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Abstract 
The standard risk minimization paradigm of ma-
chine learning is brittle when operating in environ-
ments whose test distributions are different from 
the training distribution due to spurious correla-
tions. Training on data from many environments 
and finding invariant predictors reduces the effect 
of spurious features by concentrating models on 
features that have a causal relationship with the 
outcome. In this work, we pose such invariant risk 
minimization as finding the Nash equilibrium of 
an ensemble game among several environments. 
By doing so, we develop a simple training algo-
rithm that uses best response dynamics and, in 
our experiments, yields similar or better empiri-
cal accuracy with much lower variance than the 
challenging bi-level optimization problem of Ar-
jovsky et al. (2019). One key theoretical contri-
bution is showing that the set of Nash equilibria 
for the proposed game are equivalent to the set 
of invariant predictors for any finite number of 
environments, even with nonlinear classifiers and 
transformations. As a result, our method also re-
tains the generalization guarantees to a large set 
of environments shown in Arjovsky et al. (2019). 
The proposed algorithm adds to the collection of 
successful game-theoretic machine learning algo-
rithms such as generative adversarial networks. 

1. Introduction 
The annals of machine learning are rife with embarrassing 
examples of spurious correlations that fail to hold outside 
a specific training (and identically distributed test) distri-
bution. Beery et al. (2018) trained a convolutional neural 
network (CNN) to classify camels from cows. The training 
dataset had one source of bias, i.e., most of the pictures 
of cows had green pastures, while most pictures of camels 

1IBM Research, Thomas J. Watson Research Center, York-
town Heights, NY. Correspondence to: Kartik Ahuja <kar-
tik.ahuja@ibm.com>. 

Proceedings of the 37 th International Conference on Machine 
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s). 

were in deserts. The CNN picked up the spurious correla-
tion, i.e., it associated green pastures with cows and failed 
to classify pictures of cows on sandy beaches correctly. In 
another case, a neural network used a brake light indicator to 
continue applying brakes, which was a spurious correlation 
in the training data (de Haan et al., 2019); the list of such 
examples goes on. 

To address the problem of models inheriting spurious cor-
relations, Arjovsky et al. (2019) show that one can exploit 
the varying degrees of spurious correlation naturally present 
in data collected from multiple data sources to learn robust 
predictors. The authors propose to find a representation Φ 
such that the optimal classifier given Φ is invariant across 
training environments. This formulation leads to a challeng-
ing bi-level optimization, which the authors relax by fixing 
a simple linear classifier and learning a representation Φ 
such that the classifier is “approximately locally optimal” in 
all the training environments. 

In this work, we take a very different approach. We create 
an ensemble of classifiers with each environment controlling 
one component of the ensemble. Each environment uses 
the entire ensemble to make predictions. We let all the 
environments play a game where each environment’s action 
is to decide its contribution to the ensemble such that it 
minimizes its risk. Remarkably, we establish that the set of 
predictors that solve the ensemble game is equal to the set 
of invariant predictors across the training environments; this 
result holds for a large class of nonlinear classifiers. 

This brings us to the question: how do we solve the 
game? We use classic best response dynamics (Fudenberg 
& Levine, 1998), which has a very simple implementation. 
Each environment periodically takes its turn and moves its 
classifier in the direction that minimizes the risk specific to 
its environment. Empirically, we establish that the invariant 
predictors found by our approach lead to better or compara-
ble performance with much lower standard deviation than 
Arjovsky et al. (2019) on several different datasets. A nice 
consequence of our approach is we do not restrict classi-
fiers to be linear, which was emphasized as an important 
direction for future work by Arjovsky et al. (2019). 

Broadly speaking, we believe that the game-theoretic per-
spective herein can open up a totally new paradigm to ad-
dress the problem of invariance. 
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2. Related Work 
2.1. Invariance Principles in Causality 

The invariant risk minimization formulation of Arjovsky 
et al. (2019) is the most related work, and is motivated 
from the theory of causality and causal Bayesian networks 
(CBNs) (Pearl, 1995). A variable y is caused by a set of 
non-spurious actual causal factors xPa(y) if and only if in 
all environments where y has not been intervened on, the 
conditional probability P (y|xPa(y)) remains invariant. This 
is called the modularity condition (Bareinboim et al., 2012). 
Related and similar notions are the independent causal 
mechanism principle (Schölkopf et al., 2012; Janzing & 
Schölkopf, 2010; Janzing et al., 2012) and the invariant 
causal prediction principle (Peters et al., 2016; Heinze-
Deml et al., 2018). These principles imply that if all the 
environments (train and test) are modeled by interventions 
that do not affect the causal mechanism of target variable y, 
then a classifier conservatively trained on the transformation 
that involves the causal factors (Φ(x) = xPa(y)) to predict 
y is robust to unseen interventions. 

In general, for finite sets of environments, there may be 
other invariant predictors. If one has information about the 
CBN structure, one can find invariant predictors that are 
maximally predictive using conditional independence tests 
and other graph-theoretic tools (Magliacane et al., 2018; 
Subbaswamy et al., 2019). 

The above works select subsets of features, primarily using 
conditional independence tests, that make the optimal clas-
sifier trained on the selected features be invariant. Arjovsky 
et al. (2019) give an optimization-based reformulation of 
this invariance that facilitates searching over transformations 
in a continuous space, making their work widely applicable 
in areas such as computer vision where the causal features 
are latent (see Figure 6 in Arjovsky et al. (2019)). 

