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Abstract
In this paper, we focus on a theory-practice gap
for Adam and its variants (AMSGrad, AdamNC,
etc.). In practice, these algorithms are used with
a constant first-order moment parameter β1 (typ-
ically between 0.9 and 0.99). In theory, regret
guarantees for online convex optimization require
a rapidly decaying β1 → 0 schedule. We show
that this is an artifact of the standard analysis, and
we propose a novel framework that allows us to
derive optimal, data-dependent regret bounds with
a constant β1, without further assumptions. We
also demonstrate the flexibility of our analysis on
a wide range of different algorithms and settings.

1. Introduction
One of the most popular optimization algorithms for train-
ing neural networks is ADAM (Kingma & Ba, 2014), which
is a variant of the general class of ADAGRAD-type algo-
rithms (Duchi et al., 2011). The main novelty of ADAM is to
apply an exponential moving average (EMA) to gradient es-
timate (first-order) and to element-wise square-of-gradients
(second-order), with parameters β1 and β2, respectively.

In practice, constant β1 and β2 values are used (the default
parameters in PYTORCH and TENSORFLOW, for example,
are β1 = 0.9 and β2 = 0.999). However, the regret analysis
in Kingma & Ba (2014) requires β1 → 0 with a linear rate,
causing a clear discrepancy between theory and practice.

Recently, Reddi et al. (2018) showed that the analysis of
ADAM contains a technical issue. Following this discovery,
many variants of ADAM are proposed with regret guaran-
tees (Reddi et al., 2018; Chen & Gu, 2018; Huang et al.,
2019). Unfortunately, in all these analyses, the require-
ment β1 → 0 is inherited and needed to derive the optimal
O(
√
T ) regret. In contrast, for favorable practical perfor-

mance, methods continue to use constant β1 in experiments.
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One can wonder whether there is an inherent obstacle –
in the proposed methods or the setting – which prohibits
optimal regret bounds with a constant β1?

In this work, we show that this specific discrepancy between
the theory and practice is indeed an artifact of the previous
analyses. We point out the shortcomings responsible for
this artifact, and then introduce a new analysis framework
that attains optimal regret bounds with constant β1 at no
additional cost (and even comes with better constants in the
obtained bounds).

Our contributions. In the convex setting, our technique
obtains data-dependent O

(√
T
)

regret bounds for AMS-
GRAD and ADAMNC (Reddi et al., 2018). Moreover, our
technique can also be applied to a strongly convex variant
of ADAMNC, known as SADAM (Wang et al., 2020), yield-
ing again data-dependent logarithmic regret with constant
β1. To the best of our knowledge, these are the first optimal
regret bounds with constant β1.

Finally, we illustrate the flexibility of our framework by
applying it to zeroth-order (bandit) and nonconvex optimiza-
tion. In the zeroth-order optimization setting, we improve
on the current best result which requires β1 ∼ 1

t , and show
that a constant β1 again suffices. In the non-convex set-
ting, we recover the existing results in the literature, with a
simpler proof and slight improvements in the bounds.

It is worth noting that even though our analysis is more
flexible and it provides better bounds than prior works, it is
not sufficient to explain why nonzero β1 helps in practice.
This is an interesting question requiring further investigation
and is outside the scope of this paper.

1.1. Problem Setup

In online optimization, a loss function ft : X → Rd is
revealed, after a decision vector xt ∈ X is picked by the
algorithm. We then minimize the regret defined as

R(T ) =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1)

Our assumptions are summarized below which are the same
as in (Reddi et al., 2018).
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Assumption 1.
. X ⊂ Rd is a compact convex set.
. ft : X → R is a convex lsc function, gt ∈ ∂ft(xt).
. D = max

x,y∈X
‖x− y‖∞, G = max

t
‖gt‖∞.

1.2. Preliminaries

We work in Euclidean space Rd with inner product 〈·, ·〉.
For vectors a, b ∈ Rd all standard operations ab, a2, a/b,
a1/2, 1/a, max{a, b} are supposed to be coordinate-wise.
For a given vector at ∈ Rd, we denote its ith coordinate by
at,i. We denote the vector of all-ones as 1. We use diag(a)
to denote a d × d matrix which has a in its diagonal, and
the rest of its elements are 0. For vi > 0,∀i = 1, . . . , d, we
define a weighted norm

‖x‖2v := 〈x, (diag v)x〉

and a weighted projection operator onto X

P vX (x) = argmin
y∈X
‖y − x‖2v. (2)

We note that ∀x, y ∈ Rd, P vX is nonexpansive, that is

‖P vX (y)− P vX (x)‖v ≤ ‖y − x‖v. (3)

2. Related work
2.1. Convex world

In the setting of online convex optimization (OCO), As-
sumption 1 is standard (Hazan et al., 2016; Duchi et al.,
2011). It allows us to consider nonsmooth stochastic min-
imization (though we are not limited to this setting), and
even allows for adversarial loss functions.

