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1. Examples of hypothesis classes that satisfy
affine closure
• Linear classifiers: The sum of linear functions (poly-

nomial) leads to a linear function (polynomial), and so
does scalar multiplication. Therefore, linear classifiers
satisfy affine closure.

• Reproducing Kernel Hilbert Space (RKHS): RKHS
is a Hilbert space, which is a vector spaces of functions.
Therefore, kernel based classifiers (Hofmann et al.,
2008) satisfy affine closure.

• Ensemble models: Consider binary classification and
boosting models (Freund et al., 1999). Let Hweak be
the set of weak learners ω : X → R. The final func-
tion that is input to a sigmoid is w =

∑k
m=1 θmωm,

where each θm ∈ R. The set of functions spanned
by the weak learners is defined as Span(Hweak) =

{
∑k
m=1 θmωm|∀m ∈ {1, .., k}, θm ∈ R, k ∈ N}.

Span(Hweak) forms a vector space. Therefore, ensem-
ble models that may use arbitrary number of weak
learners satisfy affine closure.

• Lp spaces. The set of functions f : X → R for which
‖f‖p = [

∫
X |f(x)|pdx]

1
p < ∞ is defined as Lp(X ).

Lp(X ) is a vector space (Ash & Doléans-Dade, 2000).

ReLU networks with arbitrary depth: Neural networks
are known to be universal function approximators. Let us
assume X to be a compact subset of Rn. The output of a
ReLU network is a continuous function onX , which implies
it is bounded and thus the function described by a ReLU net-
work is in L1(X ) space. It is clear that the set of functions
parametrized by ReLU networks are a subset of functions in
L1(X ) space. In the other direction, from Lu et al. (2017),
we know that ReLU networks can come arbitrarily close
to any function in L1 sense. Since ReLU networks come
arbitrarily close to the function and are not exactly equal we
cannot argue that affine closure is satisfied. However, we ar-
gue later that since the networks can arbitrarily approximate
any function in L1(X ) it is sufficient to prove our results
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(our main result Theorem 1 and Corollary 1).

2. Theorems and Proofs
In this section, we discuss the proofs to the lemmas, theo-
rems, and corollaries in the main manuscript. We refer to
the equations in the main manuscript as M followed by the
index of the equation in the main manuscript, for e.g., M2
is equation 2 in the main manuscript.

Theorem 1. If Assumption 1 holds, then S̃ IV = S̃EIRM

Proof. In the first part, we want to show that S̃ IV ⊆ S̃EIRM.
We will use proof by contradiction.

Let us assume that there exists an element
(Φ, {wq}|Etr|q=1 , w) ∈ S̃ IV, which does not belong to
S̃EIRM. This implies that there exists at least one e ∈ Etr
in the ensemble game, which strictly prefers the action
w̄e ∈ Hw to following its current action we. In other words,
at least one of the inequalities in (M3) is not satisfied, which
can be written as

Re

([ w̄e +
∑
q 6=e w

q

|Etr|

]
◦ Φ

)
< Re(w ◦ Φ) (1)

The function w
′

=
w̄e+

∑
q 6=e w

q

|Etr| ∈ Hw (From Assumption

1). Therefore, w
′

is a strictly better classifier than w with a
fixed representation Φ for environment e, which contradicts
the condition that w ∈ arg minw̄∈Hw R

e(w̄ ◦ Φ) (which
follows from (Φ, {wq}|Etr|q=1 , w) ∈ S̃ IV ).

This proves the first part.

In the second part, we want to show that S̃EIRM ⊆ S̃ IV. Let
us assume that there exists an element (Φ, {wq}|Etr|q=1 , w) ∈
S̃EIRM, which does not belong to S̃ IV. Following Assump-
tion 1, w lies in Hw. Since (Φ, {wq}|Etr|q=1 , w) 6∈ S̃ IV there
exists at least one e ∈ Etr and a classifier w

′ ∈ Hw strictly
better than w for a fixed representation Φ. If this were not
the case, w will be an invariant predictor w.r.t. Φ across Etr,
which would contradict (Φ, {wq}|Etr|q=1 , w) 6∈ S̃ IV. Therefore

Re(w
′
◦ Φ) < Re(w ◦ Φ) (2)



Supplement for Invariant Risk Minimization Games

Let us construct a new auxiliary classifier w̃e as follows.
w̃e = w

′ |Etr| −
∑
q 6=e w

q. It follows from Assumption
1 that w̃e ∈ Hw. Observe that the ensemble defined as
w̃e+

∑
q 6=e w

q

|Etr| simplifies to w
′
. This means that environment

e can deviate from we to w̃e ∈ Hw and strictly gain from
this deviation. This contradicts the fact that {wq}|Etr|q=1 is a

Nash equilibrium ({wq}|Etr|q=1 is a Nash equilibrium because

(Φ, {wq}|Etr|q=1 , w) ∈ S̃EIRM).