2.2. Sample Reweighting, Domain Adaptation, and 
Robust Optimization 

Statistical machine learning has dealt with the distribution 
shift between the training distribution and test distribution 
in a number of ways. Conventional approaches are sam-
ple weighting, domain adaptation, and robust optimization. 
Importance weighting or more generally sample weighting 
attempts to match test and train distributions by reweighting 
samples (Shimodaira, 2000; Sugiyama et al., 2008; Gretton 
et al., 2009; Zhao et al., 2018). It typically assumes that 
the probability of labels given all covariates does not shift, 
and in more general cases, requires access to test labels. 
Domain adaptation tries to find a representation Φ whose 
distribution is invariant across source and target domains 
(Ajakan et al., 2014; Ben-David et al., 2007; Glorot et al., 
2011; Ganin et al., 2016). Domain adaptation is known to 

have serious limitations even when the marginal distribution 
of labels shift across environments (Zhao et al., 2019; Jo-
hansson et al., 2019). When only training data sources are 
given, robust optimization techniques find the worst case 
loss over all possible convex combinations of the training 
sources (Mohri et al., 2019; Hoffman et al., 2018; Lee & 
Raginsky, 2018; Duchi et al., 2016). This assumes that 
the test distribution is within the convex hull of training 
distributions, which is not true in many settings. 

3. Preliminaries 
3.1. Game Theory Concepts 

We begin with some basic concepts from game theory 
(Fudenberg & Tirole, 1991) that we will use. Let Γ = 
(N, {Si}i∈N , {ui}i∈N ) be the tuple representing a standard 
normal form game, where N is the finite set of players. 
Player i ∈ N takes actions from a strategy set Si. The util-
ity of player i is ui : S → R, where we write the joint set 
S = Πi∈N Si. The joint strategy of all the players is given 
as s ∈ S, the strategy of player i is si and the strategy of the 
rest of players is s−i = (si0 )i =i. If the set S is finite, then 0 6 
we call the game Γ a finite game. If the set S is uncountably 
infinite, then the game Γ is a continuous game. 

Nash equilibrium in pure strategies. A strategy s ∗ is said 
to be a pure strategy Nash equilibrium (NE) if it satisfies 

∗ ∗ ui(si , s−i) ≥ ui(k, s ∗−i), ∀k ∈ Si, ∀i ∈ N 

3.2. Invariant Risk Minimization 

We describe the invariant risk minimization (IRM) of Ar-
e e)}nejovsky et al. (2019). Consider datasets {(xi , y fromi i=1 

multiple training environments e ∈ Etr. The feature value 
e ex ∈ X and the corresponding labels y ∈ Y , wherei i 
X ⊆ Rn and Y ⊆ Rk .1 Define a predictor f : X → Rk . 

The goal of IRM is to use these multiple datasets to construct 
a predictor f that performs well across many unseen envi-
ronments Eall, where Eall ⊇ Etr. Define the risk achieved� � 
by f in environment e as Re(f) = EXe,Y e `(f(Xe), Y e) , 
where ` is the loss when f(X) is the predicted value and Y 
is the corresponding label. To assume that f maps to real 
values is not restrictive; for instance, in a k-class classifi-
cation problem, the output of the function f is the score 
for each class, which can be converted into a hard label by 
selecting the class with the highest score. 

Invariant predictor: We say that a data representation 
Φ : X → Z ⊆ Rd elicits an invariant predictor w ◦ Φ across 
environments e ∈ E if there is a classifier w : Z → Rk 

that achieves the minimum risk for all the environments 
1The setup applies to both continuous and categorical data. If 

any feature or label is categorical, we one-hot encode it. 
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w ∈ arg minw̄∈Hw R
e(w̄ ◦ Φ), ∀e ∈ E . The set of all the 

mappings Φ is given as HΦ and the set of all the classifiers 
is given as Hw. IRM may be phrased as the following 
constrained optimization problem (Arjovsky et al., 2019): X 

min Re(w ◦ Φ)
Φ∈HΦ,w∈Hw 

e∈Etr (1) 
s.t. w ∈ arg min Re(w̄ ◦ Φ), ∀e ∈ Etr. 

w̄∈Hw 

If w ◦ Φ satisfies the constraints above, then it is an invariant 
predictor across the training environments Etr. 

Intuition behind IRM optimization in equation (1) We 
use a simplified version of the model described by Peters 
et al. (2016). In each environment e, the random variable 
Xe = [X1 

e, ..., Xe ] corresponds to the feature vector andn 
Y e corresponds to the label. The data for each environment 
is generated by i.i.d. sampling (Xe, Y e) from the following 
generative model. Assume a subset S∗ ⊂ {1, ..., n} is 
causal for the label Y e . For each environment e ∈ Eall, Xe 

has an arbitrary distribution and 

Y e ← g(XS
e 
∗ ) + �̃e (2) 

where XS
e 
∗ is the vector Xe with indices in S∗ , g : R|S ∗ | → 

R is a function to describe the conditional expectation and 
�e ∼ F e , E[�̃e] = 0, �̃e ⊥ XS

e 
∗ . Let ` be the squared 

error loss function. We fix the representation Φ∗(Xe) = 
XS

e 
∗ . With Φ∗ as the representation, the optimal classifier 

w among all the functions is g(XS
e 
∗ ) (this follows from 

the generative model). Since the optimal classifier does 
enot vary across environments, w∗ ◦ Φ∗ = g is an invariant 

predictor across all Eall (assume g ∈ Hw). Define XS
e 
◦ as 

the remaining feature values that are not causal of Y e . If Φ 
does not focus on S∗ and some of the variables in XS

e 
◦ are 

a part of the Markov blanket of Y e (Pearl, 2014), then the 
optimal classifier may not be the same across environments 
and thus invariance won’t be achieved. By solving (1) across 
training environments, IRM hopes to arrive at g, which will 
generalize well across all the test environments Eall. 
Define the set of representations and the corresponding clas-
sifiers, (Φ, w) that satisfy the constraints in the above opti-
mization problem (1) as S IV, where IV stands for invariant. 
Also, separately define the set of invariant predictors w ◦ Φ 
S IVas ˆ = {w ◦ Φ |(Φ, w) ∈ S IV}. 