The algorithms AMSGRAD and ADAMNC were proposed
by Reddi et al. (2018) to fix the issue in the original proof
of ADAM (Kingma & Ba, 2014). However, as the proof
template of Reddi et al. (2018) follows very closely the
proof of Kingma & Ba (2014), the requirement for β1 → 0
remains in all the regret guarantees of these algorithms. In
particular, as noted by Reddi et al. (2018, Corollary 1, 2), a
schedule of β1t = β1λ

t−1 is needed for obtaining optimal
regret. Reddi et al. (2018) also noted that regret bounds
of the same order can be obtained by setting β1t = β1/t.
On the other hand, in the numerical experiments, a constant
value β1t = β1 is used consistent with the huge literature
following Kingma & Ba (2014).

Following Reddi et al. (2018), there has been a surge of inter-
est in proposing new variants of ADAM with good practical
properties; to name a few, PADAM by Chen & Gu (2018),
ADABOUND and AMSBOUND by Luo et al. (2019); Savarese
(2019), NOSTALGIC ADAM by Huang et al. (2019). As the

regret analyses of these methods follow very closely the anal-
ysis of Reddi et al. (2018), the resulting bounds inherited
the same shortcomings. In particular, in all these algorithms,
to achieve O

(√
T
)

regret, one needs either β1t = β1λ
t−1

or β1t = β1

t . On the other hand, the experimental results
reported on these algorithms note that a constant value of
β1 is used in practice in order to obtain better performance.

Similar issues are present in other problem settings. For
strongly convex optimization, Wang et al. (2020) proposed
the SADAM algorithm as a variant of ADAMNC, which ex-
ploits strong convexity to obtain O

(
log T

)
regret. SADAM

was shown to exhibit favorable practical performance in the
experimental results of Wang et al. (2020). However, the
same discrepancy exists as with previous ADAM variants: a
linearly decreasing β1t schedule is required in theory but a
constant β1t = β1 is used in practice.

One work that tried to address this issue is that of Fang &
Klabjan (2019), where the authors focused on OCO with
strongly convex loss functions and derived anO(

√
T ) regret

bound with a constant value of β1 ≤ µα
1+µα , where µ is the

strong convexity constant and α is the step size that is set
as α1/

√
T . (Fang & Klabjan, 2019, Theorem 2). However,

this result is still not satisfactory, since the obtained bound
for β1 is weak: both strong convexity µ and the step size
α1√
T

are small. This does not allow for the standard choices
of β1 ∈ (0.9, 0.99).

Moreover, a quick look into the proof of Fang & Klabjan
(2019, Theorem 2) reveals that the proof in fact follows
the same lines as Reddi et al. (2018) with the difference of
using the contribution of strong convexity to get rid of the
spurious terms that require β1 → 0. Therefore, it is not
surprising that the theoretical bound for β1 depends on µ
and α and can only take values close to 0. Second, in addi-
tion to the standard Assumption 1, Fang & Klabjan (2019)
also assumes strong convexity, which is a quite stringent
assumption by itself. In contrast, our approach does not
follow the lines of Reddi et al. (2018), but is an alternative
way that does not encounter the same roadblocks.

2.2. Nonconvex world

A related direction to what we have reviewed in the previous
subsection is to analyze ADAM-type algorithms without
convexity assumptions. When convexity is removed, the
standard setting in which the algorithms are analyzed, is
stochastic optimization with a smooth loss function and no
constraints (Chen et al., 2019a; Zhou et al., 2018; Zou et al.,
2019). As a result, these algorithms, compared to the convex
counterparts, do not perform projections in the update step
of xt+1 (cf., Algorithm 1).

In addition to smoothness, bounded gradients are assumed,
which is also restrictive, as many nonconvex functions do
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not satisfy this property. Indeed, one can show that it is
equivalent to the Lipschitz continuity of the function (not
its gradient!). Under these assumptions, the standard results
bound the minimum gradient norm across all iterations.