Corollary 1. If Assumption 1 holds, then Ŝ IV = ŜEIRM

Proof. The proof follows straightaway from Theorem 1.
For each w ◦ Φ ∈ Ŝ IV we look at the correspond-
ing tuple (Φ, {wq}|Etr|q=1 , w) ∈ S̃ IV. From Theorem 1,

(Φ, {wq}|Etr|q=1 , w) ∈ S̃EIRM. Therefore, w ◦ Φ ∈ ŜEIRM.
The other side follows the same way.

2.1. Extending Theorem 1 and Corollary 1 to ReLU
networks

In the proof of Theorem 1, we used the affine closure prop-
erty in (1) and (2). However, in (1) and (2), we only need
to construct models that can achieve risk arbitrarily close
to the models in the LHS of equations (1) and (2). LetHw
the set of functions of ReLU networks with arbitrary depth
defined on compact sets X . These functions are in L1 class
as explained earlier. From (Lu et al., 2017), we can choose
ReLU networks from Hw that approximate the classifiers
in the LHS of (1) and (2) arbitrarily. We elaborate on this.
Suppose the function to be approximated in the LHS is f .
From (Lu et al., 2017), for each ε > 0, there exists a ReLU
network f̂ such that EX [|f − f̂ |] ≤ ε. The question is does
EX [|f − f̂ |] ≤ ε also ensure that the difference in risks is
mitigated |Re(f, Y )−Re(f̂ , Y )| ≤ ε̃. If the loss function
` is Lipschitz in the scores (e.g., cross-entropy loss, hinge
loss), then if the functions are arbitrarily close the risks will
also be arbitrarily close. We show this below.

|Re(f, Y )−Re(f̂ , Y )|

= |Ee[`(f(X), Y )− `(f̂(X), Y )]|

≤ Ee[|`(f(X), Y )− `(f̂(X), Y )|]

≤ Ee[L|f(X)− f̂(X)|]

(3)

where L is the Lipschitz constant for `.

Below we illustrate an example of Lipschitz continuous loss
`. Consider cross entropy for binary classification (labels
Y = 0 and Y = 1). Suppose f(x) = s is the score assigned
to class 1, it is converted into probability as es/(1 + es).
The cross-entropy loss is simplified as

`(s, Y ) = Y s− log(1 + es) (4)

Observe ∂`(s,Y )
∂s = Y − 1

1+es and |∂`(s,Y )
∂s | ≤ 1. Therefore,

`(s, Y ) is Lispchitz continuous in s.

Theorem 2. We assume each environment e ∈ Eall

Y e ← ZeT1 γ + εe, Ze1 ⊥ εe, E[εe] = 0

Xe ← S(Ze1 , Z
e
2)

(5)

Here γ ∈ Rc, Ze1 ∈ Rc, Ze2 ∈ Rq, S ∈ Rn×(c+q). Assume
that Z1 is invertible component of S, i.e., ∃ S̃ ∈ Rc×n such
that S̃(S(z1, z2)) = z1 for all z1 ∈ Rc and z2 ∈ Rq. Let
Φ ∈ Rn×n have rank r. If at least n − r + n

r training
environments Etr ⊆ Eall lie in linear general position of
degree r, then any predictor obtained from EIRM game over
the training environments in ŜEIRM is invariant across all
the testing environments Eall.

Proof. We restate the Theorem 9 from (Arjovsky et al.,
2019). In Theorem 2, we just need to replace the last sen-
tence with the following to obtain Theorem 9 from (Ar-
jovsky et al., 2019). If at least n− r + n

r training environ-
ments Etr ⊆ Eall lie in linear general position of degree r,
then any predictor in Ŝ IV = {w ◦ Φ | ΦE[XeXeT]ΦTw =
ΦE[XeY e],∀e ∈ Etr} is invariant across all the testing en-
vironments Eall. Since Hw = Rn×1 is affine closed, then
from Corollary 1 it follows that ŜEIRM = Ŝ IV. This com-
pletes the proof.

Lemma 1. If Assumptions 2 and 3 are satisfied, then for
any w

′ ∈ Hw and Φ ∈ HΦ, w
′ ◦ Φ−1 ∈ Lp(Z).