Remark. The sets S IV , Ŝ IV depend on the choice of classi-
fier class Hw and representation class HΦ. We avoid making 
this dependence explicit until later sections. 

Members of S IV are equivalently expressed as solutions to 

Re(w ◦ Φ) ≤ Re(w̄ ◦ Φ), ∀w̄ ∈ Hw, ∀e ∈ Etr. (3) 

The main generalization result (Theorem 9) in Arjovsky 
et al. (2019) states that if representations and classifiers are 

from the class of linear models, i.e., Φ ∈ HΦ = Rn×n (rep-
resentation output for input x is Φx) and w ∈ Hw = Rn×1 

T(classifier output for input z is w z), then under certain 
conditions on the data generation process and training en-
vironments Etr, the solution to (3) remains invariant in Eall 
(we use the same setup in our Theorem 2 as well). 

4. Ensemble Invariant Risk Minimization 
Games 

4.1. Game-Theoretic Reformulation 

Optimization problem (1) can be quite challenging to solve. 
We introduce an alternate characterization based on game 
theory to solve it. We endow each environment with its 

eown classifier w ∈ Hw. We use a simple ensemble to 
avconstruct an overall classifier w : Z → Rk defined as 

wav = 1 P|Etr | wq , where for each z ∈ Z , wav(z) = |Etr | q=1 
1 P|Etr | wq(z). (The av stands for average.) Consider|Etr | q=1 

the example of binary classification with two environments 
e e e{e1, e2}; w = [w1, w2] is the classifier of environment 

e, where each component is the score for each class. We 
avdefine the component j of the ensemble classifier w as 

e1 e2w +wav j jw = . These scores are input to a softmax;j 2 
the final probability assigned to class j for an input z is 

av wj (z) 
e 

avw (z) wav (z) . e 1 +e 2 

avWe require all the environments to use this ensemble w . 
We want to solve the following new optimization problem. 

X 
min Re(w av ◦ Φ) 

Φ∈HΦ,wav ∈Hw 
e∈Etr ⎛ ⎞ 

1 h X i 
e Re ⎝ e q ⎠s.t. w ∈ arg min w̄ + w ◦ Φ , ∀e ∈ Etr 

w̄e∈Hw |Etr| 
q 6=e 

We can equivalently restate the above as: 

X 
min Re(w av ◦ Φ)

Φ∈HΦ,wav 

e∈Etr⎛ ⎞ h X i1⎝ ⎠s.t. Re w e + wq ◦ Φ |Etr| 
q 6=e ⎛ ⎞ 

1 h X i 
e q e≤ Re ⎝ w̄ + w ◦ Φ⎠ ∀w̄ ∈ Hw ∀e ∈ Etr|Etr| 

q 6=e 

(4) 

What are the advantages of this formulation (4)? 

• Using the ensemble automatically enforces that the 
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same classifier is used across the environments. 
e• Each environment is free to select the classifier w 

from the entire set Hw, unlike in (1), where all envi-
ronments’ choices are required to be the same. 

• The constraints in (4) are equivalent to the set of pure 
NE of a game that we define next. 

The game is played between |Etr| players, with each player 
corresponding to an environment e. The set of actions of the 

eenvironment e are w ∈ Hw. At the start of the game, a rep-
resentation Φ is selected from the set HΦ, which is observed 
by all the environments. The utility function for an envi-

e −e avronment e is defined as ue[w ,w , Φ] = −Re(w , Φ), 
−ewhere w = {wq }q 6=e is the set of choices of all environ-

ments but e. We call this game Ensemble Invariant Risk 
Minimization (EIRM) and express it as a tuple 

� � 
ΓEIRM |Etr |= Etr, HΦ, {Hw} .q=1 , {ue}e∈Etr � � 

|Etr |We represent a pure NE as a tuple Φ, {wq}q=1 . Since 
each pure NE depends on Φ, we include it as a part of the 
tuple.2 We define the set of pure NE as SEIRM . We construct 
a set of all the ensemble predictors constructed from NE as3 

nh |EXtr | i o1 ŜEIRM q q}|Et| ) ∈ SEIRM = w ◦ Φ | (Φ, {w . |Etr| q=1 
q=1 

Members of SEIRM are equivalently expressed as the solu-
tions to 

e −e e −e e ue[w ,w , Φ] ≥ ue[w̄ , w , Φ], ∀w ∈ Hw, ∀e ∈ Etr. 
(5) 

e −e avIf we replace ue[w ,w , Φ] with −Re(w , Φ), we obtain 
the inequalities in (4). So far we have defined the game and 
given its relationship to the problem in (4). 

Overview of the Results In Sections 4.2 and 4.3 we will 
discuss the main theoretical results of this work. Here we 
give a brief preview of them. 