An interesting phenomenon in this line of work is that a
constant β1 < 1 is permitted for the theoretical results,
which may seem like weakening our claims. However, it is
worth noting that these results do not imply any guarantee
for regret in OCO setting.

Indeed, adding the convexity assumption to the setting of
unconstrained, smooth stochastic optimization, would only
help obtaining a gradient norm bound in the averaged iterate,
rather than the minimum across all iterations. However,
this bound does not imply any guarantee in the objective
value, unless more stringent Polyak-Lojasiewicz or strong
convexity requirements are added in the mix.

Moreover, in the OCO setting that we analyze, loss functions
are nonsmooth, and there exists a constraint onto which a
projection is performed in the xt+1 step (cf., Algorithm 1).
Finally, online optimization includes stochastic optimization
as a special case. Given the difference of assumptions, the
analyses in (Chen et al., 2019a; Zhou et al., 2018; Zou et al.,
2019) indeed do not help obtaining any regret guarantee for
standard OCO.

A good example demonstrating this difference on the set
of assumptions is the work (Chen et al., 2019b). In this
paper, a variant of AMSGRAD is proposed for zeroth order
optimization and it is analyzed in the convex and nonconvex
settings. Consistent with the previous literature in both, con-
vergence result for the nonconvex setting allows a constant
β1 < 1 (Chen et al., 2019b, Theorem 1). However, the
result in the convex setting requires a decreasing schedule
such that β1t = β1

t (Chen et al., 2019b, Proposition 4).

As we highlighted above, the analyses in convex/nonconvex
settings follow different paths and the results or techniques
are not transferrable to each other. Thus, our main aim in
this paper is to bridge the gap in the understanding of regret
analysis for OCO and propose a new analytic framework.
As we see in the sequel, our analysis not only gives the first
results in OCO setting, it is also general enough to apply
to the abovementioned nonconvex optimization case and
recover similar results as the existing ones.

3. Main results
3.1. Dissection of the standard analysis

We start by describing the shortcoming of the previous ap-
proaches in (Reddi et al., 2018; Wang et al., 2020) and,
then explain the mechanism that allows us to obtain regret
bounds with constant β1. In this subsection, for full gener-
ality, we assume that the update for mt is not done with β1,
but with β1t, as in (Reddi et al., 2018; Kingma & Ba, 2014):

mt = β1tmt−1 + (1− β1t)gt. (4)

The standard way to analyze Adam-type algorithms is to
start by the nonexpansiveness property (3) and to write

‖xt+1 − x‖2v̂1/2t

≤ ‖xt − x‖2v̂1/2t

− 2αt〈mt, xt − x〉

+ α2
t ‖mt‖2v̂−1/2

t

.

Then using (4), one can deduce

(1− β1t)〈gt, xt − x〉 ≤ −β1t〈mt−1, xt − x〉

+
αt
2
‖mt‖2v̂−1/2

t

+
1

2αt

(
‖xt − x‖2v̂1/2t

− ‖xt+1 − x‖2v̂1/2t

)
.

Let us analyze the above inequality. Its left-hand side is
exactly what we want to bound, since by convexity R(T ) ≤∑T
t=1〈gt, xt − x〉. The last two terms in the right-hand side

are easy to analyze, all of them can be bounded in a standard
way using just definitions of v̂t, mt, and αt.

What can we do with the term −β1t〈mt−1, xt − x〉? Analy-
sis in (Reddi et al., 2018) bounds it with Young’s inequality

− β1t〈mt−1, xt − x〉 ≤
β1t
2αt
‖xt − x‖2v̂1/2t

+
β1tαt
2
‖mt−1‖2v̂−1/2

t

.

The term β1t

2αt
‖xt−x‖2

v̂
1/2
t

is precisely what leads to the sec-

ond term in the regret bound in (Reddi et al., 2018, Theorem
4). Since αt = α√

t
, one must require β1t → 0.

Note that the update for xt+1 has a projection. This is
important, since otherwise a solution must lie in the interior
of X , which is not the case in general for problems with a
compact domain. However, let us assume for a moment that
the update for xt+1 does not have any projection. In this
simplified setting, applying the following trick will work.