Proof. To show w
′ ◦ Φ−1 ∈ Lp(Z) let us first express

the integral
∫
Z |w

′
(Φ−1(z))|pdz by using substitution rules

(Rudin, 1987). We can use the substitution rule because
both X and Z are n dimensional, the function Φ is bijective,
differentiable and Lipshitz continuous (From Asumption 2
and 3). Substitute z = Φ(x). Then,

∫
Z |w

′
(Φ−1(z))|pdz =∫

Φ−1(Z)
|w′(x)|pdet(J(Φ(x)))dx . Here J(Φ(x)) is the

Jacobian of the transformation Φ. Since Φ is a Lipschitz
continuous map, its determinant is also bounded. We show
this as follows.

Lipschitz continuity implies that for any x, x′ ∈ X , ‖Φ(x)−
Φ(x′)‖ ≤ γ‖x − x′‖ where γ is the Lipschitz constant.
In particular, since Φ(·) is differentiable (Assumption 2),
this means that the length of any partial derivative vector
‖ δΦ(x)

δxi
‖ ≤ γ for any coordinate i ∈ [n]. Now, we apply the

Hadamard inequality (Garling, 2007) for the determinant of
the square matrix J(Φ(x)):
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det(J(Φ(x))) ≤
∏
i∈[n]

‖ δΦ(x)
δxi
‖ ≤ γn. Therefore,

∫
Z
|w
′
(Φ−1(z))|pdz =

∫
Φ−1(Z)

|w
′
(x)|pdet(J(Φ(x)))dx

≤ γn
∫

Φ−1(Z)

|w
′
(x)|pdx

≤ γn
∫
X
|w
′
(x)|pdx (6)

Since, w ∈ Lp(X ) (Assumption 3) we have that w
′ ◦Φ−1 ∈

Lp(Z) from the above inequality.

Theorem 3. If Assumptions 2 and 3 are satisfied and S̄ IVZ
is not empty, then S̄ IVZ = Ŝ IVX (I) = ŜEIRMX (I)

Proof. In the first part, we want to show that S̄ IVZ ⊆ Ŝ IVX (I).
We will use proof by contradiction.

Suppose (w ◦Φ) ∈ S̄ IVZ but not in Ŝ IVX (I). First note that w ◦
Φ ∈ Lp(X ) (From definition of the set S̄ IVZ ). This implies
that there must exist an environment e and a classifier w

′
:

X → Y which is better than (w ◦ Φ). Therefore, we can
state that

Re(w
′
) < Re(w ◦ Φ) (7)

Define a classifier w̃ = w
′ ◦Φ−1. From Lemma 1 it follows

w̃ ∈ Lp(Z). Define the risk achieved by this classifier as
Re(w̃ ◦ Φ). We simplify this as follows.

Re(w̃ ◦ Φ) = Re((w
′
◦ Φ−1) ◦ Φ) =

Re(w
′
◦ (Φ−1 ◦ Φ)) = Re(w

′
◦ I) = Re(w′)

(8)

Therefore, the risk of w̃ ◦ Φ is better than the risk achieved
by w ◦ Φ. This contradicts that w ◦ Φ is an invariant pre-
dictor. We show this as follows. Since w ◦ Φ is an in-
variant predictor with Φ as the representation it implies
w ∈ arg minw̄ R

e(w̄ ◦ Φ). However, w̃ is clearly better
than w with Φ as the representation (8) , which leads to a
contradiction. This proves the first part.

The second side Ŝ IVX (I) ⊆ S̄ IVZ . Suppose w ∈ Ŝ IVX (I) but
not in S̄ IVZ . Select any Φ : X → Z from the set of repre-
sentations for which invariant predictors exist in the set S̄ IVZ
(recall that we assumed S̄ IVZ is not empty). Define a predictor
w̃ = w ◦ Φ−1. Since w ∈ Lp(X ), from Lemma 1 we know
that w̃ is in Lp(Z). There should exist an environment e for
which w̃ is not the optimal classifier given Φ otherwise w
will be in the set S̄ IVZ , which would be a contradiction. Φ is
a representation for which an invariant predictor exists, let
w
′

be the classifier and w′ ◦ Φ be the invariant predictor in
S̄ IVZ . ∃ an environment e for which w

′
is strictly better than

w̃ given Φ. We write this condition as

Re(w
′
◦ Φ) < Re(w̃ ◦ Φ) = Re(w) (9)

w
′ ◦ Φ ∈ S̄ IVZ and from the definition of the set it follows

that w
′ ◦ Φ ∈ Lp(X ). Also, w

′ ◦ Φ is better than w from
(9). However, w is an invariant predictor with Φ = I, which
leads to contradiction.