• In Theorem 1 and Corollary 1 we establish equivalence 
between the predictors obtained using NE of EIRM 
game SEIRM and invariant predictors S IV . We establish 
this equivalence for a large class of representations and 
classifiers, where both can be nonlinear. 

• In Theorem 2, we borrow the generalization result 
from (Arjovsky et al., 2019) and show that same gen-
eralization guarantees continue to hold for our setting. 
Following (Arjovsky et al., 2019), we assume both 
classifiers and representations are linear. 

2We can also express each environment’s action as a mapping 
from π : HΦ → Hw but we don’t to avoid complicated notation. 

3We don’t double count compositions leading to the same pre-
dictor. 

• In Theorem 3, we discuss the role of representation and 
how in some cases we can reduce the computational 
expense that one may incur in searching for the repre-
sentations. We establish this result for a large class of 
classifiers and invertible representations, where both 
can be nonlinear. 

• In Theorem 4, we discuss the existence of both the 
Nash equilibria of EIRM game and the invariant pre-
dictors. We restrict the classifiers to be linear but rep-
resentations may be nonlinear. In the supplement, we 
extend the result to nonlinear classifiers. 

4.2. Equivalence Between NE and Invariant Predictors 

What is the relationship between the predictors obtained 
S IV?from NE ŜEIRM and invariant predictors ˆ 

Remarkably, these two sets are the same under very mild 
conditions. Before we show this result, we establish a 
stronger result and this result will follow from it. 

We use the set SEIRM to construct a new set. To each tuple � � 
|Etr |Φ, {wq} ) ∈ SEIRM augment the ensemble classifier q=1 � � 

av 1 P|Etr | |Etr | avw = wq to get Φ, {wq}q=1 , w . We call |Etr | q=1 

SEIRMthe set of these new tuples ˜ . 

We use the set S IV to construct a new set. Consider an 
element (Φ, w) ∈ S IV . We define a decomposition for w 
in terms of the environment-specific classifiers as follows: 
w = 1 P|Etr | wq , where wq ∈ Hw. wq = w, ∀q ∈ Etr|Etr | q=1 

is one trivial decomposition. We use each such decomposi-� � 
|Etr |tion and augment the tuple to obtain Φ, {wq}q=1 , w . We 

S IVcall this set of new tuples ˜ . 

Both the sets S̃ IV and S̃EIRM consist of tuples of representa-
tion, set of environment specific classifiers, and the ensem-
ble classifier. We ask an even more interesting question than 
the one above. Is the set of representations, environment spe-
cific classifiers, and the ensembles found by playing EIRM 
(5) or solving IRM (3) the same? If these two sets are equal, 

SEIRM and ˆthen equality between ˆ S IV follows trivially. 

We state the only assumption we need. 

Assumption 1. Affine closure: The class of functions Hw 

is closed under the following operations. 

• Finite sum: If w1 ∈ Hw and w2 ∈ Hw, then w1 + 
w2 ∈ Hw, where for every z ∈ Z , (w1 + w2)(z) = 
w1(z) + w2(z) 

• Scalar multiplication: For any c ∈ R and w ∈ Hw, 
cw ∈ Hw, where for every z ∈ Z , (cw)(z) = c×w(z) 

The addition of the functions and scalar multiplication are 
defined in a standard pointwise manner. Therefore, the class 
Hw also forms a vector space. 
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Examples of functions that satisfy affine closure. Linear 
classifiers, kernel based classifiers (Hofmann et al., 2008) 
(functions in RKHS space), ensemble models with arbitrary 
number of weak learners (Freund et al., 1999), functions 
in Lp space (Ash & Doléans-Dade, 2000), ReLU networks 
with arbitrary depth. We provide the justification for each 
of these functions in the supplement. We now state the main 
result. 

S IV S̃EIRMTheorem 1. If Assumption 1 holds, then ˜ = 

The proofs of all the results are in the supplement. 

S IV ŜEIRMCorollary 1. If Assumption 1 holds, then ˆ = 

Significance of Theorem 1 and Corollary 1 

i. Computational This equivalence permits computational 
tools from game theory to find NE of the EIRM game and 
the invariant predictors. (See Algorithm 1) 

ii. Theoretical This equivalence permits to use game theory 
to analyze the solutions of the EIRM game and understand 
the invariant predictors. (See Theorem 3) 

iii. Generalization In Theorem 9 (Arjovsky et al., 2019), 
it was shown for linear classifiers and linear representa-
tions that the invariant predictors generalize to a large set 
of unseen environments under certain conditions. Since our 
equivalence (Theorem 1) holds for linear classifiers (but is 
even broader), the same generalization holds for predictors 
obtained from EIRM game. Although the result follows 
straightaway from the equivalence in Theorem 1, we still 
state it formally next for completeness. 

We describe the generative model for the next theorem. For 
environment e, Y e ← ZeTγ + �e, where �e is independent 1 
of Z1 

e , Ze ∈ Rc and γ ∈ Rc . We observe Xe , which is a1 
scrambled version of Ze and Ze, where Ze can be correlated 1 2 2 
with both Ze and �e . We use Assumption 8 from (Arjovsky 1 
et al., 2019). We restate it below. 

