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1. Introduction

One major obstacle to the wider adoption of Gaussian Process (GP) (Rasmussen and
Williams, 2006) based models is their computational cost, which is mainly caused by matrix
inverses and determinants. Advances in variational approximate inference methods have re-
duced the size of the matrices on which expensive operations need to be performed, leading
to O(NM?) time costs instead of O(N?) (Titsias, 2009), with approximations arbitrarily
good with M < N (Burt et al., 2019). Minibatches of size B < N can be used for training
at a cost of O(BM? + M?) per iteration (Hensman et al., 2013).

The usefulness of training with small minibatches is hampered by the iteration cost being
dominated by O(M 3), which again comes from an inverse and determinant. The computa-
tion is usually done using the Cholesky decomposition, which requires serial operations and
high-precision arithmetic. So in addition to being an asymptotically expensive operation,
it is also poorly suited to modern deep learning hardware. Removing these per-iteration
matrix operations therefore seems necessary to speed up training.

In this work, we provide a variational lower bound that can be computed without expen-
sive matrix operations like inversion. Our bound can be used as a drop-in replacement to
the existing variational method of Hensman et al. (2013, 2015), and can therefore directly
be applied in a wide variety of models, such as deep GPs (Damianou and Lawrence, 2013).
We focus on the theoretical properties of this new bound, and show some initial experimen-
tal results for optimising this bound. We hope to realise the full promise in scalability that
this new bound has in future work.

2. Variational inference for Gaussian process models

We will consider a straightforward model where we want to learn some relation f: X — R
with a GP prior through an arbitrary factorised likelihood. We write the model as

N
p(f(-)) = GP(u(-), k(- ")), piy | FC) =[] plwnml £(), (1)

using some abuse of notation for denoting the GP prior. We need approximate inference
to deal with a) the non-conjugate likelihood which prevents a closed-form solution, and b)
the O(N?) matrix operations that come from the Gaussian prior. Our starting point is
Hensman et al. (2013, 2015), who propose a solution based on variational inference. An
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inducing variable posterior is used, which is constructed by conditioning on M random
variables u € RM | and then specifying a free-form Gaussian distribution A/(g, S) for them:

a(f() = / p(F() [ wWg(w)du = GP (k! Kalp, k. — K| Kolke + KL KalSKolke ), (2)

where k.., ky., and Ky are covariances between some the function value at some point - or
inducing variables u. The inducing variables are commonly taken to be u = {f (zm)}n]\le,
making the covariances simple evaluations of the kernel k(-,-"). We can minimise the KL
divergence between ¢(f(-)) and p(f(-) |y) (Matthews et al., 2016) by maximising the bound

from Hensman et al. (2015) (stochastic variational, “sv”):

N
Lov =Y Botpxanllog pyn | f(x4))] = KL[g(w)|[p(w)], 3)

n=1
where ¢(f(xn)) = N(fn?ﬂmo'r%)v with f, = f(Xn), ptn = k-lr,an:ull/"'a and 0721 = kf.f, —
k|, an,jlllku 7.k, an;&SKl_nllku f. (eq. 2). The expensive O(M?3) operations are the inverse
Kyuu in the approximate posterior (eq. 2) and KL term, and the log-determinant in the KL
term. In sections 3 and 4 we remove them from the approximate posterior and KL term

respectively.

3. Inverse-free variational posteriors

We begin by eliminating inverses from the expected log-likelihood term in eq. 3, which stem
from the inverses in the predictive mean p,, and variance o2 (eq. 2). By reparameterising
K lp = i and K SK,! =S, we can trivially get rid of all inverses, except for the term
kg, p, — ki, o K okuf,, which we denote as aim and call the residual variance.