Recall that xt = xt−1 − αt−1v̂−1/2t−1 mt−1, or equivalently
mt−1 = 1

αt−1
v̂
1/2
t−1(xt−1 − xt). Plugging it into the error

term 〈mt−1, xt − x〉 yields

− 〈mt−1, xt − x〉 = −
1

αt−1
〈v̂1/2t−1(xt−1 − xt), xt − x〉

=
1

2αt−1

[
‖xt − xt−1‖2v̂1/2t−1

+ ‖xt − x‖2v̂1/2t−1

− ‖xt−1 − x‖2v̂1/2t−1

]
≤ 1

2
αt−1‖mt−1‖2v̂−1/2

t−1

+
1

2
‖xt − x‖2v̂1/2t /αt

− 1

2
‖xt−1 − x‖2v̂1/2t−1/αt−1

,
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where the second equality follows from the Cosine Law and
the first inequality is from xt − xt−1 = −αt−1v̂−1/2t−1 mt−1

and v̂1/2t /αt ≥ v̂
1/2
t−1/αt−1. We now compare this bound

with the previous one. The term αt−1‖mt−1‖2
v̂
−1/2
t−1

, as we

already observed, is good for summation. And other two
terms are going to cancel after summation over t. Hence,
it is easy to finish the analysis to conclude O(

√
T ) regret

with a fixed β1t = β1.

Unfortunately, the update for xt+1 does have a projection,
without it the assumption for the domain to be bounded
is very restrictive. This prevents us from using the above
trick. Its message, however, is that it is feasible to expect
a good bound even with a fixed β1t, and under the same
assumptions on the problem setting.

For having a more general technique to handle β1, we will
take a different route in the very beginning — we will an-
alyze the term 〈gt, xt − x〉 in a completely different way,
without resorting to any crude inequality as in (Reddi et al.,
2018). Basically, this idea can be applied to any framework
with a similar update for the moment mt.

3.2. A key lemma

As we understood above, the presence of the projection com-
plicates handling 〈mt−1, xt − x〉. A high level explanation
for the cause of the issue is that the standard analysis does
not leave much flexibility, since it uses nonexpansiveness in
the very beginning.

Lemma 1. Under the definition

mt = β1mt−1 + (1− β1)gt,

it follows that

〈gt, xt − x〉 = 〈mt−1, xt−1 − x〉

− β1
1− β1

〈mt−1, xt − xt−1〉

+
1

1− β1
(〈mt, xt − x〉 − 〈mt−1, xt−1 − x〉) .

The main message of Lemma 1 is that the decomposition of
mt, in the second part of the analysis in Section 3.1 is now
done before using nonexpansiveness, therefore there would
be no need for using Young’s inequality which is the main
shortcoming of the previous analysis.

Upon inspection on the bound, it is now easy to see that
the last two terms will telescope. The second term can be
shown to be of the order αt‖mt‖2

v̂
−1/2
t

, and as we have seen

before, summing this term will give O
(√
T
)
. To see that

the first term is also benign, a high level explanation is to
notice that mt−1 is the gradient estimate used in the update

xt = xt−1 − αt−1v̂−1/2t−1 mt−1, therefore it can be analyzed
in the classical way.

We proceed to illustrate the flexibility of the new analysis on
three popular ADAM variants that are proven to converge.

3.3. AMSGRAD

AMSGRAD is proposed by (Reddi et al., 2018) as a fix to
ADAM. The algorithm incorporates an extra step to enforce
monotonicity of second moment estimator v̂t.

Algorithm 1 AMSGRAD (Reddi et al., 2018)
1: Input: x1 ∈ X , αt = α√

t
, α > 0, β1 < 1, β2 < 1,

m0 = v0 = 0, v̂0 = ε1, ε ≥ 0
2: for t = 1, 2 . . . do
3: gt ∈ ∂ft(xt)
4: mt = β1mt−1 + (1− β1)gt
5: vt = β2vt−1 + (1− β2)g2t
6: v̂t = max(v̂t−1, vt)

7: xt+1 = P
v̂
1/2
t

X (xt − αtv̂−1/2t mt)
8: end for

The regret bound for this algorithm in (Reddi et al., 2018,
Theorem 4, Corollary 1) requires a decreasing β1 at least at
the order of 1/t to obtain O

(√
T
)

worst case regret. More-
over, it is easy to see that a constant β1 results in O

(
T
√
T
)

worst case regret in (Reddi et al., 2018, Theorem 4).

We now present the following theorem which shows that
the sameO

(√
T
)

can be obtained by AMSGRAD under the
same structural assumptions as (Reddi et al., 2018).

