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Abstract
We study an asynchronous online learning setting with a network of agents. At each time step, some
of the agents are activated, requested to make a prediction, and pay the corresponding loss. The
loss function is then revealed to these agents and also to their neighbors in the network. Our results
characterize how much knowing the network structure affects the regret as a function of the model
of agent activations. When activations are stochastic, the optimal regret (up to constant factors)
is shown to be of order

√
αT , where T is the horizon and α is the independence number of the

network. We prove that the upper bound is achieved even when agents have no information about
the network structure. When activations are adversarial the situation changes dramatically: if agents
ignore the network structure, a Ω(T ) lower bound on the regret can be proven, showing that learning
is impossible. However, when agents can choose to ignore some of their neighbors based on the
knowledge of the network structure, we prove a O(

√
χT ) sublinear regret bound, where χ ≥ α is

the clique-covering number of the network.
Keywords: online mirror descent, regret minimization, multiagent learning

1. Introduction

Distributed asynchronous online learning settings with communication constraints arise naturally in
several applications. For example, large-scale learning systems are often geographically distributed,
and in domains such as finance or online advertising, each agent must serve high volumes of prediction
requests. If agents keep updating their local models in an online fashion, then bandwidth and
computational constraints may preclude a central processor from having access to all the observations
from all sessions, and synchronizing all local models at the same time. An example in a different
domain is mobile sensor networks cooperating towards a common goal, such as environmental
monitoring. Sensor readings provide instantaneous, full-information feedback and energy-saving
constraints favor short-range communication over long-range. Online learning algorithms distributed
over spatial locations have already been proposed for problems in the field of climate informatics
by McQuade and Monteleoni (2012, 2017), and have shown empirical performance advantages
compared to their global (i.e., non-spatially distributed) online learning counterparts.
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COOPERATIVE ONLINE LEARNING

Motivated by these real-life applications, we introduce and analyze an online learning setting
in which a network of agents solves a common online convex optimization problem by sharing
feedback with their network neighbors. Agents do not have to be synchronized. At each time step,
only some of the agents are requested to make a prediction and pay the corresponding loss: we
call these agents “active”. Because the feedback (i.e., the current loss function) received by the
active agents is communicated to their neighbors, both active agents and their neighbors can use
the feedback to update their local models. The lack of global synchronization implies that agents
who are not requested to make a prediction get “free feedback” whenever someone is active in their
neighborhood. Since in online convex optimization the sequence of loss functions is fully arbitrary,
it is not clear whether this free feedback can improve the system’s performance. In this paper, we
characterize under which conditions and to what extent such improvements are possible.

Our goal is to control the network regret, which we define by summing the average instantaneous
regret of the active agents at each time step. In order to build some intuition on this problem, consider
the following two extreme cases where, for the sake of simplicity, we assume exactly one agent
is active at each time step. If no communication is possible among the agents, then each agent v
learns in isolation over the subset Tv of time steps when they are active. Assuming each agent runs a
standard online learning algorithm with regret bounded by O(

√
T ) —such as Online Mirror Descent

(OMD)— the network regret is at most of order
∑
v

√
Tv ≤

√
NT , where T =

∑
v Tv and N is

the number of agents. Next, consider a fully connected graph, where agents share their feedback
with the rest of the network. Each local instance of OMD now sees the same loss sequence as the
other instances, so the sequence of predictions is the same, no matter which agents are chosen to be
active. The network regret is then bounded by O(

√
T ), as in the single-instance case. Our goal is to

understand the regret when the communication network corresponds to an arbitrary graph G.
We consider two natural activation mechanisms for the agents: stochastic and adversarial. In

the stochastic setting, at each time step t each agent v is independently active with probability qv,
where qv is a fixed and unknown number in [0, 1]. Under this assumption, we show that when each
agent runs OMD, the network regret is O(

√
αT ), where α ≤ N is the independence number of

the communication graph. Note that this bound smoothly interpolates the two extreme cases of no
communication (α = N ) and full communication (α = 1). From this viewpoint, α can be viewed as
the number of “effective instances” that are implicitly maintained by the system. It is not hard to
prove that this upper bound cannot be improved upon: fix a network G and a maximal independent
set in G of size α. Define qv = 1/α if v belongs to the independent set and 0 otherwise. Then no two
nodes that can ever become active are adjacent in G, and we reduced the problem to that of learning
with α non-commmunicating agents over T/α time steps. Since there are instances of the standard
online convex optimization problem on which any agent strategy has regret Ω(

√
T ), we obtain that

the network regret must be at least of order α
√
T/α =

√
αT . Note that this lower bound also applies

to algorithms that have complete preliminary knowledge of the graph structure, and can choose to
ignore or process any feedback coming from their neighbors. In contrast, the OMD instances used
to prove the upper bound are fully oblivious both to the graph structure and to the source of their
feedback (i.e., whether their agent is active as opposed to being the neighbor of an active agent).