Assumption 2. A set of environments Etr lie in the linear 
general position of degree r if |Etr| ≥ n − r + n for some r 
r ∈ N and for all non-zero x ∈ Rn � �� �� 
dim span EXe [XeXeT]x−EXe,�e [Xe�e] > n−r 

e∈Etr 

In the next theorem, we consider linear representations, i.e., 
Rn×nHΦ = and linear classifiers, i.e., Hw = Rn×1 and 

w ◦ Φ = wTΦ. 

Theorem 2. For each environment e ∈ Eall we assume 

Y e ← ZeTγ + �e , Z1 
e ⊥ �e , E[�e] = 01 (6)

Xe ← S(Z1 
e, Z2 

e) 

Here γ ∈ Rc , Z1 
e ∈ Rc , Z2 

e ∈ Rq, S ∈ Rn×(c+q). Assume 
that Z1 is invertible component of S, i.e., ∃ S̃ ∈ Rc×n such 

that S̃(S(z1, z2)) = z1 for all z1 ∈ Rc and z2 ∈ Rq . Let 
nΦ ∈ Rn×n have rank r. If at least n − r + training r 

environments Etr ⊆ Eall lie in linear general position of 
degree r, then any predictor obtained from EIRM game over 
the training environments in ŜEIRM is invariant across all 
the testing environments Eall. 

The above theorem establishes generalization guarantees for 
predictors obtained from the NE of the EIRM game and the 
proof follows from Theorem 1 above and proof of Theorem 
9 in (Arjovsky et al., 2019). 

Role of representation Φ. We investigate the scenario 
when we fix Φ to the identity mapping; this will motivate 
one of our approaches. Define the set ŜEIRM(Φ) as the set of 
ensemble predictors arrived at by playing the EIRM game 
using a fixed representation representation Φ.4 Similarly, 
we define a set Ŝ IV(Φ) as the set of invariant predictors 
derived using the representation Φ. From Theorem 1, it 

SEIRM(Φ) = ˆfollows that ˆ S IV(Φ). We modify some of the 
earlier notations for results to follow. The set of predictors 
that result from the EIRM game ŜEIRM and the sets of in-

S IVvariant predictors ˆ are defined for a family of maps Φ 
with co-domain Z . We make the co-domain Z explicit in 

SEIRM SEIRM and Ŝ IV S IVthe notation. We write ˆ for ˆ for ˆ .Z Z 

Assumption 3. Φ ∈ HΦ satisfies the following 

• Bijective: ∃ Φ−1 : Z → X such that ∀x ∈ X ,� � � � 
Φ−1 ◦ Φ (x) = x, and ∀z ∈ Z Φ ◦ Φ−1 (z) = z. 

Both X and Z are subsets of Rn 

• Φ is differentiable and Lipschitz continuous. 

R 
Lp(Z): set of functions f : Z → R s.t. |f |pdµ < ∞Z 

Assumption 4. Hw = Lp(Z). 

S̄ IV S IVDefine a subset ⊆ ˆ consisting of invariant predictors Z Z 

S IV S IVthat are in Lp(X ), i.e., ¯ = {u | u ∈ ˆ and u ∈Z Z 
Lp(X )}. Let Φ = I, where I : X → X is the identity 
mapping. Following the above notation, the set of invariant 
predictors and the set of ensemble predictors obtained from 

S IV SEIRMNE are ˆ (I) and ˆ (I) respectively. X X 

S̄ IVTheorem 3. If Assumptions 3 and 4 are satisfied and Z 

S IV S IV SEIRMis non-empty, then ¯ = ˆ (I) = ˆ (I)Z X X 

Significance of Theorem 3. If we fix the representation to 
identity and play the EIRM game, then it is sufficient to 
recover all the invariant predictors (with bounded Lp norm) 
that can be obtained using all the representations Φ ∈ HΦ. 
Therefore, we can simply fix Φ = I and use game-theoretic 
algorithms for learning equilibria. 

SEIRM SEIRM4∪Φ ˆ (Φ) = ˆ 
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4.3. Existence of NE of ΓEIRM and Invariant Predictors 

In this section, we argue that there are many settings when 
both invariant predictors and the NE exist. Recall that in 
the example described in Section 3.2 based on the gener-
ative model in equation (2), we already showed existence 
of invariant predictor as we constructed one. In the same 
example if we also assume that Hw is affine closed, then 
the NE also exist (From Theorem 1). The above claims 
for existence require us to make assumptions on the data 
generation process. Next, we discuss the existence with no 
assumptions on the data generation process. 
Assumption 5. • Hw is a class of linear models, i.e. 

w ∈ Hw ⊆ Rd×1 and classifier output for input z 
Tis w z. Hw is a closed, bounded and convex. The 

interior of Hw is non-empty. 
• The loss function `(wTz, Y ), where Y ∈ R is the label, 

is convex and continuous in w. For e.g., if loss is 
cross-entropy for binary classification or loss is mean 
squared error for regression, then this assumption is 
automatically satisfied. 

Theorem 4. If Assumption 5 is satisfied, then a pure strat-
egy Nash equilibrium of the game ΓEIRM exists, i.e., SEIRM is� � 

|Etr | ∈ SEIRMnot empty. Suppose there exists a Φ, {wq }q=1 
qsuch that∀q ∈ Etr w is in the interior of Hw, then the 

corresponding ensemble predictor 1 P|Etr | wq ◦ Φ is|Etr | q=1 

invariant across all the training environments Etr. 

The family Hw of bounded linear functions does not satisfy 
affine closure, which is why existence of NE does not im-
mediately imply the existence of invariant predictor (from 
Theorem 1). However, if the solution is in the interior of 
Hw , then it is the globally optimal solution among all the 
linear functions, which in fact actually satisfy affine closure. 
As a result, in this case the invariant predictor also exists. 

