H that it is aiming to compete with.

Definition 3 (Non-uniform learnability) We say that a hypothesis classH is non-uniformly learn-
able if there exists a learner A and a function m : (0, 1)2 × H → {0, 1} such that, for every
ε, δ ∈ (0, 1), every hypothesis h ∈ H and for every distribution D, if m ≥ m(ε, δ, h), then with
probability of at least 1− δ over the choice of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + ε.

2.2. CPAC learnability

Computable learning We now develop our framework of CPAC learnability. While we do not
impose any (polynomial) efficiency requirements on the the runtime of our learners, we will require
the learners to be computable. In addition we would like to also impose computability requirements
on the output hypotheses of these learners and for the hypothesis classH. That is, we would like to
ensure that a claim of “learnability” for a hypothesis class implies the existence of an algorithm that
implements the learning process and that this learning algorithm provides an output hypothesis in a
form that allows for (computably) evaluating this hypothesis on all inputs of the domain X .
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Remark 4 It is not straightforward to define what a “computable class of functions” is. Com-
putability is defined as a property of sets of finite words. Here we are considering sets of infinite
objects – functions from N to {0, 1}. Of course, we may wish to consider only computable functions,
and in that case each function can be represented by a finite program. However, while a set of pro-
grams may be decidable, this is not naturally implied by “simplicity” of the set of functions these
programs encode. Note that even for a set containing only one simplest function, say the constant-
zero function, the set of all programs that encode it (in any fixed given programming language) is
not decidable.

In light of the above discussion, we pose as a minimal requirement for our hypothesis classes that
they consist of computable functions. Further, we introduce the following two additional restrictions
on the computability properties (decidable and recursively enumerable) of the set of programs that
compute these functions and that the learning algorithm will use to output a hypothesis. Thus, we
distinguish the following two notions for the representations for hypothesis classes:

Definition 5 (Decidable Representation (DR) of a Hypothesis class) We say that a class of func-
tions, H, is Decidably Representable (DR) if there exists a decidable set of programs P such that
the set of all functions computed by a program in P equalsH.

Definition 6 (Recursively Enumerable Representation (RER) of a Hypothesis class) We say that
a class of functions H is Recursively Enumerably Representable (RER) if there exists a recursively
enumerable set of programs P such that the set of all functions computed by a program in P equals
H.

Remark 7 There are other ways of finitely representing functions over a countable domain. For
example, we may restrict our attention to functions that have finite support, that is, functions that
are constant for all large enough inputs:

F = {f ∈ {0, 1}N | ∃ nf ∈ N such that ∀ i, j > nf , f(i) = f(j)}.

Functions inF can be represented by explicitly listing the finite set of instances on which their value
differs from the value that the function converges to. Most of the hypothesis classes we introduce
in Section 4 consist of such functions with finite support, and we will by default assume the list
representation. It is easy to see that such a list could be turned into a program that computes the
function, thus all functions in F are computable. However, subsets of F may not be DR or RER in
the sense of the above Definitions 5 and 6.

We now introduce our notion of computable PAC learnability, or CPAC learnability for short.
The minimal requirement on the output of a CPAC learner is that it uses a representation that allows
for evaluating the output hypothesis on every input of the domain.

Definition 8 (CPAC learnability) We say that a class H is (agnostic) CPAC learnable, if there is
a computable (agnostic) PAC learner for H that uses a representation for the predictors it outputs,
that allows it to evaluate the outputted function on each domain point. If the learner always outputs
a (representation of) a hypothesis in classH, we call it a proper CPAC learner and the class proper
CPAC learnable.
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In addition, we may require that the CPAC learner uses representations according to the defini-
tions of DR and RER classes.

Without explicitly defining these here, we note that the above also imply notions of non-uniform
learnability with additional requirements for the learner to be a proper learner with respect to H
and/or for the learner to be computable.

3. Summary of Results

We consider various learning scenarios and investigate whether learnability in the general sense
(where learners are modeled as arbitrary functions) implies learnability with computable learners.
We summarize our results in the tables below. As discussed earlier, we only consider classes of
computable predictors, thus “any class” assumes only this. Note also that a class being Decidably
Representable (DR) implies that it is Recursively Enumerably Representable (RER), which implies
that it consists of computable functions. Thus, some of the results in the below tables are inherited
via these inclusions.