Theorem 1. Under Assumption 1, β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, and ε > 0, AMSGRAD achieves the regret

R(T ) ≤ D2
√
T

2α(1− β1)

d∑
i=1

v̂
1/2
T,i

+
α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

g2t,i. (5)

We would like to note that our bound for R(T ) is also better
than the one in (Reddi et al., 2018) in term of constants.
We have only two terms in contrast to three in (Reddi et al.,
2018) and each of them is strictly smaller than their coun-
terparts in (Reddi et al., 2018). The reason is that we used
i) new way of decomposition 〈gt, xt − x〉 as in Lemma 1,
ii) wider admissible range for β1, β2, iii) more refined esti-
mates for analyzing terms. For example, the standard anal-
ysis to estimate ‖mt‖2

v̂
−1/2
t

uses several Cauchy-Schwarz

inequalities. We instead give a better bound by applying gen-
eralized Hölder inequality (Beckenbach & Bellman, 1961).
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Another observation is that having a constant β1 explicitly
improves the last term in the regret bound. If one uses a
non-decreasing β1, instead of constant β1, then this term
will have an additional multiple of 1

(1−β1)2
. Given that in

general one chooses β1 close to 1, this factor is significant.

Remark 1. Notice that Theorem 1 requires ε > 0 in order
to have the weighted projection operator in (2) well-defined.
Such a requirement is common in the literature for theo-
retical analysis, see (Duchi et al., 2011, Theorem 5). In
practice, however, one can set ε = 0.

Proof sketch. We sum 〈gt, xt − x〉 from Lemma 1 over t,
use m0 = 0 to get

T∑
t=1

〈gt, xt − x〉 ≤
T∑
t=1

〈mt, xt − x〉︸ ︷︷ ︸
S1

+
β1

1− β1

T∑
t=1

〈mt−1, xt−1 − xt〉︸ ︷︷ ︸
S2

+
β1

1− β1
〈mT , xT − x〉︸ ︷︷ ︸

S3

.

By Hölder inequality, we can show that

S2 ≤
T−1∑
t=1

αt‖mt‖2v̂−1/2
t

.

By using the fact that v̂t,i ≥ v̂t−1,i, and the same estimation
as deriving S2,

S1 ≤
D2

2αT

d∑
i=1

v̂
1/2
T,i +

T∑
t=1

αt
2
‖mt‖2v̂−1/2

t

.

By Hölder and Young’s inequalities, we can bound S3 as

S3 ≤ αT ‖mT ‖2v̂−1/2
T

+
D2

4αT

d∑
i=1

v̂
1/2
T,i .

Lastly, we see that αt‖mt‖2
v̂
−1/2
t

is common in all these

terms and it is well known that this term is good for summa-
tion

T∑
t=1

αt‖mt‖2v̂−1/2
t

≤ (1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

(

T∑
t=1

g2t,i)
1
2 .

Combining the terms gives the final bound.

Finally, if we are interested in the worst case scenario, it is
clear that Theorem 1 gives regret R(T ) = O(

√
log(T )T ).

A quick look into the calculations yields that if one uses the
worst case bound gt,i ≤ G, then the bound will not include
a logarithmic term. However, then the data-dependence of
the bound will be lost. It is not clear if one can obtain a data-
dependent O(

√
T ) regret bound. In the following corollary,

we give a partial answer to this question.

Corollary 1. Under Assumption 1, β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, and ε > 0, AMSGRAD achieves the regret

R(T ) ≤ D2
√
T

2α(1− β1)

d∑
i=1

v̂
1/2
T,i

+
α
√
G√

1− β2(1− γ)

d∑
i=1

√√√√ T∑
t=1

|gt,i|. (6)

We remark that even though this bound does not con-
tain a log(T ) term, thus better in the worst-case, its data-
dependence is actually worse than the standard bound. Stan-
dard bound contains g2t,i whereas bound above contains
|gt,i|. Therefore, when the values gt,i are very small, the
bound with log T can be better. We leave it as an open ques-
tion to have a

√
T bound with the same data-dependence as

the original bound.

3.4. ADAMNC

Another variant that is proposed by Reddi et al. (2018) as
a fix to ADAM is ADAMNC which features an increasing
schedule for β2t. In particular, one sets β2t = 1− 1

t in

vt = β2tvt−1 + (1− β2t)g2t ,

that results in the following expression for vt

vt =
1

t

t∑
j=1

g2j ,

which is a reminiscent of ADAGRAD (Duchi et al., 2011).