Significance of Theorem 4 Our approach is based on find-
ing the NE. Therefore, it is important to understand when 
the solutions are guaranteed to exist. In the above theorem, 
we proved the result for linear classifiers only, but there 
were no assumptions made on the representation class. In 
the supplement, we discuss extensions to nonlinear classi-
fiers. Following the sufficient condition for existence of 
invariant predictors, understanding what conditions cause 
the NEs to be in the interior or on the boundary of Hw can 
help further the theory of invariant prediction. 

4.4. Algorithms for Finding NE of ΓEIRM 

There are different strategies in the literature to compute 
the equilibrium, such as best response dynamics (BRD) 
and fictitious play (Fudenberg & Levine, 1998), but none 
of these strategies are guaranteed to arrive at equilibria in 
continuous games except for special classes of games (Hof-
bauer & Sorin, 2006; Barron et al., 2010; Mertikopoulos & 

Zhou, 2019; Bervoets et al., 2016; Daskalakis et al., 2017). 
BRD is one the most popular methods given its intuitive 
and natural structure. The training of GANs also follows an 
approximate BRD (Goodfellow et al., 2014). BRD is not 
known to converge to equilibrium in GANs. Instead a modi-
fication of it proposed recently, Hsieh et al. (2018) achieves 
mixed NE. Our game ΓEIRM is a non-zero sum game with 
continuous actions unlike GANs. Since there are no known 
techniques that are guaranteed to compute the equilibrium 
(pure or mixed) for these games, we adopt the classic BRD 
approach. 

In our first approach, we use a fixed representation Φ. Re-
call in Theorem 3, we showed how just fixing Φ to identity 
can be a very effective approach. Hence, we can fix Φ to 
be identity mapping or we can select Φ as some other map-
ping such as approximation of the map for Gaussian kernel 
(Rahimi & Recht, 2008). Once we fix Φ, the environments 
play according to best response dynamics as follows. 

• Each environment takes its turn (in a periodic manner 
with each environment going once) and minimizes its 
respective objective. 

• Repeat this procedure until a certain criterion is 
achieved, e.g., maximum number of epochs or desired 
value of training accuracy. 

The above approach does not give much room to optimize 
Φ. We go back to the formulation in (4) and use the upper 
level optimization objective as a way to guide search for Φ. 
In this new approach, Φ is updated by the representation 
learner periodically using the objective in (4) and between 
two updates of Φ the environments play according to best 
response dynamics as described above. 

We now make assumptions on Hw and HΦ and give a de-
tailed algorithm (see Algorithm 1) that we use in experi-

ements. We assume that w is parametrized by family of 
neural networks θw ∈ Θw and Φ is parametrized by family 
of neural networks θΦ ∈ ΘΦ. In the Algorithm 1, one of the 
variables Fixed - Phi (for our first approach) or Variable-Phi 
is set to true, and then accordingly Φ remains fixed or is 
updated periodically. In the Algorithm, K is a hyperparam-
eter that dictates how many updates of each environment 
occur before updating Φ. In Figure 1, we also show an 
illustration of the best response training when there are two 
environments and one representation learner. 

5. Experiments 
5.1. Benchmarks 

The most important benchmark for comparison is Arjovsky 
et al. (2019), which we refer to as IRM in the comparisons. 
We use the architecture described in their work (details in 
the supplement). We also compare with 
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Figure 1. Illustration of best response training with 2 environments 
and representation learner. Dotted lines for backpropagation and 
solid lines for forward pass. 

• Variants of empirical risk minimization: ERM on entire 
training data (ERM), ERM on each environment sepa-
rately (ERM e refers to ERM trained on environment 
e), and ERM on data with no spurious correlations. 

• Robust min-max training: In this method, we minimize 
the maximum loss across the multiple environments. 

We have two approaches for EIRM games: one that uses a 
Φ fixed to the identity and the other that uses a variable Φ, 
which we refer to as the F-IRM and V-IRM game, respec-
tively. The details on architectures, hyperparameters, and 
optimizers used are in the supplement. The source-code is 
available at https://github.com/IBM/IRM-games. 

5.2. Datasets 

Colored MNIST dataset. In Arjovsky et al. (2019), the 
comparisons were done on a colored digits MNIST dataset. 
We create the same dataset for our experiments. The task is 
to classify whether the digit is less than 5 (not including 5) 
or more than 5. There are three environments (two training 
containing 30,000 points each, one test containing 10,000 
points) We add noise to the preliminary label (ỹ = 0 if 
digit is between 0-4 and ỹ = 1 if the digit is between 5-
9) by flipping it with 25 percent probability to construct 
the final labels. We sample the color id z by flipping the 
final labels with probability pe, where pe is 0.2 in the first 
environment, 0.1 in the second environment, and 0.9 in the 
third environment. The third environment is the testing 
environment. We color the digit red if z = 1 or green if 
z = 0. 