In the adversarial activation setting, nodes are activated according to some unknown deterministic
schedule. Surprisingly, under the same assumption of obliviousness about the feedback source which
we used to prove the O(

√
αT ) upper bound for stochastic activations, we show that on certain

network topologies a deterministic schedule of activations can force a linear regret on any algorithm,
thus making learning impossible. On the other hand, if agents are free to use feedback only from
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a subset of their neighbors chosen with knowledge of the graph structure, then the network regret
of OMD is O(

√
χT ), where χ is the clique-covering number of the communication graph. Hence,

unlike the stochastic case, where the knowledge of the graph is not required to achieve optimality, in
the adversarial case the ability of choosing the feedback source based on the graph structure is both a
necessary and sufficient condition for sublinear regret.

The extension of the OMD analysis to a multiagent setting with communication (Theorem 4), and
the lower bound for the adversarial activation setting (Theorem 7) are the main technical novelties of
the paper.

2. Related Works

The study of cooperative nonstochastic online learning on networks was pioneered by Awerbuch and
Kleinberg (2008), who investigated a bandit setting in which the communication graph is a clique,
users are clustered so that the loss function at time t may differ across clusters, and some users may
be non-cooperative. More recently, a similar line of work was pursued by Cesa-Bianchi et al. (2016),
where they derive graph-dependent regret bounds for nonstochastic bandits on arbitrary networks
when the loss function is the same for all nodes and the feedbacks are broadcast to the network with
a delay corresponding to the shortest path distance on the graph. Although their regret bounds —like
ours— are expressed in terms of the network independence number, this happens for reasons that
are very different from ours, and by means of a different analysis. In their setting all agents are
simultaneously active at each time step, and sharing the feedback serves the purpose of reducing
the variance of the importance-weighted loss estimates. A node with many neighbors observes the
current loss function evaluated at all the points corresponding to actions played by the neighbors.
Hence, in that context cooperation serves to bring the bandit feedback closer to a full information
setting.

In contrast, we study a full information setting in which agents get free and meaningful feedback
only when they are not requested to predict.1 Therefore, in our setting cooperation corresponds to
faster learning (through the free feedback that is provided over time) within the full information
model, as opposed to (Cesa-Bianchi et al., 2016) where cooperation increases feedback within
a single time-step. An even more recent work considering bandit networks studies a stochastic
bandit model with simultaneous activation and constraints on the amount of communication between
neighbors (Martı́nez-Rubio et al., 2018). Their regret bounds scale with the spectral gap of the
communication network. The work of Sahu and Kar (2017) investigates a different partial information
model of prediction with expert advice where each agent is paired with an expert, and agents see
only the loss of their own expert. The communication model includes delays, and the regret bound
depends on a quantity related to the mixing time of a certain random walk on the network. Zhao
et al. (2019) study a decentralized online learning setting in which losses are characterized by two
components, one adversarial and another stochastic. They show upper bounds on the regret in
terms of a constant representing the magnitude of the adversarial component and another constant
measuring the randomness of the stochastic part.

The idea of varying the amount of feedback available to learning agents has also appeared in
single-agent settings. In the sleeping experts model (Freund et al., 1997), different subsets of actions
are available to the learner at different time steps. In our multi-agent setting, instead, actions are

1. Two adjacent agents that are simultaneously active exchange their feedback, but this does not bring any new information
to either agent because we are in a full information setting and the loss function is the same for all nodes.
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always available while the agents are occasionally sleeping. An algorithmic reduction between the
two settings seems unlikely to exist because actions and agents play completely different roles in the
learning process. In the learning with feedback graphs model (Alon et al., 2015; Mannor and Shamir,
2011), each selection of an action reveals to the learner the loss of the actions that are adjacent to it
in a given graph. In our model, each time an active agent plays an action, the loss vector is revealed
to the agents that are adjacent to the active learner. There is again a similarity between actions and
agents in the two settings, but to the best of our knowledge there is no algorithmic reduction from
multi-agent problems to single-agent problems. Yet, it should not come as a surprise that some
general graph-theoretic tools —like Lemma 3— are used in the analysis of both single-agent and
multi-agent models.

A very active area of research involves distributed extensions of online convex optimization, in
which the global loss function is defined as a sum of local convex functions, each associated with
an agent. Agents are run over the local optimization problem corresponding to their local functions
and communicate with their neighborhood to find a point in the decision set approximating the loss
of the best global action. This problem has been studied in various settings: distributed convex
optimization —see, e.g., (Duchi et al., 2012; Scaman et al., 2018) and references therein, distributed
online convex optimization (Hosseini et al., 2013), and a dynamic regret extension of distributed
online convex optimization (Shahrampour and Jadbabaie, 2018). Unlike our work, these papers
consider distributed extensions of OMD (and Nesterov dual averaging) based on generalizations of
the consensus problems. The resulting performance bounds scale inversely in the spectral gap of the
communication network.

3. Preliminaries and definitions

Let G = (V,E) be a communication network, i.e., an undirected graph over a set V of N agents.
Without loss of generality, assume V = {1, . . . , N}. For any agent v ∈ V , we denote by Nv the set
of nodes containing the agent v and the neighborhood

{
w ∈ V | (v, w) ∈ E

}
. The independence

number αG is the cardinality of the biggest independent set of G, i.e., the cardinality of the biggest
subset of agents, no two of which are neighbors.