From Theorem 1 it follows that ŜEIRMX (I) = Ŝ IVX (I). This
completes the proof.

Theorem 4. If Assumption 4 is satisfied, then a pure strat-
egy Nash equilibrium of the game ΓEIRM exists, i.e., SEIRM is
not empty. Suppose there exists a

(
Φ, {wq}|Etr|q=1

)
∈ SEIRM

such that ∀q ∈ Etr wq is in the interior of Hw, then the
corresponding ensemble predictor 1

|Etr|
∑|Etr|
q=1 w

q ◦ Φ is
invariant across all the training environments Etr.

Proof. We will use the classic result from (Debreu, 1952),
which shows the sufficient conditions for the existence of
pure Nash equilibrium in continuous action games. We
provide this result in the next section Theorem 7, where
we continue the discussion on concepts in game theory.
Informally speaking, the result states that if the game is
concave with compact and convex action sets, then the pure
Nash equilibrium exists.

The set of actions of each environment Hw is a closed
bounded and convex subset (following the Assumption 4).
Recall the definition of the utility of a player e in the EIRM
game is given as

ue[w
e, w−e,Φ] = −Re(wav ◦ Φ) =

= −Ee[`((wav ◦ Φ)(x), Y )]
(10)

Following Assumption 4, we simplify the inner term in the
expectation as follows.

`((wav ◦ Φ)(x), Y ) = `(Φ(x)T[
1

|Etr|

|Etr|∑
q=1

wq], Y ) (11)

`(Φ(x)tw, Y ) = hY (w). hY (w) is a convex function of w
(From Assumption 4). Define g : Rd × Rd...× Rd → Rd
as g(w1, ...,w|Etr|) = 1

|Etr|
∑
k w

k. Note that g is an
affine mapping. The function in (11) can be expressed as
hY (g(w1, ...w|Etr|)). The composition of a convex function
with an affine function is also convex (Boyd & Vanden-
berghe, 2004). We use this to conclude that the composition
hY (g(w1, ...w|Etr|)) is a convex function in w1, ...w|Etr|.
We express (10) in terms of h and g as

ue[w
e, w−e,Φ] = −Ee[hY (g(w1, ..., w|Etr|))] (12)

Each term inside the expectation above is concave. There-
fore, ue is concave in we (follows directly from Jensen’s
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inequality applied to ue). hY is a continuous function in
w (from Assumption 4) and g is a continuous function as
well, the composition of the two continuous functions is
also continuous. As a result, ue is continuous. Therefore,
the EIRM game above satisfies the assumptions in Theorem
5 ((Debreu, 1952), which implies that a pure NE exists. This
proves the first part of the theorem. We now discuss the
second part of the which provides a simple condition for the
existence of invariant predictor.

Say the weights that comprise one of the NE are given as
{wq∗}|Etr|q=1 . This set of weights satisfy

we∗ = arg min
we∈Hw

−ue(we, w−e∗ ,Φ) (13)

From the Assumption 4, we∗ is in the interior ofHw. There-
fore, we can construct a ball around it in which it is
the smallest point, which implies it is a local minima of
−ue(we, w−e∗ ,Φ). Since local minima is also the global
minima for convex functions; it follows that the solution
would be equivalent to searching over the space of all the
linear functions, i.e.

we∗ = arg min
we∈Rd

−ue(we, w−e∗ ,Φ) (14)

The above argument holds for all the environments because
each solution we∗ is in the interior. Therefore, we can trans-
form the EIRM game from the current restricted spaceHw
to the space of all the linear functions. The space of the lin-
ear functions satisfy affine closure property unlike the space
of bounded linear functionsHw. From Theorem 1 it follows
that the ensemble classifier 1

|Etr|
∑|Etr|
q=1 w

q
∗ composed with

Φ will be an invariant predictor.

In Theorem 4 we assumed that the model and the representa-
tion are both linear functions. We now discuss the existence
under a more general class of models.

Assumption 5 Hw is a family of functions parametrized
by θ ∈ Θ. We assume that Θ is compact. We assume
wθ ∈ Hw, where wθ : Rd → R is continuous in its inputs.

Consider a multilayer perceptron (MLP) with say ReLU ac-
tivation. Each weight in the network belongs [wmin, wmax].
This family of neural networks satisfies the Assumption 5
above.

Suppose that each environment is looking to solve for a
probability distribution over the parameters of the neural
network written as vector we given as pwe . We rewrite the
expected loss of the environments as follows.

ūe[pwe , pw−e , pΦ] = EΠepwe×pΦ

[
ue[w

e, w−e,Φ]
]

.