3.1. Log-concave likelihoods

While we cannot similarly remove the inverse in ai‘u, we note in lemma 7 (see appendix A
for lemmas, proofs and details) that we can lower-bound the Gaussian expectation by using
an upper bound for O'ZL| w- Upper bounds to 0721| o Were investigated by Gibbs and MacKay

(1997) and in follow-on work by Davies (2015) in the context of conjugate gradient (CG)
approximations to matrix inversion. They note that for all values of a,, we have

Toa = kpofn = g, Kaukuf, < kfop + anKuuan — 22Ky, , (4)
with equality when a,, = Kgikyy, (lemma 8). We parameterise this upper bound as
Toja = Kfufe + Kip, TKuuTkup, — 2ky; Tkuj, (5)
and use it to construct a lower bound to L, without inverses in the expectation terms:
N
Lie = Y En(fuiuns) 108 0(yn | f2)] = KL{g(w)|[p(w)] (6)
n=1

Proposition 1 For log-concave (“Ic”) likelihoods, L. is a valid lower bound to the log
marginal likelihood, aslogp(y) > Lg > Li.. We have the equality Li, = L, when T = K.
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Remark 2 Since we are predicting with a different distribution than is in the KL, log p(y)—
L. is not the KL gap between the approximate and true posteriors.

With L. we have a bound on the marginal likelihood that we can optimise with respect
to the parameters of Lg,, with the addition of T. Section 3.3 discusses more properties.

3.2. General likelihoods

To create a proper variational method which also works with any likelihood, we need to use
the same distribution in the predictions as in the KL term. To do this, we find the g(u) in
L, that would give the p, and 52 from eq. 7. We solve for S:

N(foi Kapodts  kpp— Kip Kaakug, + v KoeSKoikur,)  (9)
— S* = Kyy + Kuu TKuu TKuu — 2Kuu TKuu + KuuSKuu (10)

This shows that we can obtain inverse-free predictions using a simple reparameterisation of
S in Lg,. This gives a new fully relazed (“fr”) bound L, as we are relaxing the optimisation
by adding T as an additional variational parameter:

N
Ly = Z EN(f(xn);unﬁ,%)[lng(yn | f(xn)] - KL[N(Kuuﬂa S*)HN(Q Kuu)] . (11)

n=1

Remark 3 The fully relaxed bound Ly, is simply a reparameterisation of Ls, from Hensman
et al. (2013, 2015). Each setting of T has a setting for L, that is exactly equivalent. This
means that any model that relies on a variant of L, for inference can be trivially adapted
to use the inverse-free fully relaxed bound, by reparameterising the predictions and KL.

3.3. Properties

We may worry that additionally optimising over T prevents us from recovering the same
result as from Lg,, due to additional local optima or gradient variance. The following two
propositions show that this is not the case.

Proposition 4 The local optima of L. and Ly. (T = K,l) are identical to those of Lsy.

Proposition 5 The variance of VL. is zero when T is at its optimum T = K:ull.

4. Inverse-free KL estimators

Here, we remove costly matrix operations from the KL term through unbiased estimation.
We start by highlighting the O(M?3) terms needed in L. (Lg is similar):
1

1 1 1 1 s
KL[g(w)]p(w)) = 5 Tr K] + S it = 5M = Slog[Ku| - 5 log‘S

The trace term requires full matrix multiplications as we parameterise S = LL", and com-
puting the determinant typically requires a costly decomposition.
The trace term is dealt with using the Hutchinson trace estimator, which uses random

—

vectors with E.[rr"] = I to estimate Tr[K,,S] = 7, r] KuuSty, which can be evaluated

. (12)
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with matrix-vector multiplications only. With H < M probe vectors this has a cost of
O(HM?).

The log|Kyuu| term is more challenging. Since we use gradient-based optimisation, we
will focus on obtaining an unbiased estimate of 1£s\ gradient. We follow Filippone and Engler
(2015) by starting with the unbiased estimator K—1 = sr”, where s = K r and E,[rr"] = L.
We then use the Unbiased LInear Systems SolvEr (ULISSE), a randomly truncated CG run,
to compute an unbiased estimate of s. The key insight of ULISSE is that the conjugate
gradient method expresses the solution s = Kglr as a sum of separate terms. The sum
is randomly truncated, and each term is re-weighted by the probability of its inclusion to
keep an unbiased estimate:

uu=- ¢

I
s=s;+s2+..., §= Zwisi, with I ~ p(i), and w; s.t. Bf[§] =s = K kir. (13)
i=1

The cost of ULISSE is O(HIM?), where I = E[I], so we need I to be small for the method
to be practical, while keeping small gradient variance. If we parameterise T = LtL}. (with
L~ lower triangular), we can use it as a preconditioner with the following property:

Proposition 6 When using Lt as a preconditioner, ULISSE will converge in a single step
when T = KgL. This allows I = 1 without adding additional variance.