We study the following cooperative online convex optimization protocol: initially, hidden from
the agents, the environment picks a sequence of subsets S1, S2, . . . ⊆ V of active agents and a
sequence of differentiable convex real loss functions `1, `2, . . . defined on a convex decision set
X ⊂ Rd. Then, for each time step t ∈ {1, 2, . . .},

1. each agent v ∈ St predicts with xt(v) ∈ X ,
2. each agent v ∈

⋃
v∈St
Nv receives `t as feedback,

3. the system incurs the loss 1
|St|

∑
v∈St

`t
(
xt(v)

)
(defined as 0 when St ≡ ∅).

We assume each agent v runs an instance of the same online algorithm. Each instance learns a local
model generating predictions xt(v). This local model is updated whenever a feedback `t is received.
We call paid feedback the feedback `t received by v when v ∈ St (i.e., the agent is active) and free
feedback the feedback `t received by v when v ∈

(⋃
v∈St
Nv
)
\ {St} (i.e., the agent is not active but

in the neighborhood of some active agent). The goal is to minimize the network regret as a function
of the unknown number T of time steps,

RT =
T∑
t=1

1
|St|

∑
v∈St

`t
(
xt(v)

)
− inf
x∈X

T∑
t=1

`t(x) (1)
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Note that only the losses of active agents contribute to the network regret.

4. Online Mirror Descent

Algorithm 1: Online Mirror Descent
Input: σt-strongly convex regularizers gt : X → R for t ∈ {1, 2, . . .}
Initialization: θ1 = 0 ∈ Rd
for t = 1, 2, . . . do

choose wt = ∇g∗t (θt)
observe∇`t(wt) ∈ Rd
update θt+1 = θt −∇`t(wt)

We now review the standard Online Mirror Descent algorithm (OMD) —see Algorithm 1—
and its analysis. Let f : X → R be a convex function. We say that f∗ : Rd → R is the convex
conjugate of f if f∗(x) = supw∈X

(
x · w − f(w)

)
. We say that f is σ-strongly convex on X

with respect to a norm ‖·‖ if there exists σ ≥ 0 such that, for all u,w ∈ X we have f(u) ≥
f(w) + ∇f(w) · (u − w) + σ

2 ‖u−w‖
2. The following well-known result can be found in

(Shalev-Shwartz, 2012, Lemma 2.19 and subsequent paragraph).

Lemma 1 Let f : X → R be a strongly convex function on X . Then the convex conjugate f∗ is
everywhere differentiable on Rd.

The following result —see, e.g., (Orabona et al., 2015, bound (6) in Corollary 1 with F set to zero)—
shows an upper bound on the regret of OMD.

Theorem 2 Let g : X → R be a differentiable function σ-strongly convex with respect to ‖·‖. Then
the regret of OMD run with gt =

√
t
η g, for η > 0, satisfies

T∑
t=1

`t
(
xt
)
− inf
x∈X

T∑
t=1

`t(x) ≤ D

η

√
T + η

2σ

T∑
t=1

1√
t
‖∇`t‖2∗

whereD = sup g and ‖·‖∗ is the dual norm of ‖·‖. If sup ‖∇`t‖∗ ≤ L, then choosing η =
√

2σD/L
gives RT ≤ L

√
2DT/σ.

A popular instance of OMD is the standard online gradient descent algorithm, corresponding to
choosing X equal to a closed Euclidean ball centered at the origin, and setting g = 1

2 ‖·‖
2 for

all t, where ‖·‖ is the Euclidean norm. Another instance is the Hedge algorithm for prediction
with expert advice, corresponding to choosing X equal to the probability simplex, and setting
g(p) =

∑
i pi ln pi.

5. Stochastic Activations

In this section we analyze the performance of OMD when the sets St of active agents are chosen
stochastically. As discussed in the introduction, in this setting we do not require any ad-hoc interface
between each OMD instance and the rest of the network. In particular, we make the following
assumption.
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Assumption 1 (Oblivious network interface) An online algorithm A is run with an oblivious net-
work interface if for each agent v it holds that:

1. v runs an instance Av of A
2. Av uses the same initialization and learning rate as the other instances
3. Av makes predictions and updates while being oblivious to whether v ∈ St or v ∈

⋃
u∈St

Nu \St

This assumption implies that each instance is oblivious to both the network topology and the location
of the agent in the network. Moreover, instances make an update whenever they have the opportunity
to do so, (i.e., whenever they or some of their neighbors are active). The purpose of this assumption is
to show that communication might help OMD even without any network-specific tuning. In concrete
applications, one might use ad-hoc OMD variants that rely on the knowledge of the task at hand, and
decrease the regret even further. However, the lower bound proven in Section 6 shows that the regret
cannot be decreased significantly even when agents have full knowledge of the graph.

We start by considering a slightly simplified stochastic activation setting, where only a single
agent is activated at each time step (i.e., |St| = 1 for all t). The more general stochastic case is
analyzed at the end of this section.

We assume that the active agents v1, v2, . . . are drawn i.i.d. from an unknown fixed distribution q
on V . The main result of this section is an upper bound on the regret of the network when all agents
run the basic OMD (Algorithm 1) with an oblivious network interface. We show that in this case the
network achieves the same regret guarantee as the single-agent OMD (Theorem 2) multiplied by the
square root of independence number of the communication network.