Uniform proper Learning
Any class RE class DR class

Realizable
PAC ; CPAC

Theorem 9
PAC⇒ CPAC
Theorem 10

PAC⇒ CPAC
implied by Theorem 10

Agnostic
PAC ; CPAC

implied Theorem 11
PAC ; CPAC

implied by Theorem 11
PAC ; CPAC
Theorem 11

Uniform improper Learning
Any class RE class DR class

Realizable open
PAC⇒ CPAC

implied by Theorem 10
PAC⇒ CPAC

implied by Theorem 10
Agnostic open open open

For the case of non-uniform learning, our Theorem 18 shows that there is a general class (ac-
tually the class of all computable functions) that is learnable, but not with a computable learner.
We note that this had been shown earlier with a different proof (Soloveichik, 2008). This negative
result holds in the realizable case for any (not necessarily proper) learner. Whether non-uniform
learnability implies non-uniform learnability with a computable learner for more restricted classes
(for example DR or RER classes) is currently open.

4. Proper Learning

We start by considering the proper learning setup and show that, in general, even in the realizable
case, PAC learnability does not imply CPAC learnability.

Theorem 9 There exists a class of computable functions that has VC-dimension 1 and is not proper
CPAC learnable (even in the realizable setup).
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Proof Let the domain set X be the set of natural numbers, N. Fix a recursive enumeration of all
Turing machines (Ti)i∈N. For every i ∈ N, define hi as follows:

hi(j) =


1 if j = 2i

1 if j = 2i+ 1 and the i’th Turing machine halts on the empty input
0 if j = 2i+ 1 and the i’th Turing machine does not halt on the empty input
0 otherwise

All of these functions have finite support, i.e. Xhi is finite for any hi. Therefore all hi are com-
putable functions. Finally, letHhalting be the class {hi : i ∈ N}. Note that VC-dimension(Hhalting) =
1, since the functions have disjoint support.

Assume by way of contradiction that there exists a computable proper learner for Hhalting.
Consider the probability distribution over X × {0, 1} that assigns all the probability mass to (2i, 1)
and 0 to all other points. It is easy to see that for every i ∈ N, on input training sample (2i, 1) such a
learner must output the function hi. However, since we require CPAC learners to output classifiers
using a representation that allows for evaluating them on every domain point, such a CPAC learner
would provide a solution to whether Turing Machine Ti halts on the empty input by testing the
output of hi on the test point 2i + 1. This is a contradiction because this implies we computably
solve the halting problem, which is obviously not possible.

Note that, while the class of functions Hhalting in the proof of the above theorem consists
of computable functions (see Remark 7), the class is not RER or DR in the sense of Definitions
5 and 6. We next show, that, at least in the realizable case, if a class is RER, then a class is
PAC learnability implies CPAC learnability. Recall that, without computability requirements, a
hypothesis class is PAC learnable if and only if it has finite VC-dimension, and in this case, every
empirical risk minimizing (ERM) learner is a successful PAC learner (see, for example, Theorem
6.7 in the textbook Shalev-Shwartz and Ben-David (2014)).

Theorem 10 Every recursively enumerably representable (RER) hypothesis classH that has finite
VC-dimension is proper CPAC learnable (in the realizable case).

Proof We will argue that for such classes there is an algorithm that implements ERM (empirical
risk minimization) with respect to this class. Namely, given any realizable labeled sample S, run an
algorithm that generates all members of H one by one, and, for each, compute its empirical error
on S. Since we are in the realizable setting, we are guaranteed to eventually find some h ∈ H with
zero empirical error. As soon as we reach such an h, we halt and h is the output of the learner.

Next, we will show that the above result crucially relies on the realizability assumption. We
show that even if a hypothesis class meets the stronger requirement of being decidably representable
(DR), PAC learnability does not imply proper CPAC learnability in the agnostic case.

Theorem 11 There exists a decidably representable (DR) hypothesis class of finite VC-dimension
(of functions with finite support) that is not proper CPAC agnostically learnable.

Proof Let the domain set X be the set of natural numbers, N. Fix a proof system for first order
logic over a rich enough vocabulary that is sound and complete (i.e., every first order formula of
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that language has a proof if and only if it is a logical truth). By “rich enough vocabulary” we
mean a finite set of functions symbols and relation symbols so that the set of all its logical truths
is undecidable, for example a language for the natural numbers with the ordering, addition, and
multiplication. For every i, j ∈ N, we define a function hij as follows:

hij(k) =


1 if k = 2i

1 if k = 2j + 1

0 otherwise

Enumerate all proofs and logical statements of the proof system. Let

HLT = {hij : The i’th proof in our logic is a proof for the j’th formula}.