ūe is the utility of each environment in the EIRM game
when the environment selects pwe .

Theorem 5. If Assumption 5 is satisfied, then a mixed strat-
egy Nash equilibrium of ΓEIRM is guaranteed to exist.

Proof. The proof is a direct consequence of the existence
result (Glicksberg, 1952), which we restate in Theorem
7.

The main message of the above theorem is that we relax the
requirement of having a deterministic classifier, then we are
guaranteed to have a solution for general models as well.

Assumption 6 X and Z are finite sets. Let Hw be the
family of all the maps such that w : Z → [−u, u], where
0 < u <∞.

Under Assumption 6, each classifier w can be understood as
a parametrized function with |X | parameters. Suppose X =
{x1, ..., xm}. In this case, we can think of the function’s
value at each xk, (w ◦ Φ)(xk) = wk, as a parameter wk
chosen from [−u, u]. If each of the function values wk,
where k ∈ {1, ...,m}, are in (−u, u), then we say w is in
the interior ofHw.

Theorem 6. If Assumption 6 is satisfied, then a pure strat-
egy Nash equilibrium of the game ΓEIRM exists, i.e., SEIRM is
not empty. Suppose there exists a

(
Φ, {wq}|Etr|q=1

)
∈ SEIRM

such that each wq ∀q ∈ Etr is in the interior of Hw, then
the corresponding ensemble predictor 1

|Etr|
∑|Etr|
q=1 w

q ◦ Φ

is invariant across all the training environments Etr.

Proof. We follow the same style of proof as Theorem 4.

The set of actions of each environment Hw is a closed
bounded and convex subset (following the Assumption 6).
Recall the definition of the utility of a player e in the EIRM
game. Let ` be square loss function

ue[w
e, w−e,Φ] = −Re(wav ◦ Φ) =

= −EXe,Y e [(Y e − 1

|Etr|
∑
q

wq(Φ(xi)))
2]

= −EXe,Y e [
(
Y e − 1

|Etr|
∑
q

(wqi )
)2

]

= −EY e [

m∑
i=1

P (Xe = xi|Y e)
(
Y e − 1

|Etr|
∑
q

(wqi )
)2

]

(15)

In the above expression, wq(Φ(xi)) = wqi . Observe that∑m
i=1 P (Xe = xi|Y e)

(
Y e − 1

|Etr|
∑
q(w

q
i )
)2

is convex in
{wqi }i∈{1,..,m},q∈{1,..,|Etr|}. Therefore, ue[we, w−e,Φ] is
convex in {wqi }i,q . We can repeat the same argument when
` is cross-entropy. The existence of NE follows directly
from Debreu’s result (See Theorem 7). The remaining proof
follows steps identical to that in the proof of Theorem 4.
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3. Game Theory Concepts Continued
This section is a continuation to the Section 3.1 on Game
Theory Concepts. We discuss some classic results on the
existence of NE. Let us now consider continuous action
games. We make the following assumption.

Assumption NE 1 For each i:

• Si is a compact, convex subset of Rni

• ui(si, s−i) is continuous in s−i
• ui(si, s−i) is continuous and concave in si .

Theorem 7. (Debreu, 1952) If Assumption NE 1 is satisfied
for game Γ, then a pure strategy Nash equilibrium exists.

We extend the definition of pure strategy NE to mixed strate-
gies (discussion on mixed strategies given in the next section,
where we continue the discussion on concepts in game the-
ory), where instead of choosing an action deterministically,
each player chooses a probability distribution over the set
of actions. We assume that each set Si is a compact subset
of Rni . Define the set of Lesbegue measures over Si as
∆(Si). Each player i, draws a probability distribution θi
from ∆(Si). The joint strategy played by all the players
is the product of their individual distributions written as
Πk∈Nθk

Nash equilibrium in mixed strategies. A strategy θ∗ =
Πk∈Nθ

∗
k is said to be a mixed strategy Nash Equilibrium

(NE) if it satisfies

Eθ∗
[
ui(Si, S

∗
−i)
]
≥ Eθ∗−i

[
ui(k, S−i)

]
,∀k ∈ Si,∀i

where θ∗−i = Πk 6=iθ
∗
k.

Theorem 8. (Nash, 1950) Every finite game has a mixed
strategy Nash equilibrium.

Next, we relax some of the above assumptions.

Assumption NE 2 For each i

• Si is a non empty, compact subset of Rni

• ui(si, s−i) is continuous in si and s−i

Theorem 9. (Glicksberg, 1952) If Assumption NE 2 is satis-
fied, then the game has a mixed strategy Nash equilibrium.