Before proving the main result, we state a combinatorial lemma that allows to upper bound the
sum of a ratio of probabilities over the vertices of an undirected graph with the independence number
of the graph (Griggs, 1983; Mannor and Shamir, 2011). The proof is included for completeness.

Lemma 3 Let G = (V,E) be an undirected graph with independence number αG and q any
probability distribution on V such that Qv =

∑
w∈Nv

qv > 0 for all v ∈ V . Then∑
v∈V

qv
Qv
≤ αG

Proof Initialize V1 = V , fix w1 ∈ arg minw∈V1 Qw, and denote V2 = V \ Nw1 . For k ≥ 2 fix
wk ∈ arg minw∈Vk

Qw and shrink Vk+1 = Vk \ Nwk
until Vk+1 = ∅. Being G undirected, we have

wk /∈
⋃k−1
s=1 Nws , therefore the number m of times that an action can be picked this way is upper

bounded by αG. Denoting N ′wk
= Vk ∩Nwk

, this implies

∑
v∈V

qv
Qv

=
m∑
k=1

∑
v∈N ′wk

qv
Qv
≤

m∑
k=1

∑
v∈N ′wk

qv
Qwk

≤
m∑
k=1

∑
v∈Nwk

qv

Qwk

= m ≤ αG

The following holds for any differentiable function g : X → R, σ-strongly convex with respect to
some norm ‖·‖.

Theorem 4 Consider a network G = (V,E) of N agents and assume St = {vt} for each t, where
vt is drawn i.i.d. from some fixed and unknown distribution on V . If all agents run OMD with an
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oblivious network interface and using gt =
√
t
η g, for η > 0, then the network regret satisfies

E[RT ] ≤
(
D

η
+ ηL2

2σ

)√
αGT

where D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In particular, choosing
η =
√

2σD/L gives E[RT ] ≤ L
√

2DαGT/σ.

Proof Fix x ∈ X , any sequence of realizations v1, . . . , vT , and any v in the support V ′ ⊂ V of the
activation distribution q. Note that the OMD instance run by v, makes an update at time t only when
v ∈ Nvt . Hence, letting rt(v) = `t

(
xt(v)

)
− `t(x) and applying Theorem 2,

T∑
t=1

rt(v)I{v ∈ Nvt} ≤
D

η

√
Tv + ηL2

2σ

T∑
t=1

I{v ∈ Nvt}√∑t
s=1 I{v ∈ Nvs}

≤
(
D

η
+ ηL2

2σ

)√
Tv (2)

where Tv =
∑T
t=1 I{v ∈ Nvt}, the addends after the first inequality are intended to be null when the

denominator is zero, and we used
∑Tv
s=1 s

−1/2 ≤ 2
√
Tv. Note that rt(v) is independent of vt, as it

only depends on the subset of vs, s ∈ {1, . . . , t−1}, such that v ∈ Nvs . Denote byQv the probability
P(v ∈ Nvt) =

∑
w∈Nv

q(w) > 0. Let Ft−1 be the σ-algebra generated by {v1, . . . , vt−1}. Since
Qv is independent of t, P

(
v ∈ Nvt | Ft−1

)
= Qv. Therefore, taking expectation with respect to

v1, . . . , vT on both sides of (2), using E[Tv] = QvT , and applying Jensen’s inequality, yields

E
[
T∑
t=1

rt(v)Qv

]
≤
(
D

η
+ ηL2

2σ

)√
QvT (3)

Now, letting RT (x) =
∑T
t=1 rt(vt), we have that E

[
RT (x)

]
is equal to

E

∑
v∈V ′

T∑
t=1

rt(v)I{vt = v}

 = E

∑
v∈V ′

T∑
t=1

rt(v)E
[
I{vt = v} | Ft−1

] =
∑
v∈V ′

qvE
[
T∑
t=1

rt(v)
]

Dividing both sides of (3) by Qv > 0, we can write

E
[
RT (x)

]
≤
(
D

η
+ ηL2

2σ

) ∑
v∈V ′

qv

√
T

Qv
≤
(
D

η
+ ηL2

2σ

)√
T
∑
v∈V ′

qv
Qv
≤
(
D

η
+ ηL2

2σ

)
√
αT

where in the last two inequalities we applied Jensen’s inequality and Lemma 3. Observing that
E[RT ] = supx∈X E

[
RT (x)

]
and recalling that x was chosen arbitrarily in X concludes the proof.

Note that the proof of the previous result gives a tighter upper bound on the network regret in terms
of the independence number α′ ≤ α of the subgraph induced by the support V ′ of q.