Note that HLT is a decidable class. Each function in HLT has a finite support, and we may
therefore assume a list representation for these functions (see Remark 7). Now, to decide if some
finite support function is in HLT , we first check if the function maps exactly one even natural
number and one odd natural number to 1 and maps all other natural numbers to 0. Then we check if
the proof corresponding to the even number, proves the logical statement corresponding to the odd
number. Since every function inHLT assigns the value 1 to only two inputs, VC(HLT ) ≤ 2.

Now we will argue that this class is not agnostic CPAC learnable. By way of contradiction,
assume that there exists a proper CPAC learner for HLT in the agnostic setting. For every i ∈ N,
consider a distribution Di that has all probability mass on the point (2i+ 1, 1). Thus, every training
sample from this distribution is a sequence containing only this point with label 1. Note that if
statement 2i+ 1 is a logical truth, then a CPAC learner needs to output function hj,2i+1, there proof
j certifies the truth of statement 2i+ 1. Otherwise, the CPAC learner may output any function from
the class (since all functions inHLT have error 1 in that case.

Thus, by feeding this learner a sequence of points (2i + 1, 1) and observing the label of the
output predictor of this learner on points 2i + 1, we developed a computable procedure to decide
whether a statement is a logical truth, in contradiction to our assumption on the richness of the
language.

4.1. Computable (approximations to) empirical risk minimization

Note that the class HLT from the proof of Theorem 11 is proper CPAC learnable in the realizable
case. Since it is DR, it is also RER, and this thus follows by Theorem 10. In particular, observe
that in the realizable case, an input sample point (2i + 1, 1) can only occur if the i’th formula is a
logical truth. The learner can then go over all finite sequences in lexicographic order until it finds a
proof for the i’th formula. Similarly, the argument in the proof of Theorem 10 tells us that if a class
is RER, then the recursive enumerability allows us to search for an ERM hypothesis in the class
if we are given a promise that there exists a hypothesis in H with zero empirical error. However,
lacking such a promise in the agnostic case, the search is not guaranteed to terminate, leading to the
negative conclusions forHLT in Theorem 11

In this subsection we explore intermediate scenarios. Specifically, we identify other conditions
under which such a search will terminate. In some cases, this implies computable empirical risk
minimization also in the agnostic case.

7



ON LEARNABILITY WIH COMPUTABLE LEARNERS

Theorem 12 If H is an RER class and S is a training sample for which the learner is given a
promise that

min
h∈H

LS(h) ≤ ε

for some ε ∈ [0, 1), then there is an algorithm that outputs an h ∈ H with LS(h) ≤ ε.

Proof Similarly to the realizable case, an algorithm can iterate over the hypothesis class, and
evaluate the empirical loss of every h on S of every hypothesis and terminate, when it finds a
hypothesis h for which LS(h) ≤ ε holds. It is guaranteed to halt by the promise in the statement
that such an h ∈ H exists.

The above result does not guarantee computable empirical risk minimization (as long as there
is no promise on the actual minimal empirical risk). However, if H is RER and has finite VC-
dimension, and we are given a bound α on the approximation error of the class (that is, we know
infh∈H LP (h) ≤ α) and, in addition, we required the learner to halt and output a hypothesis only
with high probability over the sample, then we can use the above result to find a hypothesis in H
that has error close to α. In that case, by standard uniform convergence results for classes of finite
VC-dimension, we have

min
h∈H

LS(h) ≤ α+ ε

with high probability over the draw of sample S and in this case Theorem 12 yields a hypothesis h
with LP (h) ≤ infh∈H LP (h) + 2ε.

Next, we present a situation, in which ERM is computably possible even in the (fully) agnostic
case. Note that the condition below holds, for example for so-called maximum classes (Floyd and
Warmuth, 1995), in which the number of behaviors on each finite domain subset achieves the bound
in Sauer’s lemma (see Lemma 6.10 in Shalev-Shwartz and Ben-David (2014)). Recall that, for a
hypothesis h, we let Xh ⊆ X denote the domain points that h labels with 1.

