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A. Proofs

Proposition 1: Note that minimizing the cost function in
(2) is equivalent to maximizing its sub-modular surrogate
function

Z max [(Da,,x;)] (14)
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where A denotes the support set and k denotes the cardinal-
ity (Krause et al., 2008). The motivation for the proposed
approach comes from a key structure of F() i.c., approxi-
mate sub-modularity. It has been shown that, this structure
also relate to incoherence p, which is a geometric property
of the candidate training set (Nemhauser et al., 1978). Let’s
denote the candidate training signal set by 7, the selected
and optimal dictionary atom set by .4 and A*, respectively.
It has been shown that for submodular functions, a simple
greedy algorithm that starts with an empty set A = (}, and
iteratively adds a new element as:

u = argmax F (AU u), (15)
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obtains a near-optimal solution with guarantee:
F(A) > e(max F(A*) — e,,u), (16)

where the constants e and ¢’ depends on the sparsity of the
representation, and the second term is zero for monotonic
submodular functions (Krause et al., 2008). This completes
the proof for our claim that estimation of A is at-least a
constant fraction of the optimal value (Krause et al., 2008;
Nembhauser et al., 1978). One can derive even stronger
multiplicative bounds by using the concept of submodularity
ratio, recently developed in (Das & Kempe, 2011).

Proposition 2: Since archetypes lie on the boundary of
the convex hull, it is possible to restrict the search of the
archetypes to the points around it. Let us denote the points
on boundary indexed by set B, i.e., points that cannot be
represented as convex combinations of other points except
themselves. Note that no more than n + 1 extremal points
are needed to represent a point (Mgrup & Hansen, 2012).
Hence, each c; is computed (via non-negative least squares)
iteratively by choosing one point after another and termi-
nating with at most n + 1 positive values giving a sparse
convex combination. In fact one can show that the positive
values of the solution refer to points around the convex hull.
It follows, since solving (4) for each point requires maximiz-
ing the negative gradient with respect to its representation
vector c,

-V= XT(X Xc) Zcz (x1,%x5), (17)
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and by property of linearity and convexity, inner product is
maximized when one of the points is an extremal point (Mair

etal., 2017). As a result solution to (4) ensures that union of
the non-negative values of cach c; refers to points around the
boundary. In fact with this reduced index set (3) compris-
ing of points only around the convex hull, we get the loss-
less non-negative factorization X = XC = X[:, B]CI[B, :].
This is the motivation behind our idea which presents a way
to update archetypes in the coefficient domain using simple
subset selection algorithm.

B. An alternative solution via ADMM
algorithm

Another line of investigation is to solve (2) by ADMM algo-
rithm by introducing an augmented variable similar to (4).
However, this will make the problem more complex/time
consuming. Our idea to introduce (4) is to exploit the un-
derlying geometric property by segregating (2) into two
simpler problems which can be solved separately. Note that
there are multiple solutions for C which accounts for how
signals from a subspace utilize one another in their convex
representations. And the extremal points of interest are the
ones having the sparsest representation. Also, (4) is a QP
problem, solved using active set algorithm which has been
shown to converge.

C. Algorithms for AA vs NMF

Non-negative matrix factorization (NMF) a well developed
field, closely resembles AA, as in both cases the resulting
representations are non-negative, and often one might think
of solving AA via NMF style algorithms. However, note
that while NMF only deals with non-negative data, AA can
be applied to any matrix. Also, the dictionary in case of
AA has a convex decomposition in data itself. Convexity in
addition to just non-negativity results in more compact and
meaning full decompositions. Recently, there has been at-
tempts to adapt existing NMF based algorithms to solve AA
like factorization problems. For instance, work in (Thurau
etal., 2011) proposed an approach for convex-NMF where
the representation are restricted to be convex combinations
of data points.

While solving for a NMF decomposition exactly itself is
NP-hard, (Arora et al., 2012). showed that exact solution
can be obtained for separable matrix. Based upon this work,
(Damle & Sun, 2017) extended NMF algorithm to AA for
separable matrices. Geometrically this means that the dic-
tionary in case of NMF (or archetypes in case of AA) are
extremal data points of a polytope containing all data. If we
force the archetypes to be data points then matrix B consist
of a subset of rows of the identity matrix, and the problem
becomes even combinatorially harder than the conventional
AA. The solution presented by (Damle & Sun, 2017) re-
volves around to an extreme point finding problem which
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Table 3. Comparison of mean (std) residual sum of squares error on Wine dataset for different methods over 100 trials.

Method | MCAR (10%) | MCAR (30%) MAR MNAR
IMP 6.583 (0.111) | 8.172(0.260) | 7.315(0.137) | 8.223 (0.066)
MAAPG | 6.601 (0.109) | 8.130(0.524) | 6.800 (0.259) | 8.178 (0.060)
MGAA | 6.561(0.121) | 8.101 (0.345) | 6.791 (0.162) | 8.159 (0.060)

ORG 5.824 (0) 5.824 (0) 5.824 (0) 5.824 (0)
IMP1 | 5.985(0.016) | 6.011(0.032) | 6.894 (0.020) | 6.150 (0.032)
MAAPG! | 6.006 (0.015) | 6.015(0.028) | 6.028 (0.021) | 6.178 (0.027)
MGAA1 | 5.912(0.017) | 5.961(0.027) | 5.990 (0.014) | 6.101 (0.029)

is an entire field of research in itself e.g, see (Zhou et al.,
2014; Ding et al., 2016) and references within. Again, there
is no free lunch i.e., even if we cast the problem as selecting
suitable extremal points, we are still dealing with a subset
selection problem of the order of (3) Further, in practice
we do not know whether a data matrix is separable and the
archetypes might not necessarily be non-negative.

In a reverse direction, recent work in (Javadi & Montanari,
2019) used ideas from AA to come up with an algorithm for
NMF based on Proximal Alternating minimization, when
data matrix is non separable. The problem formulation is
very similar to the relaxed-AA model discussed in our work
where true archetypes doesn’t exist.

D. Additional Experiments with Missing Data

Recently, there has been attempts to extend AA for missing
data e.g., (Epifanio et al., 2019) proposed procedures to
adapt existing algorithms by using missing value imputation
or by projecting dissimilarities between samples. Similar
to their experimental study we considered the Wine Dataset
from UCI ML repository with three types of corruption:
missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). We compare
the modified version of our GAA algorithm (MGAA) with
the modified AAPG (MAAPG) and IMP (multiple imputa-
tion using additive regression, bootstrapping and predictive
mean matching) as described in (Epifanio et al., 2019). For
MGAA, we use imputation to modify the objective in (4) to
[X — W ® XC]|%, where © denotes element wise multi-
plication. Here, matrix W contains zeros in the positions
where there are missing values in X, ones in the column ¢
(with ng missing values) il there are not any missing values
in X for that column, and n/(n — ngy) otherwise. This en-
surc C doesn’t have missing value, and similar procedure is
used while updating A and D.

A summary (mean and standard deviation) of the reconstruc-
tion error for each approach is reported in Table3. Since,
the original datasets is available, we have also reported the

reconstruction error on original data using the archetypes
learned on original data denoted by ORG, and the archetypes
learned from missing data via different approaches denoted
by IMP1, MAAPG1 and MGAAI1, respectively. It can be
observed that MGAA performs better/comparable to exist-
ing approaches. Note that while here we have considered a
simple imputation approach to handle missing entries, one
can expect better gains using other ideas from say literature
on matrix completion problem.