Next, we consider the setting in which we allow the activation of more than one agent per time
step. At the beginning of the process, the environment draws an i.i.d. sequence of Bernoulli random
variables X1(v), X2(v), . . . with some unknown fixed parameter qv ∈ [0, 1] for each agent v ∈ V .
The active set at time t is then defined as St = {v ∈ V | Xt(v) = 1}. Note that, unlike the previous
setting, now

∑
v∈V qv 6= 1 in general.
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We state an upper bound on the regret that the network incurs if all agents run OMD with an
oblivious network interface (for a proof, see Appendix A). Our upper bound is expressed in terms of
a constant depending on the probabilities of activating each agent and such that Q ≤ 1.6(αG + 1).
The result holds for any differentiable function g : X → R, σ-strongly convex with respect to some
norm ‖·‖.
Theorem 5 Consider a network G = (V,E) of N agents. Assume that, at each time step t each
agent v is independently activated with probability qv ∈ [0, 1]. If all agents run OMD with an
oblivious network interface and using gt =

√
t
η g, for η > 0, the network regret satisfies

E[RT ] ≤
(
D

η
+ ηL2

2σ

)√
QT

for some nonnegative Q ≤ 1.6(αG + 1), D ≥ sup g, and L ≥ sup ‖∇`t‖∗, where ‖·‖∗ is the dual
norm of ‖·‖. In particular, choosing η =

√
2σD/L gives E[RT ] ≤ L

√
2DQT/σ.

In order to compare the previous upper bound to Theorem 4, consider the case qv = q for all v ∈ V .
Without loss of generality, assume q > 0 (the regret is zero when q vanishes). Then

Q = Q(q) = 1
N

∑
v∈V

1− (1− q)N

1− (1− q)|Nv |

(for a proof, see Theorem 10 in Appendix A and proceed as in the proof of Lemma 9). A direct
computation of the sign of the first derivative of the addends q 7→ 1−(1−q)N

1−(1−q)|Nv | shows that these

functions are decreasing in q, hence 1 = limq→1− Q(q) ≤ Q ≤ limq→0+ Q(q) =
∑
v∈V

1
|Nv | ≤ αG

where the last inequality follows by Lemma 3. Note that the lower bound Q ≥ 1 is attained if the
probabilities of picking agents at each time step are all 1. In this case all agents are activated at each
time step, the graph structure over the set of agents becomes irrelevant and the model reduces to a
single-agent problem. The inequality Q(q) ≤ αG is not a coincidence due to the constant q. Indeed,
one can prove that this is always the case, up to a small constant factor (for a proof., see Lemma 11
in Appendix A).

The previous results shows that paying the average price of multiple activations is never worse
(up to a small constant factor) than drawing a single agent per time step, and it can be significantly
better. A similar argument shows a tighter bound Q ≤ max{3, αG} when the activation probabilities
satisfy

∑
v∈V qv = 1, which allows to recover the upper bound on the network regret proven in

Theorem 4. This is consistent with the intuition that —in expectation— picking a single agent at
random according to a distribution q = (q1, . . . , qN ) is the same as picking each v independently
with probability qv. Similarly to the case |St| = 1, the previous result gives a tighter upper bound
on the network regret in terms of the independence number α′ ≤ α of the subgraph induced by the
subset V ′ of V containing all agents v with qv > 0. Note that the setting discussed in this section
smoothly interpolates between the single-agent setting (qv = 1 for all v), cooperative learning with
one agent stochastically activated at each time step (

∑
v qv = 1), and beyond (

∑
v qv < 1), where a

non trivial fraction of the total number rounds is skipped.

6. Lower Bound for Stochastic Activations

In this section we show that, for any communication network G with stochastic agent activations, the
best possible regret rate is of order Ω

(√
αGT

)
. This holds even when agents are not restricted to
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use an oblivious network interface. The idea is that if the distribution from which active agents are
drawn is supported on an independent set of cardinality αG, then the problem reduces to that of an
edgeless graph with αG agents.

Theorem 6 There exists a convex decision set in Rd such that, for each communication network G
and for arbitrary (and possibly different) online learning algorithms run by the agents, E[RT ] =
Ω
(√
αT
)

for some sequence (S1, `1), . . . , (ST , `T ), where St = {vt}, vt is drawn i.i.d. from some
fixed distribution on V , and the expectation is taken with respect to the random draw of the v1, . . . , vT .

Proof We sketch the proof for the case |St| = 1. Let X be the probability simplex in Rd. Let
G = (V,E) be any communication graph and α its independence number. We consider linear losses
defined on X . Let q be the uniform distribution over a maximal independent setA = {a1, . . . , aα} ⊂
V . Fix now any cooperative online linear optimization algorithm for this setting. Since each active
agent vt belongs to A for all t ∈ {1, . . . , T} with probability 1, it suffices to analyze the updates of
the algorithm for these agents. Indeed, no other agent incurs any loss at any time-step. Since A is
an independent set, each agent ai makes an update at round t if and only if vt = ai. This happens
with probability q(ai) = 1/α, independently of t. Each agent ai is therefore running an independent
single-agent online linear optimization problem for an average of T/α rounds. It is well-known
(Hazan, 2016, Theorem 3.2) that any algorithm for online linear optimization on the simplex with
losses bounded in [0, 1] incurs Ω

(√
T/α

)
regret over T/α rounds in the worst case. Consequently,

the regret of the network satisfies RT = Ω
(
α
√
T/α

)
= Ω

(√
αT
)
.

An analogous lower bound can be proven for the case of multiple agent activations per time step.
Indeed, define qv = 1/α for each agent v belonging to some fixed maximal independent set and
qv = 0 otherwise. This again leads to α independent single-agent online linear optimization problems
for an average of T/α rounds each, and an argument similar to the one in the proof of Theorem 6
gives the result.