In fact, to ensure that P v
1/2
t

X is well-defined, one needs to

consider the more general update vt = 1
t

(∑t
j=1 g

2
j + ε1

)
similar to the previous case with AMSGRAD.

ADAMNC is analyzed in (Reddi et al., 2018, Theorem 5,
Corollary 2) and similar to AMSGRAD it has been shown to
exhibit O

(√
T
)

worst case regret only when β1 decreases
to 0. We show in the following theorem that the same regret
can be obtained with a constant β1.

Theorem 2. Under Assumption 1, β1 < 1, and ε > 0,
ADAMNC achieves the regret

R(T ) ≤ D2
√
T

2α(1− β1)

d∑
i=1

v
1/2
T,i +

2α

1− β1

d∑
i=1

√√√√ T∑
t=1

g2t,i.
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Algorithm 2 ADAMNC (Reddi et al., 2018)
1: Input: x1 ∈ X , αt = α√

t
, α > 0, β1 < 1, ε ≥ 0,

m0 = 0.
2: for t = 1, 2 . . . do
3: gt ∈ ∂ft(xt)
4: mt = β1mt−1 + (1− β1)gt
5: vt =

1
t

(∑t
j=1 g

2
j + ε1

)
6: xt+1 = P vt

1/2

X (xt − αtvt−1/2mt)
7: end for

We skip the proof sketch of this theorem as it will have
the same steps as AMSGRAD, just different estimation for
αt‖mt‖2

v
−1/2
t

, due to different vt.

The full proof is given in the appendix.

Compared with the bound from (Reddi et al., 2018, Corol-
lary 2), we see again that constant β1 not only removes
the middle term of (Reddi et al., 2018, Corollary 2) but
improves the last term of the bound by a factor of (1− β1)2.

3.5. SADAM

It is known that ADAGRAD can obtain logarithmic re-
gret (Duchi et al., 2010), when the loss functions satisfy
µ-strong convexity, defined as f(x) ≥ f(y) + 〈g, x− y〉+
µ
2 ‖y − x‖

2, ∀x, y ∈ X and g ∈ ∂f(y).

A variant of ADAMNC for this setting is proposed in (Wang
et al., 2020, Theorem 1) and shown to obtain logarithmic
regret, only with the assumption that β1 decreases linearly
to 0.

Algorithm 3 SADAM (Wang et al., 2020)
1: Input: x1 ∈ X , αt = α

t , α > 0, β1 < 1, m0 = 0,
ε ≥ 0, β2t = 1− 1/t.

2: for t = 1, 2 . . . do
3: gt ∈ ∂ft(xt)
4: mt = β1mt−1 + (1− β1)gt
5: vt = β2tvt−1 + (1− β2t)g2t
6: v̂t = vt +

ε1
t

7: xt+1 = P v̂tX (xt − αtv̂−1t mt)
8: end for

Similar to AMSGRAD and ADAMNC, our new technique
applies to SADAM to show logarithmic regret with a constant
β1 under the same assumptions as (Wang et al., 2020).

Theorem 3. Let Assumption 1 hold and ft be µ-strongly
convex, ∀t. Then, if β1 < 1, ε > 0, and α ≥ G2

µ , SADAM
achieves

R(T ) ≤ β1dGD

1− β1
+

α

1− β1

d∑
i=1

log

(∑T
t=1 g

2
t,i

ε
+ 1

)
.

Consistent with the standard literature of OGD (Hazan et al.,
2007), to obtain the logarithmic regret, first step size α
has a lower bound that depends on strong convexity con-
stant µ. Compared with the requirement of (Wang et al.,
2020) for α ≥ G2

µ(1−β1)
, our requirement is strictly milder

as 1− β1 ≤ 1 and in practice since β1 is near 1, it is much
milder. We also remark that our bound is again strictly bet-
ter than (Wang et al., 2020). Consistent with our previous
results, we remove a factor of 1

(1−β1)2
from the last term of

the bound, compared to (Wang et al., 2020, Theorem 1).

We include the proof sketch to highlight how strong convex-
ity helps in the analysis.

Proof sketch. We will start the same as proof sketch of The-
orem 1 to get

T∑
t=1

〈gt, xt − x〉 ≤ S1 +
β1

1− β1
S2 +

β1
1− β1

S3,

with the definitions of S1, S2, S3 from the proof sketch of
Theorem 1.