4. Deriving the expression for
backpropagation

For instance x, the predicted score from Environment 1,2
(Model 1,2) for class k is given aswk1 ◦x,wk2 ◦x respectively,
where wkj is the score output by neural network j for class
k. The overall score is given as wk1 ◦ x+ wk2 ◦ x. We take
the softmax to get the overall probability for class k as

pk =
exp

[
wk1 ◦ x+ wk2 ◦ x

]
∑
j exp

[
wj1 ◦ x+ wj2 ◦ x

] (16)

The softmax vector is p = [p0, p1]. Denote wkj ◦ x = skj .
The log-likelihood for instance x with label y is given as

log[py]

= wy1 ◦ x+ wy2 ◦ x− log
(∑

j

exp
[
wj1 ◦ x+ wj2 ◦ x

])
= sy1 + sy2 − log

(∑
j

exp
[
sj1 + sj2

])
(17)

The gradient of log-likelihood w.r.t score of each model is
given as

∂ log[py]

∂skj
= I(k = y)−

exp
[
sk1 + sk2

]
∑
j exp

[
sj1 + sj2

]
= I(k = y)− pk

(18)

We convert y into a one hot encoded vector ȳ and simplify
the above expression as

∂ log[pu]

∂sj
= ȳ − p = ẽ (19)

5. Computing Environment
The experiments were done on 2.3 GHZ Intel Core i9 pro-
cessor with 32 GB memory (2400 MHz DDR4).

6. Description of the Datasets
6.1. Colored MNIST Digits

We use the exact same environment as in Arjovsky et al.
(2019). Arjovsky et al. (2019) propose to create an environ-
ment for training to classify digits in MNIST digits data 1,
where the images in MNIST are now colored in such a way
that the colors spuriously correlate with the labels. The task
is to classify whether the digit is less than 5 (not including 5)
or more than 5. There are three environments (two training
containing 30,000 points each, one test containing 10,000
points) We add noise to the preliminary label (ỹ = 0 if digit
is between 0-4 and ỹ = 1 if the digit is between 5-9) by
flipping it with 25 percent probability to construct the final

1https://www.tensorflow.org/api_docs/
python/tf/keras/datasets/mnist/load_data

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
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labels. We sample the color id z by flipping the final labels
with probability pe, where pe is 0.2 in the first environment,
0.1 in the second environment, and 0.9 in the third environ-
ment. The third environment is the testing environment. We
color the digit red if z = 1 or green if z = 0.

6.2. Colored Fashion MNIST

We modify the fashion MNIST dataset 2 in a manner sim-
ilar to the MNIST digits dataset. Fashion MNIST data
has images from different categories: “t-shirt”, “trouser”,
“pullover”, “dress”, “coat”, “sandal”, “shirt”, “sneaker”,
“bag”, “ankle boots”. We add colors to the images in such a
way that the colors correlate with the labels. The task is to
classify whether the image is that of foot wear or a clothing
item. There are three environments (two training, one test)
We add noise to the preliminary label (ỹ = 0: “t-shirt”,
“trouser”, “pullover”, “dress”, “coat”, “shirt” and ỹ = 1:
“sandle”, “sneaker”, “ankle boots”) by flipping it with 25
percent probability to construct the final label. We sample
the color id z by flipping the noisy label with probability pe,
where pe is 0.2 in the first environment, 0.1 in the second
environment, and 0.9 in the third environment, which is the
test environment. We color the object red if z = 1 or green
if z = 0.

6.3. Colored Desprites Dataset

We modify the Desprites dataset 3 in a manner similar to
the MNIST digits dataset. The task is to classify if the
image is a circle or a square. We take the preliminary binary
labels ỹ = 0 for a circle and ỹ = 1 for a square. We
add noise to the preliminary label by flipping it with 25
percent probability to construct the final label. We sample
the color id z by flipping the noisy label with probability pe,
where pe is 0.2 in the first environment, 0.1 in the second
environment, and 0.9 in the third environment, which is the
test environment. We color the object red if z = 1 or green
if z = 0.

6.4. Structured Noise in Fashion MNIST

In the previous three experiments, we used color in the im-
ages to create correlations. In this experiment, we use a dif-
ferent mechanism to create correlations in Fashion MNIST
dataset. We add a small square (3× 3), in the top left corner
of some images and an even smalller square (2 × 2) in the
bottom right corner of other images. The location of the
box is correlated with labels. The preliminary labels are
the same as in the other experiment with Fashion MNIST.
There are three environments (two training, one test). We

2https://www.tensorflow.org/api_docs/
python/tf/keras/datasets/fashion_mnist/
load_data

3https://github.com/deepmind/dsprites-dataset

add noise to the preliminary label by flipping it with 25 per-
cent probability to construct the final label. We sample the
location id z by flipping the noisy label with probability pe,
where pe is 0.2 in the first environment, 0.1 in the second
environment, and 0.9 in the third environment, which is the
test environment. We place the square in the top left if z = 1
or bottom right if z = 0.