7. Adversarial Activations

In this section we drop the stochasticity assumption on the agents’ activations and focus on the case
where active agents are picked from V by an adversary. The goal is to control the regret (1) for any
individual sequence of pairs (`1, S1), (`2, S2), . . . where `t is a convex loss and St ⊆ V , without
any stochastic assumptions on the mechanism generating these pairs. For the rest of this section, we
focus on the special case where |St| = 1 for all t and denote by vt the active node at time t.

We start by proving that learning with adversarial activations is impossible if we use an oblivious
network interface. We prove this result in the setting of prediction with expert advice with two
actions and binary losses, a special case of online convex optimization. The idea of the lower bound
is that if the communication network is a star graph, the environment is able to make both actions
look equally good to all peripheral agents, even if one of the two actions is actually better than the
other. This is done by drawing the good action at random, then activating an agent depending on the
outcome of the draw. For a small fraction of the times the good action has loss one, the central agent
is activated. Since the central agent shares feedback with all peripheral agents, we can amplify this
loss by a factor of N , and thus make the good action look to all peripheral agents as bad as the bad
action.

9
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Theorem 7 For each N > 3 there exists a convex decision set in R2 and a graph G with N vertices
such that, whenever N agents are run on G using instances of any online learning algorithm with
an oblivious network interface, then RT = Ω(T ) for some sequence (`1, v1), . . . , (`T , vT ) of convex
losses and active agents.

Proof Fix N > 3 and let X be the probability simplex in R2. Let G = (V,E) be the star graph
with central agent a0, and peripheral agents a1, . . . , aN−1. Because our losses are linear on X , the
online convex optimization problem is equivalent to prediction with expert advice with two experts
(or actions), and we may denote losses using loss vectors `t =

(
`t(1), `t(2)

)
where 1 and 2 index

the actions. A good action J ∈ {1, 2} is drawn uniformly at random. Denote the other one (i.e.,
the bad one) by JB. To keep notation tidy, we define loss vectors by `t =

(
`t(J), `t(JB)

)
. Fix any

ε ∈
(
0, N−1

2(N−2)
)
. The loss vectors `t are drawn i.i.d. at random, according to the following joint

distribution:

P
(
`t = (0, 1)

)
= 1

2 P
(
`t = (1, 0)

)
= 1

2 − ε+ ε

N − 1 P
(
`t = (0, 0)

)
= ε− ε

N − 1

Recall that only a single agent vt is active at any time. At each time step t, the adversary decides
whether to activate the central agent a0 or a peripheral agent, depending on the realization of `t. If
`t(J) = 0, then a random peripheral agent is activated. Otherwise, we set

P
(
`t = (1, 0), vt = a0

)
= ε

N − 1 and P
(
`t = (1, 0), vt = ai

)
=

1/2− ε
N − 1 a1, . . . , aN−1

Note that when vt = a0, then all peripheral agents receive feedback `t. Similarly, when a peripheral
agent is active at time t, then a0 receives feedback `t. For b1, b2 ∈ {0, 1}, let E(ai, b1, b2) be the
event: agent ai receives the loss vector `t = (b1, b2) as feedback. The following statements then hold
for each peripheral agent ai,

P
(
E(ai, 0, 1)

)
=

1/2

N − 1 P
(
E(ai, 0, 0)

)
= ε

N − 1 −
ε

(N − 1)2

P
(
E(ai, 1, 0)

)
=

1/2− ε
N − 1 + ε

N − 1 =
1/2

N − 1

Hence, each instance managed by a peripheral agent observes loss vectors (1, 0) and (0, 1) with
the same probability proportional to 1/2, and loss vector (0, 0) with probability proportional to
ε(N − 1)/(N − 2). Since the network interface is oblivious, the instance cannot distinguish between
paid and free feedback (which would reveal the good action), and incurs an expected loss of 1/2 each
time `t ∈

{
(0, 1), (1, 0)

}
. Using the fact that a peripheral agent is active when `t ∈

{
(0, 1), (1, 0)

}
with probability 1/2 + 1/2− ε = 1− ε, the system’s expected total loss is at least 1−ε

2 T (we lower
bound the loss of the central agent by zero). Since the expected loss of J is

(
1/2− ε+ ε

N−1
)
T , the

expected regret of the system satisfies

E[RT ] ≥
(1− ε

2 − 1
2 + ε− ε

N − 1

)
T ≥ T

8

where we picked ε = (N − 1)/(N − 2) and used (N − 3)/(N − 2) ≥ 1/2 in the last inequality.
Therefore, there exists some sequence (`1, S1), . . . , (`T , ST ) such that RT ≥ T/8, concluding the
proof.

10
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We complement the above negative result by showing that when algorithms are run without the
oblivious network interface, and agents are free to use feedback only from a subset of their neighbors
chosen with knowledge of the graph structure, then the network regret of OMD is O(

√
χGT ). The

quantity χG is the clique-covering number of the communication graph G, which corresponds to the
smallest cardinality of a clique cover of G (a clique cover is a partition of the vertices such that the
nodes in every element of the partition form a clique in the graph). The intuition behind this result is
simple: fix a clique cover and let the agents in the same clique of the cover know each other. Now, if
each agent ignores all feedback coming from agents in other cliques, then the agents in the same
clique make exactly the same sequence of prediction and updates. Therefore, the effective number of
OMD instances that are being run is equal to χG.