In addition to colored MNIST digits, we also create two 
other datasets that are inspired from Colored MNIST: Col-
ored Fashion MNIST and Colored Desprites. In these 
datasets as well the color is spuriously correlated with the 
label. We also create another dataset: Structured Noise Fash-
ion MNIST. In this dataset, instead of coloring the images to 

Algorithm 1 Best Response Training 
Input: Data for each environment and combined data 

e |Etr |Initialize: Randomly initialize {w } and Φcurcur e=1 
from Hw and HΦ respectively 
while iter ≤ itermax do 

if Fixed-Phi then 
Φcur = I 

end if 
if Variable-Phi then ihP 

avΦcur = SGD Re(w ◦ Φcur) , SGD[.]: stepe cur 

update using stochastic gradient descent 
end if 
for p ∈ {1, ..K} do 

for e ∈ {1, .., |Etr|} doh i 
e avwcur = SGD Re(w ◦ Φcur)curP 
av 1 ew = wcur |Etr | e cur 

end for 
iter = iter + 1 

end for 
end while 

establish spurious correlations, we create small patches of 
noise at specific locations in the image, where the locations 
are correlated with the labels (detailed description of the 
datasets is in the supplement). In all the comparisons, we 
averaged the performance of the different approaches over 
ten runs. 

5.3. Comparisons 

Colored MNIST (Table 1) Standard ERM based ap-
proaches, and robust training based approach achieve be-
tween 10-15 percent accuracy on the testing set. F-IRM 
game achieves 59.9 ± 2.7 percent testing accuracy. This im-
plies that the model is not using spurious correlation unlike 
the ERM based approaches, and robust training based ap-
proach, that is present in the color of the digit. F-IRM has a 
comparable mean and a much lower standard deviation than 
IRM, which achieves 62.75 ± 9.5 percent. ERM grayscale 
is ERM on uncolored data, which is why it is better than all. 
In each Table, we include the optimal performance that is 
achievable (75 percent train and test). 

Colored Fashion MNIST (Table 2) We observe that the 
V-IRM game performs the best both in terms of the mean 
and the standard deviation achieving 70.2 ± 1.5 percent. 

Colored Desprites (Table 3) We observe that V-IRM game 
achieves 50.0 ± 0.2 percent while IRM achieves 51.8 ± 6 
percent. 

Structured Noise Fashion MNIST (Table 4) We observe 
that F-IRM achieves 62.0 ± 2.0 percent and is comparable 
with IRM that achievs 63.9 ± 10.9 percent; again observe 

https://github.com/IBM/IRM-games
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Table 1. Colored MNIST: Comparison of methods in terms of train-
ing, testing accuracy (mean ± std deviation). 

ALGORITHM TRAIN ACCURACY TEST ACCURACY 

ERM 84.88 ± 0.16 10.45 ± 0.66 
ERM 1 84.84 ± 0.21 10.86 ± 0.52 
ERM 2 84.95 ± 0.20 10.05 ± 0.23 
ROBUST MIN MAX 84.25 ± 0.43 15.24 ± 2.45 
F-IRM GAME 63.37 ± 1.14 59.91 ± 2.69 
V-IRM GAME 63.97 ± 1.03 49.06 ± 3.43 
IRM 59.27 ± 4.39 62.75 ± 9.59 
ERM GRAYSCALE 71.81 ± 0.47 71.36± 0.65 
OPTIMAL 75 75 

Table 2. Colored Fashion MNIST: Comparison of methods in 
terms of training, testing accuracy (mean ± std deviation). 

ALGORITHM TRAIN ACCURACY TEST ACCURACY 

ERM 83.17 ± 1.01 22.46 ± 0.68 
ERM 1 81.33 ± 1.35 33.34 ± 8.85 
ERM 2 84.39 ± 1.89 13.16 ± 0.82 
ROBUST MIN MAX 82.81 ± 0.11 29.22 ± 8.56 
F-IRM GAME 62.31 ± 2.35 69.25 ± 5.82 
V-IRM GAME 68.96 ± 0.95 70.19 ± 1.47 
IRM 75.01 ± 0.25 55.25 ± 12.42 
ERM GRAYSCALE 74.79 ± 0.37 74.67± 0.48 
OPTIMAL 75 75 

that we have a lower standard deviation. 

5.4. Analyzing the Experiments 

In this section, we use plots of F-IRM game played on 
Colored Fashion MNIST (plots for both F-IRM and V-IRM 
on all other datasets are similar and hence convey the same 
message. We provide them in the supplement). In Figure 
2, we show the accuracy of the ensemble model on the 
entire data and the two environments separately. In the 
initial stages, the training accuracy increases and eventually 
it starts to oscillate. Best response dynamics can often 
oscillate (Herings & Predtetchinski, 2017; Fudenberg & 
Levine, 1998; Barron et al., 2010). Next, we demistify these 
oscillations, explain their importance, and discuss how we 
terminate the procedure. 

5.4.1. EXPLAINING THE MECHANISM OF OSCILLATIONS 

The oscillation has two states. In the first state, the ensemble 
model performs well 88 % accuracy. In the second state, 
the accuracy dips to 75 %. In Figure 3, we plot the corre-
lation between the ensemble model and the color. When 
the oscillations appear in training accuracy in Figure 2, the 
correlation also start to oscillate in Figure 3. In the first 

Table 3. Colored Desprites: Comparison of methods in terms of 
training, testing accuracy (mean ± std deviation). 

ALGORITHM TRAIN ACCURACY TEST ACCURACY 

ERM 85.01 ± 0.03 9.97 ± 0.05 
ERM 1 81.33 ± 1.35 33.34 ± 8.85 
ERM 2 84.39 ± 1.89 13.16 ± 0.82 
ROBUST MIN MAX 84.94 ± 0.09 10.28 ± 0.33 
F-IRM GAME 53.36 ± 1.40 48.61 ± 3.06 
V-IRM GAME 56.31 ± 4.94 50.04 ± 0.15 
IRM 52.67 ± 2.40 51.82 ± 5.95 
ERM GRAYSCALE 67.67 ± 0.58 66.97± 0.69 
OPTIMAL 75 75 

Table 4. Structured Noise Fashion MNIST: Comparison of meth-
ods in terms of training, testing accuracy (mean ± std deviation). 