Now, due to strong convexity, one gets an improved estimate
for the left-hand side,

〈gt, xt − x〉 ≥ ft(xt)− ft(x) +
µ

2
‖xt − x‖2,

resulting in

R(T ) ≤ S1 +
β1

1− β1
S2 +

β1
1− β1

S3

−
T∑
t=1

µ

2
‖xt − x‖2. (7)

Similar as before, we note the bound for S2 as

S2 ≤
T−1∑
t=1

αt‖mt‖2v̂−1/2
t

. (8)

For S1, one does not finish the estimation as before, but keep
some terms that will be gotten rid of using strong convexity,
and use the same estimation as S2 to obtain

S1 ≤
T∑
t=1

d∑
i=1

(
v̂t,i
2αt
− v̂t−1,i

2αt−1

)
(xt,i − xi)2

+

T∑
t=1

αt
2
‖mt‖2v̂−1/2

t

. (9)

As strong convexity gives more flexibility in the analysis,
one can select αt = α

t , resulting in an improved bound

T∑
t=1

αt
2
‖mt‖2v̂−1/2

t

≤ α
d∑
i=1

log

(∑T
t=1 g

2
t,i

ε
+ 1

)
. (10)
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It is now easy to see that the negative term in (7), when first
step size α is selected properly, can be used to remove the
first term in the bound of (9).

It only remains to use Hölder inequality on S3, combine the
estimates and use (10) to get the final bound.

4. Extensions
In this section, we further demonstrate the applicability
of our analytic framework in different settings. First, we
focus on the recently proposed zeroth-order version of
AMSGRAD which required decreasing β1 in the convex
case (Chen et al., 2019b, Proposition 4), and we show that
the same guarantees can be obtained with constant β1. Sec-
ond, we show how to recover the known guarantees in the
nonconvex setting, with small improvements. Finally, we
extend our analysis to show that it allows any non-increasing
variable β1t schedule.

4.1. Zeroth order ADAM

We first recall the setting of (Chen et al., 2019b), where
a zeroth order variant of AMSGRAD is proposed. The
problem is

x? ∈ argmin
x∈X

f(x) := Eξ [f(x; ξ)] . (11)

We note that this stochastic optimization setting corresponds
to a special case of general OCO, with independent and
identically distributed loss functions f(x; ξ), indexed by ξ.

The algorithm ZO-AdaMM (Chen et al., 2019b) is similar to
AMSGRAD applied with a zeroth order gradient estimator
ĝt, instead of regular gradient gt. The gradient estimator is
computed by

ĝt = (d/µ) [f(xt + µu; ξt)− f(xt; ξt)]u, (12)

where ξt is the sample selected at iteration t, u is a random
vector drawn with uniform distribution from the sphere
of a unit ball and µ is a sampling radius, or smoothing,
parameter.

The benefit of this gradient estimator is that it is an unbiased
estimator of the randomized smoothed version of f , i.e.,

fµ(x) = Eu∼UB
[f(x+ µu)] . (13)

From standard results in the zeroth-order optimization lit-
erature, it follows that Eu [ĝt] = ∇fµ(xt, ξt) = ∇ft,µ(xt).
Moreover, for Lc-Lipschitz f and any x ∈ X , we also have
‖fµ(x)− f(x)‖ ≤ µLc.

Two cases are analyzed by Chen et al. (2019b): convex f and
nonconvex f . The authors proved guarantees with constant
β1 for nonconvex f (Chen et al., 2019b, Proposition 2).

However, surprisingly, their result for convex f requires
β1t =

β1

t (Chen et al., 2019b, Proposition 4).

We identify that this discrepancy is due to the fact that their
proof follows the same path as the standard regret analysis
of Reddi et al. (2018). We give below a simple corollary of
our technique showing that the same guarantees for convex
f can be obtained with constant β1.

Proposition 1. Assume that f is convex, L-smooth, and Lc-
Lipschitz, X is compact with diameter D. Then ZO-AdaMM
with β1, β2 < 1, γ =

β2
1

β2
< 1 achieves

E

[
T∑
t=1

ft,µ(xt)− ft,µ(x?)

]
≤

D2
√
T

2α(1− β1)

d∑
i=1

E
[
v̂
1/2
T,i

]

+
α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

E
[
ĝ2t,i
]
.

To finish the arguments, one can use standard bounds in
zeroth order optimization, as in Chen et al. (2019b). Com-
pared with Chen et al. (2019b, Proposition 4), the same
remarks hold as for AMSGRAD. Not only our result allows
constant β1, but it also comes with better constants.