Theorem 13 Let H be an RER class such that for every finite domain subset W ⊆ X , the number
of subsets of the form W ∩ Xh for h ∈ H can be computed. Then there is an algorithm that
computes ERM for H (even in the non-realizable case). In particular, if H in addition has finite
VC-dimension, thenH is (agnostically) CPAC learnable.

Proof Given a sample S = ((x1, y1), . . . , (xn, yn)), we let SX = {x1, . . . , xn} denote the set of
(unlabeled) domain points that occur in S. Since H is RER, there is an algorithm that enumerates
functions in H and, for each can then compute the intersection SX ∩Xh. Similar to the arguments
in the proofs of Theorems 10 and 12, the number of subsets of the form SX ∩Xh gives a stopping
criterion for the search for an ERM.

We immediately get the following corollary for maximum classes:

Corollary 14 If H is an RER class, has bounded VC-dimension and is a maximum class, then it is
CPAC learnable.

Finally, we show that for classes of initial segments over some partial ordering are CPAC learn-
able even in the agnostic case.
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Theorem 15 IfH is the class of all initial segments under any (partial) ordering relation (contain-
ing also the constant 0 hypothesis), and H is RER then there is a CPAC ERM learner for H (even
in the agnostic case).

Proof First, note that, sinceH is a class of initial segments, the VC-dimension ofH is 1.
Let≺ denote the partial order, and for x ∈ X , let init(x) denote the initial segment correspond-

ing to x, that is init(x) = {y ∈ X | y ≺ x}. Since H consists of initial segments, for each h ∈ H,
there is an xh ∈ X such that Xh = init(xh) (recall that Xh denotes the set of all domain points that
are labeled 1 by h). And since we assume thatH is the class of all initial segments over ≺, we get

H = {init(x) | x ∈ X}.

Now note that for every pair of points (x, y) ∈ X2, the class H has exactly three behaviors. If x
and y are comparable by ≺, say without loss of generality x ≺ y, then H contains the labelings
(0, 0), (0, 1) and (1, 1) for (x, y). If x and y are not comparable, then H contains the labelings
(0, 0), (0, 1) and (1, 0) for (x, y).

This, again, can be turned into a stopping criterion for a search for an empirical risk minimizer.
Given a sample S, there is an algorithm enumerates all functions inH, until for each pair of domain
points in S, three labeling behaviors were observed. Then, it can compute the empirical error of
each of these functions over S and output and ERM hypothesis h ∈ H. Since the VC-dimension of
H is 1, this is a CPAC learner forH.

5. Non-uniform Learning

We now consider the non-uniform learning setup (recall Definition 3), and show that, here as well,
there are classes that are learnable (when learners can be arbitrary functions), not by a computable
learner. A similar result had been shown in Soloveichik (2008), however, we provide a different
proof. We first note that a hypothesis class H is non-uniformly learnable if and only if it is a
countable union of finite VC-classes.

Theorem 16 (Theorem 7.2 in Shalev-Shwartz and Ben-David (2014)) H is non-uniformly learn-
able if and only if there exist a sequence of classes (Hi)i∈N, each of finite VC-dimension, such that
H =

⋃
i∈NHi.

Corollary 17 The classHcomp of all computable functions from N to {0, 1} is non-uniformly learn-
able.

Proof Since each function h in Hcomp is computable, there exists a program computing h. Thus,
Hcomp is countable, and therefore Theorem 16 applies.

However, we will show that the class Hcomp cannot be learned by any computable learner
(proper or non-proper).

Theorem 18 (Also see Soloveichik (2008)) No computable learner can non-uniformly learn the
classHcomp.
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We will now provide an alternative proof for this result. We start by proving a “computable
version” of the classic No-Free-Lunch Theorem, which states that for every learner, for a fixed
sample sizem, there exists a (simple) distribution over 2m domain points, on which this learner will
suffer a high expected loss. We show that, if the learner is computable, there is also an algorithm that
finds this distribution. The Lemma and proof below are modifications of Theorem 5.1 in Shalev-
Shwartz and Ben-David (2014).

