
Learning What to Defer for Maximum Independent Sets

A. Experimental Details
A.1. Implementation of LwD

In this section, we provide additional details for our implementation of the experiments.

Hyperparameter. Every hyperparameter was optimized on a per graph type basis and used across all sizes within each
graph type. Throughout every experiment, the policy and the value networks were parameterized by graph convolutional
network with 4 layers and 128 hidden dimensions. Every instance of the model was trained for 20 000 updates of proximal
policy optimization (Schulman et al., 2017), based on the Adam optimizer with a learning rate of 0.0001. The validation
dataset was used for choosing the best performing model while using 10 samples for evaluating the performance. Reward
was not decayed throughout the episodes of the Markov decision process. Gradient norms were clipped by a value of 0.5.
Both the cardinality reward (defined in Section 3.1) and the solution diversification reward (defined in Section 3.2) were
normalized by maximum number of vertices in the corresponding dataset. We further provide details specific to each type of
datasets in Table 5. For the compared baselines, we used the default hyperparameters provided in the respective codes.

Table 5. Choice of hyperparameters for the experiments on performance evaluation. The REDDIT column indicates hyperparameters used
for the REDDIT-B, REDDIT-M-5K, and REDDIT-M-12K datasets.

Parameters ER, BA, HK, WS SATLIB PPI REDDIT as-Caida

Maximum iterations per episode 32 128 128 64 128

Number of unrolling iteration 32 128 128 64 128

Number of environments per batch (graph instances) 32 32 10 64 1

Batch size for gradient step 16 8 8 16 8

Number of gradient steps per update 4 8 8 16 8

Solution diversity reward coefficient 0.1 0.01 0.1 0.1 0.1

Maximum entropy coefficient 0.1 0.01 0.001 0.0 0.1

A.2. Implementation of Baselines

S2V-DQN. We implement the S2V-DQN algorithm based on the code (written in C++) provided by the authors.5 For
the synthetic graphs generated from ER, BA, HK, and SW models, S2V-DQN is unstable to be trained on graphs of size
(100, 200) and (400, 500) without pre-training. Hence, we perform fine-tuning as mentioned in the original paper (Khalil
et al., 2017). For instance, when we train S2V-DQN on the ER-(100, 200) datasets, we fine-tune the model trained on
ER-(50, 100). Next, for the ER-(400, 500), we perform “curriculum learning”; we first train S2V-DQN on the ER-(50, 100)
dataset, then fine-tune on the ER-(100, 200), ER-(200, 300), ER-(300, 400) and ER-(400, 500) in sequence. Finally, for
training S2V-DQN on graphs with size larger than 500, we were unable to train it on the raw graph under the available
computational budget. Hence we train S2V-DQN on subgraphs sampled from the training graphs. To this end, we sample
edges from the model uniformly at random without replacement, until the number of vertices reach 300. Then we used the
subgraph induced from the sampled vertices.

TGS. We use the official implementation and models provided by the authors.6 Unfortunately, the provided code runs out of
memory for larger graphs since that they keep all of the intermediate solutions in the breadth-first search queue. For such
cases, we modify the algorithm by discarding the oldest graph in the queue whenever the queue reaches its maximum size,
i.e., ten times the number of required solutions for the problem.

CPLEX. We use the CPLEX (ILO, 2014) provided in the official homepage.7 In order to optimize its performance under
limited time, we set its emphasis parameter, i.e., MIPEmphasisFeasibility, to prefer higher objective over proof of
optimality.

KaMIS. We use KaMIS (Hespe et al., 2019a) from its official hompage without modification.8

5https://github.com/Hanjun-Dai/graph_comb_opt
6https://github.com/intel-isl/NPHard
7https://www.ibm.com/products/ilog-cplex-optimization-studio
8http://algo2.iti.kit.edu/kamis/

https://github.com/Hanjun-Dai/graph_comb_opt
https://github.com/intel-isl/NPHard
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://algo2.iti.kit.edu/kamis/
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A.3. Dataset Details

In this section, we provide additional details on the datasets used for the experiments.

Synthetic datasets. For the ER, BA, HK, and WS datasets, we train on graphs randomly generated on the fly and perform
validation and evaluation on a fixed set of 1000 graphs.

SATLIB dataset. The SATLIB dataset is a popular benchmark for evaluating SAT algorithms. We specifically use the
synthetic problem instances from the category of random 3-SAT instances with controlled backbone size (Singer et al.,
2000). Next, we describe the procedure for reducing the SAT instances to MIS instances. To this end, a vertex is added to the
graph for each literal of the SAT instance. Then edges are added for each pair of vertices satisfying the following conditions:
(a) that are in the same clause or (b) they correspond to the same literals with different signs. Consequently, the MIS in the
resulting graph corresponds to the truth assignment to the optimal assignments of the SAT problem (Dasgupta et al., 2008).

PPI dataset. The PPI dataset is the protein-protein-interaction dataset with vertices representing proteins and edges
representing interactions between them.

REDDIT datasets. The REDDIT-B, REDDIT-M-5K, and REDDIT-M-12K datasets are constructed from online discussion
threads in reddit9 where vertices represent users and edges mean at least one of two users responded to the other user’s
comment.

Autonomous system dataset. The as-Caida dataset is a set of autonomous system graphs derived from a set of RouteViews
BGP table snapshots (Leskovec et al., 2005).

Citation dataset. The Cora and the Citeseer are networks constructed by vertices and edges representing documentation
and citation links between them, respectively (Sen et al., 2008).