7. Architecture, Hyperparameter and
Training Details

Architecture for 2 player EIRM game with fixed Φ

In the game with fixed Φ, we used the following architecture
for the two models. The model used is a simple multilayer
perceptron with following parameters.

• Input layer: Input batch (batch, len,wid, depth) →
Flatten

• Layer 1: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

• Layer 2: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

• Output layer: Fully connected layer, output size = 2

We use the above architecture across all the experiments.
The shape of the input in the above architecture depends on
the dimensions of the data that are input.

Architecture for 2 player EIRM game with variable Φ

In the game with variable Φ, we used the following archi-
tecture.

The architecture for the representation learner is

• Input layer: Input batch (batch, len,wid, depth) →
Flatten

• Layer 1: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

• Output layer: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

The output from the representation learner above is fed
into two MLPs one for each environment (we use the same
architecture for both environments).

• Layer 1: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

• Layer 2: Fully connected layer, output size = 390,
activation = ELU, L2-regularizer = 1.25e-3, Dropout =
0.75

• Output layer: Fully connected layer, output size = 2

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data
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We use the above architecture across all the experiments.
The shape of the input in the above architecture depends on
the dimensions of the data that are input.

Optimizer and other hyperparameters We used Adam
optimizer for training with learning rate set to 2.5e-4. We
optimize the cross-entropy loss function. We set the batch
size to 256. We terminate the algorithm according to the
rules we explained in the Experiments Section in the main
manuscript. Thus the number of training steps can vary
across different trials. There is a warm start phase for all
the methods; we set the warm start phase to be equal to
the number of steps in one epoch, where one epoch is the
(training data size/ batch size). For the setup with fixed Φ,
we set the period to be 2, i.e. in one step first model trains
and in the other step the second model trains and this cycle
repeats throughout the training. For the setup with variable
Φ, we let the two environments and representation learner
take turns to update their respective models, environment
1 trains in one step, environment 2 trains in the next step,
representation learner trains, and this cycle continues.

Architecture for IRM (Arjovsky et al., 2019)

We used the same architecture that they described in the
github repository. 4. We describe their architecture below.

• Input layer: Input batch (batch, len,wid, depth) →
Flatten

• Fully connected layer, output size = 390, activation =
ReLU, L2-regularizer = 1.1e-3

• Fully connected layer, output size = 390, activation =
ReLU, L2-regularizer = 1.1e-3

• Output layer: Fully connected layer, output size= 2

Optimizer, hyperparameters and some remarks We
used Adam optimizer for training with learning rate set
to 4.89e-4. We optimize the cross-entropy loss function. We
set the batch size to 256. The total number of steps is set to
500. The penalty weight is set to 91257. The penalty term
is only used after 190 steps. The code in (Arjovsky et al.,
2019) uses a normalization trick to the loss to avoid gradient
explosion. We did not find this strategy to be always helpful.
Therefore, we carried out experiments for both the cases
(with and without normalization of loss) and report the case
for which the accuracy is higher.

8. Figures Continued
In this section, we provide the figures for all the datasets
and for both V-IRM and F-IRM game since the figures in
the manuscript were only provided for one dataset and type
of game. The plots in Figure 1,3,4, are the same as in the
main manuscript. In Figure 1,3,4, we let each model in its

4https://github.com/facebookresearch/
InvariantRiskMinimization

turn use ltr (ltr=5) SGD step updates before the turn of the
next model. In all our experiments we set ltr=1, we show
the figure with ltr=5 to visually illustrate the oscillations
better. In Figure 5-36, we show the plots for the setting
with ltr=1 (corresponding to the experiments in Tables 1-4
in the manuscript). The captions under the plot describe
the dataset and the game (F-IRM/V-IRM). All the plots
in Figure 1-36 use the termination criteria we described.
Across all the figures we observe the same trend that we
observed and explained in the Experiments Section in the
main manuscript.