Lemma 19 (Computable No-Free-Lunch) For any computable learner A, and for any m ∈ N,
any domain X of size at least 2m, any subset {x1, . . . , x2m} ⊆ X of size 2m, we can computably
find a function f : {x1, . . . , x2m} → {0, 1} such that

ES∼Dm [LD(A(S))] ≥ 1

4
, and ProbS∼Dm

[
LD(A(S)) ≥ 1

8

]
≥ 1

7
,

where D is a uniform distribution over {(x1, f(x1)), . . . , (x2m, f(x2m))}.

Proof The existence of f and D with the stated properties follow from the original No-Free-Lunch
Theorem. All that is left to show here, is that we can computably find the function f .

There are T = 22m functions from {x1, . . . , x2m} to {0, 1}, which we denote by f1, . . . , fT . For
each 1 ≤ i ≤ T , define Di to be the uniform distribution over {(x1, fi(x1), . . . , (x2m, fi(x2m))}
We know one of these are the function f and distribution D that we are looking for.

For each 1 ≤ i ≤ T , there are k = (2m)m possible sequences of m samples drawn from the
distribution Di. Let us denote these sequences as Si1, . . . S

i
k. Each of these sample set occurs with

equal probability. Since A is computable, we can calculate the expected loss of the learner with
respect to distribution Di as follows:

ES∼Dm
i

[LDi(A(S))] =
1

k

k∑
j=1

LDi(A(Sij)) =
1

k

k∑
j=1

[
1

2m

2m∑
l=1

1[A(S)(xl) 6= fi(xl)]

]

From the No-Free-Lunch theorem, we know that one of the expected losses is at least 1
4 . We can

compute this quantity for each i from 1 to T until we find the quantity at least 1
4 . This gives the

function f that we seek. The high probability statement follows from the statement about high
expected loss (see Shalev-Shwartz and Ben-David (2014) for details).

With this, we proceed to prove thatHcomp is not learnable by a computable learner.
Proof [Proof of Theorem 18] Assume by way of contradiction that there is a computable learner A
that non-uniformly learns Hcomp. By Definition 3, this means that for any computable function h,
and any ε, δ ∈ (0, 1), there is a natural number nA(ε, δ, h) such that for any distribution D and any
n ≥ nA(ε, δ, h), we get

ProbS∼Dn [LD(A(S)) ≤ LD(h) + ε] ≥ 1− δ.

Consider the following partition of the natural numbers N = ∪i∈NPi where each Pi = [li, ui].
For each i, ui − li + 1 = 10i, li+1 = ui + 1 and l1 = 1. For each i ∈ N and for mi = 5i, by
Lemma 19, there exists a function fi and a distribution Di on Pi such that for the distribution D′i
over N× {0, 1}, the learner A fails to uniformly learn for ε = 1

8 and δ = 1
8 . Here, D′i is such that

D′i((x, y)) =

{
Di((x, y)) if x ∈ Pi
0 otherwise

10
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Consider a function h0 : N → {0, 1} such that, for any x ∈ N, h0(x) = fj(x) where j is such
that x ∈ Pj (we can compute such a j given an x). Since each fi can be found computably, h0 is a
computable function. Hence h0 ∈ Hcomp.

There is a k ∈ N such that |Pk| > 2nA(18 ,
1
7 , h0). For the distribution D′k, with probability at

least 1
7 over samples of size 2nA(18 ,

1
7 , h0) drawn from D′k, LD′

k
(A(S)) > 1

8 . This contradicts our
assumption that A non-uniformly learned the classHcomp.

Remark 20 Similar impossibility results as those in Theorem 18, can be shown for certain sub-
classes of the class Hcomp. For example, the same proof technique will show that the class of all
computable functions with a bounded run time cannot non-uniformly be learned by a learner with
an accordingly bounded run time.

6. Improper Learning

To understand the implications of CPAC-learnability in the more general setup of non-proper learn-
ers, we obtain the following reduction inspired by a reduction in Daniely et al. (2014).

For a hypothesis class H and a sequence S = ((x1, y1), (x2, y2), . . . (xm, ym)) of labeled do-
main points, we say that S has a realizable labeling if there is an h ∈ H such that yi = h(xi) of all
pairs (xi, yi) ∈ S. We say that S has a random labeling if each yi was the result of a random coin
flip where Prob(yi = 1) = Prob(yi = 0) = 1

2 . With this terminology, we introduce the following
task.