The hope is that during optimisation T is updated quickly enough to remain close to the

current K !, which would allow us to choose a small T without adding significant variance.

5. Initial results

We show the inverse free GP using the log-concave bound in fig. 1, and a deep GP based on
Salimbeni and Deisenroth (2017) and the fully relaxed bound in fig. 2, both optimising T.
We see that in fig. 1 the correct solution is completely recovered, while in fig. 2 a similar fit
is achieved with a somewhat lower ELBO. See appendix B for additional details.
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Figure 1: Solutions of Lg, (left) and L. (right) to a toy dataset. The initialisation and final
inducing inputs are shown at the top and middle of the image respectively.

6. Discussion

We presented new variational bounds for GP models that function as drop-in replacements
to those developed by Hensman et al. (2013, 2015), but without needing to compute expen-
sive matrix operations each iteration. We prove their properties and show that they behave
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Figure 2: Deep GP solutions to a step function, based on Salimbeni and Deisenroth (2017).
Left: shallow GP, middle: deep GP based on L, right: deep GP based on Lg.

as expected in simple experiments using a single layer and deep GP. We believe this method
to be promising, as it removes the most frequently cited impediment against the scaling of
GP models. However, more improvements are needed to obtain the full practical benefits.
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Appendix A. Proofs

Lemma 7 The Gaussian expectation of a concave function ¢(-) is lower-bounded by a
Gaussian expectation with the same mean and a larger variance, Epr (., 02)[0(%)] > Enr(zu,02462) [0(T)]-

Proof We write & = 2 + ¢, where € ~ N (0,62) and z ~ N (p,0%). We can then write the
right-hand side of the inequality as a nested expectation:
EN(i;,u,a2+&2) [(;S(i‘)] = EN($;M,O'2) [EN(E;O,&z) [QS(JJ + G)H .
We can move the inner expectation over € into the argument of ¢(-) by applying Jensen’s
inequality, E.[6(e)] < 6(E.[e]):
EN(m;u,o'z) [EN(E;O,&Q)[qb(x + E)H < EN(I;M,UQ) [d)(E./\/'(e;O,&Q) [‘T + 6])] = EN(Z‘;M,O'Q) [¢(33)],
and so

E/\/’(i;,u,,o?—&-&Q) [¢(x)] < EN(I;;L,(T2) [¢($>]

Lemma 8 For any a,, we have
kfnfn — kz;an;lllkufn < kfnfn + aflKuuan — QaZkufn , (14)
with equality when a, = Kgtkyy, -

Proof This follows directly from
a, Kuuan — 2K, an + ki, Kookuy, = (an — Kuikus, ) Kuu(an — Kyekuy,) > 0. (15)
|
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Proposition 1

(n)

Proof We consider a single term in the sum in eq. 6, Elf
By lemma 7, for a concave log p(yy | frn), we have

= En(fospin,52) 108 D(Yn | f)]-

L =B o) [1080n | £a)] < B on) 1082 | £)]
2

if 32 > 02, which is ensured by 62 — 02 = O nlu

— Ji‘u and eq. 4.

At the optimum T = K}, the variance upper bound (5) is tight: 53\11 = kg, p, +
kg, KauKuuKuakus, =2k, Kuakap, = kf, 1, — ki f, Kaukuy, = 07, and we have equal-
ity Lic = Lay. |

Proposition 4
Proof We consider the interesting case where N > M and where our kernels are non-
degenerate to avoid underdetermined linear systems.

We first consider the case for L.