ALGORITHM TRAIN ACCURACY TEST ACCURACY 

ERM 83.49 ± 1.22 20.13 ± 8.06 
ERM 1 81.80 ± 1.50 30.94 ± 1.01 
ERM 2 84.66 ± 0.40 11.98 ± 0.23 
ROBUST MIN MAX 82.78 ± 1.32 25.59 ± 9.14 
F-IRM GAME 51.54 ± 2.96 62.03 ± 2.02 
V-IRM GAME 47.70 ± 1.69 61.46 ± 0.53 
IRM 52.57 ± 9.95 63.92 ± 10.95 
ERM NO NOISE 74.79 ± 0.37 74.67± 0.48 
OPTIMAL 75 75 

state when the model performs well, the model is heavily 
correlated (negative correlation) with the color. In the sec-
ond state, the model performs worse, observe that the model 
now has much less correlation (close to zero) with the color. 
We ask two questions: (i) Why do the oscillations persist 
in the training accuracy plot (Figure 2) and correlation plot 
(Figure 3)?, and (ii) How do the oscillations emerge? 

Why do the oscillations persist? In our experiments there 
are two environments, the labels are binary, and we want 
to maximize the log-likelihood. Let sj be the score vector 
from environment j’s classifier, p be the softmax of s and 
ỹ  be the one hot encoded vector of labels. The gradient of 
the log-likelihood w.r.t. the scores given by each model for 
a certain instance x (see derivation in the supplement) is: 

∂ log(py ) 
= ȳ  − p = e.̃ (7)

∂sj 

where ẽ is the error vector. The error ẽ is determined by the 
both the models (both models impact p), it backpropagates 
and impacts individual weights. We argue next that the 
examples over which error occur are very different in the 
two states and that is the reason for oscillations. 

Consider the step when the correlation (absolute value) be-
tween the ensemble model and color is high. In this step, it 
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Figure 2. F-IRM, Colored Fashion MNIST: Comparing accuracy 
of ensemble. 
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Figure 3. F-IRM, Colored Fashion MNIST: Correlation of the 
ensemble model with color. 

is the turn of Model 1 to train. Observe that the accuracy of 
the model is high because the ensemble model is exploiting 
the spurious correlations with the color. We approximate 
this mathematically. The score from Model j for Label 1 is 
1 0 φncsj − s ≈ βj

t (x) + γj φj
c(x), where φnc are the features j j j 

that are not correlated with the color, φc
j is the indicator of 

the color. From Figure 4, γ1 and γ2 should have opposite 
signs, i.e. positive and negative respectively. In the current 
step, γ2 dominates γ1, which is why the ensemble model has 
a heavy negative correlation. The errors (7) that backpropa-
gate come from the examples for which exploiting spurious 
correlation with color does not work, i.e., the color is not 
indicative of the digit. During this step Model 1 is trained, 
backpropagation will change the weights such that γ1 in-
creases. As a result, the ensemble model’s correlation with 
the color decreases (as we see in Figure 3). In the next step, 
it is the turn of Model 2 to train. Model 2’s environment 
has more examples than environment 1 where exploiting 
the color can help improve its accuracy. As a result, error 
from these examples backpropagate and γ2 decreases. This 
brings the ensemble model back to being negatively cor-
related with colors and also the training accuracy back to 
where it was approximately. This cycle of push and pull 
between the models continues. 

Figure 4. F-IRM, Colored Fashion MNIST: Correlation of the 
individual models with the color. 

How do these cycles emerge? The oscillations are weak at 
the beginning of the training. In the beginning, when Model 
2 trains, the impact of the errors (from examples where 
spurious correlations can be exploited) on changing the 
weights are much stronger than when Model 1 trains, as the 
number of examples that benefit from spurious correlations 
is much larger in comparison. As the training proceeds, this 
impact decreases as many examples are classified correctly 
by using spurious correlations while the weights continue 
to accumulate for Model 1, thus giving rise to oscillations. 

How to terminate? We terminate training when the oscilla-
tions are stable and when the ensemble model is in the lower 
accuracy state, which corresponds to the state with lower 
correlation with color. To ensure the oscillations are stable, 
we do not terminate until a certain number of steps have 
been completed (in our experiments we set this duration to 
be number of steps= (training data size)/(batch size)). To 
capture the model in a state of lower correlation with color, 
we set a threshold on accuracy (we decide the threshold by 
observing the accuracy plot); we terminate only when the 
training accuracy falls below this threshold. 

6. Conclusion 
We developed a new framework based on game-theoretic 
tools to learn invariant predictors. We work with data from 
multiple environments. In our framework, we set up an en-
semble game; we construct an ensemble of classifiers with 
each environment controlling one portion of the ensemble. 
Remarkably, the set of solutions to this game is exactly the 
same as the set of invariant predictors across training envi-
ronments. The proposed framework performs comparably 
to the existing framework of Arjovsky et al. (2019) and also 
exhibits lower variance. We hope this framework opens new 
ways to address other problems pertaining to invariance in 
causal inference using tools from game theory. 
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