The following result holds for any differentiable function g : X → R, σ-strongly convex with
respect to some norm ‖·‖.

Theorem 8 Consider a network G = (V,E) of N agents, a clique cover {K1, . . . ,KM} where
M = χG, and let K(v) be the unique element of the cover which each v ∈ V belongs to. For any
sequence v1, v2, . . . ∈ V of active agents, assume each agent v ∈ V runs OMD using gt =

√
t
η g

(with η > 0) while making updates only at those time steps t such that vt ∈ K(v). Then the network
regret satisfies

E[RT ] ≤
(
D

η
+ ηL2

2σ

)√
χGT

where D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In particular, choosing
η =
√

2σD/L gives E[RT ] ≤ L
√

2DχGT/σ.

Proof Fix any clique Kc and any v ∈ Kc. Let Tc be the time steps such that vt ∈ Kc. Since each
agent v ∈ Kc ignores the feedback coming from other cliques, the nodes in Kc perform exactly the
same updates, and therefore make exactly the same predictions. This means that, for any t ∈ Tc, the
predictions in the set

{
xt(v) | v ∈ Kc

}
are all equal to the same common value denoted by xt(Kc).

Fix any x ∈ X and, for any t ∈ Tc, let rt(Kc) = `t
(
xt(Kc)

)
− `t(x). By Theorem 2 we have that

∑
t∈Tc

rt(Kc) ≤
(
D

η
+ ηL2

2σ

)√
Tc .

Therefore, recalling that rt(vt) = `t
(
xt(vt)

)
− `t(x) and using Jensen’s inequality,

T∑
t=1

rt(vt) =
χG∑
c=1

∑
t∈Tc

rt(Kc) ≤
χG∑
c=1

(
D

η
+ ηL2

2σ

)√
Tc ≤

(
D

η
+ ηL2

2σ

)√
χGT

concluding the proof.

Theorems 7 and 8 show that with adversarial activations the knowledge of the graph is crucial for
learning (e.g., for achieving sublinear regret). Since χG ≥ αG, it is not clear whether the better
rate
√
αGT can be proven in the adversarial activation setting when agents do not use the oblivious

network interface.
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8. Conclusions

We introduced a cooperative learning setting in which agents, sitting on the nodes of a communication
network, run instances of an online learning algorithm with the common goal of minimizing their
regret. In order to investigate how the knowledge of the graph topology affects regret in cooperative
online learning under different activation mechanisms, we introduced the notion of oblivious network
interface. This prevents agents from doing any network-specific tuning or even accessing their
neighborhood structure. When activations are stochastic, we showed that sharing losses among
neighbors is enough to guarantee optimal regret rates even with the oblivious network interface.
Surprisingly, when activations are adversarial the situation changes completely. There exist problem
instances in which any algorithm that runs with the oblivious network interface suffers linear regret.
In this case knowing graph structure is not only necessary to perform optimally, but even to have
sublinear regret.

Other interesting variants of this settings could be studied in the future. For example, at the
beginning of each round, active agents could be allowed to ask the predictions of some of their
neighbors, and base their prediction upon it. In this case, we conjecture that the optimal regret rate
would scale with the dominating number δG of the graph, which is always smaller or equal to the
independence number.
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Appendix A. Stochastic Activations: Multiple Agents

In this section we present all missing results related to the stochastic activation model with multiple
activations per time step. Recall that, at the beginning of the process, the environment draws an
i.i.d. sequence of Bernoulli random variables X1(v), X2(v), . . . with some unknown fixed parameter
qv ∈ [0, 1] for each agent v ∈ V . The active set at time t is then defined as St = {v ∈ V | Xt(v) =
1}. Note that, unlike when only one agent is active at each time step, now

∑
v∈V qv 6= 1 in general.

Before the main result, we give some definitions and prove a technical combinatorial lemma that is
leveraged in the analysis.

Denote by V ′ the set of all agents v ∈ V such that qv > 0. For each v ∈ V ′, let

cv =
∑

S⊂{1,...,N}\{v}

λS,v
1 + |S| (4)

where the convex coefficients λS,v are defined by(
N∏
w=1

qw

) ∏
u∈{1,...,N}\({v}∪S)

(1− qu)


Let also Qv be the probability

P

v ∈ ⋃
w∈St

Nw

 = 1−
∏
w∈Nv

(
1− qw

)
> 0 (5)

that agent v is updated at time t —note that Qv is independent of t.

Lemma 9 Let X(1), . . . , X(m) be independent Bernoulli random variables with strictly positive
parameters q1, . . . , qm respectively. Then, for all v ∈ {1, . . . ,m},

E
[

X(v)∑m
w=1X(w)

]
= qvcv

where we define X(v)/
∑m
w=1X(w) = 0 when X(v) = 0.