Amazon dataset. The Computers and Photo graphs are segmented from the Amazon co-purchase graph (McAuley et al.,
2015), where vertices correspond to goods and edges represent goods which are frequently purchased together.

Coauthor dataset. The CS and Physics graphs represent authors and the corresponding co-authorships by vertices and
edges, respectively. It was collected from Microsoft Academic Graph from the KDD Cup 2016 challenge3.10

We also provide the statistics of the datasets used in experiments corresponding to Table 1 and 3 in Table 6 and 7, respectively.

Table 6. Number of nodes, edges and graphs for SATLIB, PPI, REDDIT, and as-Caida datasets used in Table 1. Number of graphs is
expressed as a tuple of the numbers of training, validation and test graphs, respectively.

Dataset Number of nodes Number of edges Number of graphs

SATLIB (1209, 1347) (4696, 6065) (38 000, 1000, 1000)

PPI (591, 3480) (3854, 53 377) (20, 2, 2)

REDDIT (BINARY) (6, 3782) (4, 4071) (1600, 200, 200)

REDDIT (MULTI-5K) (22, 3648) (21, 4783) (4001, 499, 499)

REDDIT (MULTI-12K) (2, 3782) (1, 5171) (9545, 1192, 1192)

as-Caida (8020, 26 475) (36 406, 106 762) (108, 12, 12)

Table 7. Number of nodes and edges for each dataset used in the Table 3.

Dataset Number of nodes Number of edges

Citeseer 3327 3668

Cora 2708 5069

Coauthor CS 18 333 81 894

Coauthor Physics 34 493 247 962

Amazon Computers 13 381 245 778

Amazon Photo 7487 119 043

9https://www.reddit.com/
10https://kddcup2016.azurewebsites.net/

https://www.reddit.com/
https://kddcup2016.azurewebsites.net/
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B. Details of Other Combinatorial Optimizations
B.1. Maximum Weighted Indpendent Set Problem

First, we describe the maximum weighted independent set (MWIS) problem (Balas & Yu, 1986). Consider a graph
G = (V, E) associated with positive weight function w : V → R+. The goal of the MWIS problem is to find the independent
set I ⊆ V where the total sum of weight

∑
i∈I w(i) is maximum. In order to apply the LwD framework to the MWIS

problem, we include the weight of each vertex as its feature to the policy network and modify the reward function by the
increase in weight of included vertices, i.e., R(s, s′) =

∑
i∈V∗\V′∗

s′iw(i). We sample the weights of each vertices from a
normal distribution with mean and standard deviation fixed to 1.0 and 0.1, respectively.

B.2. Prize Collecting Maximum Independent Set Problem

The prize collecting maximum independent set (PCMIS) problem is an instance of the generalized minimum vertex cover
problem (Hassin & Levin, 2006). To describe this problem, one may consider a graph G = (V, E) and a subset of vertices
I ⊆ V . The PCMIS problem is associated with the following the “prize” function f to maximize:

f(I) := |I| − λ|{{i, j} : i, j ∈ I, i 6= j}|,

where λ > 0 is the penalty function for including two adjacent vertices. We set λ = 0.5 in the experiments. Such a problem
could be interpreted as relaxing the hard constraints on independent set to a penalty function in the MIS problem. Especially,
one can examine that optimal solution of the PCMIS problem becomes the maximum independent set when λ > 1. For
applying the LwD framework on the PCMIS problem, we remove the clean-up phase in the transition function of MDP and
modify the reward function R(s, s′) as the increase in prize function at each iteration.

B.3. Maximum Cut Problem

Next, we introduce the maximum cut (MAXCUT) problem (Garey & Johnson, 1979). Given a graph G = (V, E), goal of
the MAXCUT problem is on finding a subset of vertices I that maximize the following objective:

f(I) := |{i, j} : i ∈ I, j ∈ V \ I|,

which corresponds to the number of edges that form a “cut” between I and V \ I. To apply LwD, we remove the clean-up
phase in the transition function of our MDP and set the reward function R(s, s′) as the increase in the objective function at
each iteration.

B.4. Maximum-a-posteriori Inference Problem on the Ising Model

Finally, we describe the maximum-a-posteriori (MAP) inference problem on the anti-ferromagnetic Ising model (Onsager,
1944). Given a graph G = (V, E), the probability distribution of the Ising model is described as p(s) := 1

Z exp
(
φ(s)

)
,

where s is the random variable, Z is the normalization constant, and the function φ is the objective to maximize. To be
specific, φ is defined as follows:

φ(s) : = γ
∑
i∈V

f1(i) + β
∑
{i,j}∈E

f2(i,j),

f1(i) =

{
−1 if si = 0

1 if si = 1
, f2(i, j) =

{
−1 if si = sj

1 if si 6= sj
,

Here, β and γ are called interaction and magnetic field parameters, respectively. Furthermore, 1A is an indicator function
for set of vertices A and Ak = {i : i ∈ V, si = k} for k = 0, 1. In order to solve the MAP inference problem on the Ising
model, we remove the clean-up phase in the transition function as in the PCMIS problem and modify the reward function
R(s, s′) as the increase in objective function at each iteration. In our experiments, we set β = 1.0, γ = 1.0 and report φ(s)
as the objective to maximize.
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C. Graphical Illustration of LwD

Figure 6. Illustration of the overall learning what to defer (LwD) framework.
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