To illustrate what happens if we let the training go on, we
in Figure 36-40 let the training for V-IRM on Desprites
dataset continue for many more training steps. Figures 36-
40 illustrate that the oscillations are stable and persist. As
a result, we continue to encounter the state in which the
ensemble model does not exploit spurious correlations.
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Figure 1. F-IRM, Colored Fashion MNIST: Comparing accuracy
of ensemble (ltr=5)
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Figure 2. F-IRM, Colored Fashion MNIST: Difference in accuracy
of the ensemble model between the two environments (ltr=5)

https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/facebookresearch/InvariantRiskMinimization
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Figure 5. F-IRM, Colored Fashion MNIST: Comparing accuracy
of ensemble
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Figure 3. F-IRM, Colored Fashion MNIST: Ensemble’s correlation
with color (ltr = 5)
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Figure 4. F-IRM, Colored Fashion MNIST: Compare individual
model correlations (ltr=5)
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Figure 6. F-IRM, Colored Fashion MNIST: Difference in accuracy
of the ensemble model between the two environments
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Figure 7. F-IRM, Colored Fashion MNIST: Ensemble’s correlation
with color
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Figure 8. F-IRM, Colored Fashion MNIST: Compare individual
model correlations
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Figure 9. V-IRM Colored Fashion MNIST: Comparing accuracy
of ensemble
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Figure 10. V-IRM Colored Fashion MNIST: Difference in accu-
racy of the ensemble model between the two environments
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Figure 11. V-IRM Colored Fashion MNIST: Ensemble’s correla-
tion with color

0 50 100 150 200 250 300
Training steps

0.75

0.50

0.25

0.00

0.25

0.50

0.75

M
od

el
's 

co
rre

la
tio

n 
wi

th
 c

ol
or

Model environment 1
Model environment 2

Figure 12. V-IRM Colored Fashion MNIST: Compare individual
model correlations.
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Figure 13. F-IRM Colored Digits MNIST: Comparing accuracy of
ensemble
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Figure 14. F-IRM Colored Digits MNIST: Difference in accuracy
of the ensemble model between the two environments
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Figure 15. F-IRM Colored Digits MNIST: Ensemble’s correlation
with color
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Figure 16. F-IRM Colored Digits MNIST: Compare individual
model correlations.
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Figure 17. V-IRM Colored Digits MNIST: Comparing accuracy of
ensemble
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Figure 18. V-IRM Colored Digits MNIST: Difference in accuracy
of the ensemble model between the two environments
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Figure 19. V-IRM Colored Digits MNIST: Ensemble’s correlation
with color
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Figure 20. V-IRM Colored Digits MNIST: Compare individual
model correlations
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Figure 21. F-IRM Colored Desprites: Comparing accuracy of en-
semble
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Figure 22. F-IRM Colored Desprites: Difference in accuracy of
the ensemble model between the two environments
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Figure 23. F-IRM Colored Desprites: Ensemble’s correlation with
color
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Figure 24. F-IRM Colored Desprites: Compare individual model
correlations
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Figure 25. V-IRM Colored Desprites: Comparing accuracy of en-
semble
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Figure 26. V-IRM Colored Desprites: Difference in accuracy of
the ensemble model between the two environments
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Figure 27. V-IRM Colored Desprites: Correlation of the ensemble
model with color
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Figure 28. V-IRM Colored Desprites: Compare individual model
correlations
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Figure 29. F-IRM Structured Noise Fashion MNIST: Comparing
accuracy of ensemble
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Figure 30. F-IRM Structured Noise Fashion MNIST: Difference
in accuracy of the ensemble model between the two environments
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Figure 31. F-IRM Structured Noise Fashion MNIST: Correlation
of the ensemble model with color
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Figure 32. F-IRM Structured Noise Fashion MNIST: Individual
model correlation with color
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Figure 33. V-IRM Structured Noise Fashion MNIST: Comparing
accuracy of ensemble
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Figure 34. V-IRM Structured Noise Fashion MNIST: Difference in
accuracy of the ensemble model between the two environments,
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Figure 35. V-IRM Structured Noise Fashion MNIST: Ensemble’s
correlation with color
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Figure 36. V-IRM Structured Noise Fashion MNIST: Individual
model correlation with color
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Figure 37. V-IRM Colored Desprites: Comparing accuracy of en-
semble (More train steps)
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Figure 38. V-IRM Colored Desprites: Difference in accuracy of
the ensemble model between the two environments (More train
steps)



Supplement for Invariant Risk Minimization Games

0 500 1000 1500 2000
Training steps

0.5

0.0

En
se

m
bl

e 
m

od
el

's 
co

rre
la

tio
n 

wi
th

 c
ol

or

Training 
steps

C
or

re
la

tio
n

Figure 39. V-IRM Colored Desprites: Ensemble’s correlation with
color (More train steps)
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Figure 40. V-IRM Colored Desprites: Individual model correlation
with color (More train steps)
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