Proof Fix any v ∈ {1, . . . ,m}. Let Sv be the set {1, . . . ,m} \ {v} and let Fv be the σ-algebra
generated by

{
X(w) | w ∈ Sv

}
. Then

E
[

X(v)∑m
w=1X(w)

]
= E

[
E
[

X(v)∑m
w=1X(w)

∣∣∣∣Fv]] = qv E
[

1
1 +

∑
w∈Sv

X(w)

]
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Denote the last expectation by cv. Since for all x 6= 0,
∫∞

0 e−txdt = 1
x , Fubini’s theorem yields

cv =
∫ ∞

0
E
[
e
−t
(

1+
∑

w∈Sv
X(w)

)]
dt

=
∫ ∞

0
e−t

∏
w∈Sv

E
[
e−tXt(w)

]
dt

=
∫ ∞

0
e−t

∏
w∈Sv

(
qwe
−t + 1− qw

)
dt

=
∫ 1

0

∏
w∈Sv

(qwx+ 1− qw)dx

=
∫ 1

0

∑
S⊂Sv

x|S|
(∏
w∈S

qw

) ∏
u∈Sv\S

(1− qu)

dx

Now set λS,v =
(∏

w∈S qw
)(∏

Sv\S(1−qu)
)

and note that
∑
S⊂Sv

λS,v =
∏
w∈Sv

(qw+1−qw) = 1.
Substituting λS,v in the last identity gives

cv =
∑
S⊂Sv

λS,v

∫ 1

0
x|S|dx =

∑
S⊂Sv

λS,v
1 + |S|

We now give an upper bound on the regret that the network incurs if all agents run OMD with an
oblivious network interface. Our upper bound is expressed in terms of a constant depending on
the probabilities of activating each agent and such that Q ≤ 1.6(αG + 1). The result holds for any
differentiable function g : X → R, σ-strongly convex with respect to some norm ‖·‖.

Theorem 10 Consider a network G = (V,E) of N agents. Assume that, at each time step t each
agent v is independently activated with probability qv ∈ [0, 1]. If all agents run OMD with an
oblivious network interface and using gt =

√
t
η g, for η > 0, the network regret satisfies

E[RT ] ≤
(
D

η
+ ηL2

2σ

)√
QT

where Q =
∑
v∈V ′(qvcv)/Qv, D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In

particular, choosing η =
√

2σD/L gives E[RT ] ≤ L
√

2DQT/σ.

Proof Fixing an arbitrary x ∈ X , setting rt(v) = `t
(
xt(v)

)
−`t(x), and proceeding as in Theorem 2

yields, for each v ∈ V ′,

E
[
T∑
t=1

rt(v)
]
≤
(
D

η
+ ηL2

2σ

)√
T

Qv
(6)
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Now we write E[RT ] = sup
x∈X

E
[
RT (x)

]
, where

E
[
RT (x)

]
= E

 T∑
t=1

1∑
w∈V Xt(w)

∑
v∈V ′

rt(v)Xt(v)


=

T∑
t=1

∑
v∈V ′

E
[

Xt(v)∑
w∈V Xt(w)

]
E
[
rt(v)

]
=
∑
v∈V ′

qvcv

T∑
t=1

E
[
rt(v)

]
(7)

and the last identity follows by Lemma 9. Putting identity (7) and inequality (6) together gives

E
[
RT (x)

]
≤

∑
v∈V ′

qvcv

√
1
Qv

(D
η

+ ηL2

2σ

)
√
T ≤

√∑
v∈V ′

qvcv
Qv

(
D

η
+ ηL2

2σ

)
√
T

where in the last inequality we used Jensen inequality and
∑
v∈V ′ qvcv ≤ 1. This concludes the

proof.

We now prove that the inequality Q(q) ≤ αG is always true up to a small constant factor.

Lemma 11 Let G = (V,E) be an undirected graph. For all v ∈ V , choose numbers qv ∈ (0, 1]
and define cv and Qv as in (4) and (5) respectively. Then

Q =
∑
v∈V

qvcv
Qv
≤ αG + 1

1− e−1

Proof Let Pv =
∑
w∈Nv

qw, V1 =
{
v ∈ V | Pv ≥ 1

}
, and V0 =

{
v ∈ V | Pv < 1

}
. We begin by

splitting the sum as follows ∑
v∈V

qvcv
Qv

=
∑
v∈V1

qvcv
Qv

+
∑
v∈V0

qvcv
Qv

We upper bound the two terms separately. Since the minimum minv∈V1 Qv is attained when qv =
1/|Nv| for all v ∈ Nv, we can lower bound, for each v ∈ V1,

Qv ≥ 1−
(

1− 1
|Nv|

)|Nv |
≥ 1− e−1

This together with
∑
v∈V qvcv ≤ 1 yields∑

v∈V1

qvcv
Qv
≤ 1

1− e−1

To upper bound the sum over V0, we first use the inequality 1− x ≤ e−x that holds for all x ∈ [0, 1].
Setting x = qw gives

Qv ≥ 1− exp

− ∑
w∈Nv

qw

 = 1− e−Pv
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For all v ∈ V0, we can then use the inequality 1 − e−x ≥ (1 − e−1)x, holding for all x ∈ [0, 1].
Setting x = Pv < 1 we conclude that Qv ≥ (1− e−1)Pv for all v ∈ V0. Finally, using cv ≤ 1 we
can write ∑

v∈V0

cvqv
Qv
≤ 1

1− e−1

∑
v∈V

qv
Pv
≤ αG

1− e−1

where the last inequality follows by Lemma 3. Putting everything together gives the result.

.
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