From proposition 1 we know that £, = Lg, when T = K_l. Here we additionally
show that whenever T # K, there is a non-zero gradient. We begin by showing that the

Vol # 0 unless T = Kl_ull.
Here, we denote €, ~ N(0,1), and write the expected likelihood term of L. as

Ef(xn)[Een [log p(yn | f(xn) + anen)]] = Ef(xn)[EEn [Pn((%n) + anen)]] (16)
where oy, = (/o —op = (ki (T — K Ky (T — K;&)kufn)%. We set the gradient
w.r.t. T to zero:

VTEf(xn) [Een [(zﬁ(f(xn) + anen)ﬂ = Ef(xn) [Egn [gb’(f(xn) + anen)en]]VTan =0. (17)

We write Vo, = 30, 'Vr(a2), as a?

N data points, and given that N > M this quadratic has a unique optimum at T = K
and so a unique point at which the gradients will be zero, at which L. = Lg.

For Ls., we additionally need to consider the KL term, which is a convex function of S.
So if V4SS = 0, then the KL is at a stationary point as well. In the Lg bound, we have

S - Kuu + KuuTKuuTKuu - 2KuuTKuu + KuuSKuu bl (18)
V1S = Kuu® (KuuTKuu) + (Kuu TK ) 9Ky —2Kuu @Kuu = 0 <= T =K.
[

is a quadratic function of T. Taking the sum over all
—1
uu’

Proposition 5
Proof We evaluate unbiased estimates of the glradients using the reparameterisation trick,
with samples €, ~ N(0,1), and f, = pn + (52)2¢, (where p, = k},;, it does not depend on

T). For the gradient of a single term El(cn) =y, [¢(fn)] this gives the estimator:

. 1, o1

gn =V1d(fn) = W(fn)i(ﬁ) 26,V (kif, TKuuTkuyg, — 2kip, Tkuy, ). (19)
The term (k;rlfnTKuuTkufn — QkanTkufn> is a quadratic in T, with an optimum at
T — K21, at which point Vo (kanTKuuTkufn _ 2kanTkufn) — 0, which makes §, = 0,

uu’
irrespective of n. This implies that the reparameterisation gradient w.r.t. T is zero when-

ever T is at its optimum, regardless of which minibatch or €, is sampled. |
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Proposition 6

Proof We have K;! = T = LrLT, so I = KoKy = KuuLTLT. Left-multiplying
with L. and right-multiplying with L3." we obtain I = LL.KuuLr. Conjugate gradients
solves against the identity matrix in one step, and ULISSE(I,Lyr) = Lir exactly, and
§ = LtLt = K lr. |

uu

Appendix B. Additional empirical results

For the examples in section 5 our methods can recover solutions similar to Ls,, which
computes inverses exactly. The current set-up optimises all hyperparameters and variational
parameters (including T) jointly using Adam (Kingma and Ba, 2014). We see in figs. 3
and 5 that the inverse-free methods do require more iterations to achieve a similar ELBO,
although the difference in ELBO tends to exaggerate the visual difference in fit quality.

In fig. 4 we visualise the quality of the inverse that is obtained from optimising L.
for the single layer experiment. We see that all initialisations recover T = K. almost
perfectly.

Future improvements will focus on improved optimisation behaviour, and software im-
provements. The optimisation surface becomes more challenging for larger datasets causing
Adam to become unstable, so perhaps a different optimisation routine can be used to take
advantage of structure in the objective functions. Software improvements to allow taking
advantage of using only matrix-vector products (Gardner et al., 2018) will also be needed
to gain the full per-iteration speed-up that this method allows.

|
@
=}

L

SVGP SE

SVGP GE

RSVGP GE init Kuu
RSVGP GE init KuuT
RSVGP GE Kuu
RSVGP GE KuuT

—80 + |

-85 ‘ A T T T T T T T

0 25 50 75 100 125 150 175 200
iterations (x100)

Figure 3: Optimisation of the single-layer ELBOs against number of iterations, for various
initialisations of the log-concave bound (RSVGP), with a run of L, for compar-
ison (SVGP GE).
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Figure 4: Visualisation of K, T at end of the single layer experiments for different initial-
isations. If the recovery of the inverse through optimisation works, the image
should show an exact identity matrix.
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Figure 5: Optimisation of the deep GP ELBOs against number of iterations, for various
initialisations of the deep GP variant of Ly, with a single layer model (SVGP)
and a deep GP based on L, (DSVGP) for comparison.
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