Definition 21 (The Distinguishing Problem) Given a hypothesis class H, we say that a (poten-
tially randomized) function A :

⋃
n∈N(X × {0, 1})n → {”realizable”,”unrealizable”} solves

the distinguishing problem if for any δ > 0, there is an M ∈ N such that for any sequence
S = (x1, . . . , xM ) ∈ XM , we have

• for T - a realizable labeling of S, Pr(A(T ) = ”realizable”) ≥ 1− δ,
• for T - a random labeling of S, Pr(A(T ) = ”unrealizable”) ≥ 1− δ,

where the probability is taken over the randomization of A and the random coin flips that generated
the labels in the latter case.

Theorem 22 If there is an (agnostic) CPAC learner of a class H whose range is a class of finite
VC-dimension, we can solve the distinguishing problem forH with a computable distinguisher.

Proof We let F be a CPAC learner that learns the classH and has a range with finite VC-dimension.
We letH′ denote this class of output hypotheses of F , and let d denote the VC-dimension ofH′.

By the Sauer’s Lemma, we know that the number of behaviors H′ exhibits on a set of size m is
bounded by a function p(m) that is polynomial in m. We will now show that we can construct an
algorithm A to solve the distinguishing problem forH.

For a given δ > 0, choose M > d and large enough so that p(M)
(
e
4

)M
4 < δ. Here p(M) =(

eM
d

)d
which is an upper bound to the growth function ofH′ for M .

For a labeled sequence S = ((x1, y1), . . . , (xM , yM )) ∈ (X × {0, 1})M , we let DS denote
the uniform distribution over S. Now we describe an algorithm A that solves the distinguishing
problem. Given S, the algorithm A will

11
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1. By uniformly sub-sampling from S, generate a sample from distribution DS to run learner F
with error parameter 1

4 and confidence parameter δ.
2. Compute LS(h) output hypothesis h of F.
3. If LS(h) < 1

4 , return ”realizable”. Else return ”unrealizable”.

Note that for a realizable labeling S, we are guaranteed LS(h) < 1
4 with probability at least 1− δ.

The set of hypotheses that F may return has at most p(M) behaviors on any set of instances of
size M . The probability that any behavior yields error less than 1

4 on S is bounded by

p(M) ·

(M
M
4

)
2M

≤ p(M) ·
(e

4

)M
4

< δ

So, with probability at least 1 − 2δ (over the random coin flips and the sampling from DS), the
output hypothesis makes more than 1

4 error on S and is hence identified as ”unrealizable” with at
least this probability.

Observe that the classesHhalting andHLT that we used for the negative results on proper CPAC
learning in Section 4, are actually CPAC learnable if we remove the properness requirement. All
functions in these classes map at most two domain-points to 1 and the rest of the domain to 0. They
are thus both subclasses of H2, the class of all hypotheses h with |Xh| ≤ 2. This class is actually
properly CPAC learnable, thus bothHhalting andHLT are (improperly) CPAC learnable. This leads
us our first conjecture:

Conjecture 23 If a class H is (improperly) CPAC learnable, then there is a superclass H′ ⊇ H
such thatH′ is proper CPAC learnable.

Theorem 22, along with Conjecture 23 leads to the following corollary.

Corollary 24 IfH is (improper) CPAC learnable, thenH is computably distinguishable.

We also conjecture the following:

Conjecture 25 There is a classH consisting of computable hypotheses, and with finite VC-dimension,
such thatH is not computably distinguishable.

Corollary 24, along with Conjecture 25 would imply the existence of a class H of finite VC-
Dimension that is not (improperly) CPAC learnable.

7. Conclusion and Future Work

In this paper we have initiated an investigation of analyzing the statistical notions of learnability
under the natural requirement that learner should be a computable function. We have shown that
the addition of such an assumption disrupts the fundamental characterization of learnability by the
finite VC-dimension of a class (even when the class is RE and every function in it is computable).

However, many question remain open. In particular we were not able to resolve whether decid-
able classesH with finite VC-dimension are necessarily improperly CPAC learnable in the agnostic
case. A characterization of learnability by computable learners which are not necessarily proper
seems to be the most interesting follow-up open question.

Furthermore we don’t have a clear characterization of when a class is properly CPAC learnable
in the agnostic case. So far, we have seen that proper CPAC learning always works in the realiz-
able case for recursively enumerable classes H with finite VC-dimension. However it would be
interesting to find out in which cases this would be true for the agnostic case.

12
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