4.2. Nonconvex AMSGRAD

In this section, we focus on the nonconvex, unconstrained,
smooth, stochastic optimization setting:

min
x∈Rd

f(x) := Eξ[f(x; ξ)].

More concretely, in this subsection we are working under
the following assumption.

Assumption 2.
. f : Rd → R is L-smooth, G = max

t
‖∇f(xt)‖∞

. ft(x) = f(x, ξt)

. x? ∈ argminx f(x) exists.

This is the only setting where theoretical guarantees with
constant β1 are known in the literature. We show in this
section that our new analysis framework is not restricted to
convex case, but it is flexible enough to also cover this case.
We provide an alternative proof to those given in (Chen et al.,
2019a; Zhou et al., 2018). Specifically, both proofs in (Chen
et al., 2019a; Zhou et al., 2018) exploits the fact that, as
X = Rd, there is no projection step in AMSGRAD. To
handle first-order moment, these papers define an auxiliary
iterate zt = xt +

β1

1−β1
(xt − xt−1), and invoke smoothness

with zt+1 and zt.
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We give a different and simpler proof using our new analysis,
without defining zt. In terms of guarantees, we recover the
same rates, with slightly better constants.
Theorem 4. Under Assumption 2, β1 < 1, β2 < 1, and
γ =

β2
1

β2
< 1 AMSGRAD achieves

1

T

T∑
t=1

E
[
‖∇f(xt)‖2

]
≤ 1√

T

[
G

α
(f(x1)− f(x?))

+
G3

(1− β1)
‖v̂−1/20 ‖1 +

G3d

4Lα(1− β1)

+
2GLdα(1− β1)(1 + log T )

(1− β2)(1− γ)

]
.

Compared with (Chen et al., 2019a, Corollary 3.1), the
initial value of v0 = ε only affects one of the terms in our
bound, whereas 1

ε appears in all the terms of (Chen et al.,
2019a, Corollary 3.1). The reason is that (Chen et al., 2019a)
uses v0 ≥ ε in many places of the proof, even when it was
unnecessary.

Compared with (Zhou et al., 2018, Corollary 3.9), our result
allows for bigger values of β1, since we require β2

1 ≤ β1 <
1 whereas (Zhou et al., 2018, Corollary 3.9) requires β1 ≤
β2 < 1. Moreover, (Zhou et al., 2018, Corollary 3.9) has a
constant step size α = 1√

dT
that requires setting a horizon

and becomes very small with large d.

Lastly, we have a log T dependence, whereas (Zhou et al.,
2018, Corollary 3.9) does not. However, this is not for
free and it stems from the choice of a constant step size
αt =

1√
dt

therein. In fact, it is well known that for online
gradient descent analysis, log T can be shaved when αt ≈
1√
T

. However, in practice using a variable step size is more
favorable, since it does not require setting T in advance.
Therefore, we choose to work with variable step size and
have the log T term in the bound.

4.3. Flexible β1 schedules

We have focused on the case of constant β1 throughout our
paper, as it is the most popular choice in practice. However,
it is possible that in some applications, practitioners might
see benefit of using other schedules. For instance, one can
decrease β1 until some threshold and keep it constant after-
wards. This is not covered by the previous regret analyses
as β1 needed to decrease to 0. With our framework however,
one can use not only constant β1, but any schedule as long
as it is nonincreasing, and optimal regret bounds will follow.

Due to space constraints, we do not repeat all the proofs
with this modification, but illustrate the main change that
happens with variable β1 and show that our proofs will go
through. In this section we switch to notation of β1t to
illustrate time-varying case.

We start from the result of Lemma 1, after summing over
t = 1, . . . , T

T∑
t=1

〈gt, xt − x〉 =
T∑
t=1

〈mt−1, xt−1 − x〉

+

T∑
t=1

1

1− β1t
(〈mt, xt − x〉 − 〈mt−1, xt−1 − x〉)

−
T∑
t=1

β1t
1− β1t

〈mt−1, xt − xt−1〉. (14)

For bounding the terms on the first and third lines of (14),
the only place that will change with varying β1t in the proof,
is that αt‖mt‖2

v̂
−1/2
t

will have a slightly different estimation,

since now mt =
∑t
j=1

∏t−j
k=1 β1(t−k+1)(1 − β1j)g2j . One

can use that β1t ≤ β1 to obtain the same bounds, but with
1

(1−β1)2
factor multiplying the bounds now. As explained

before, this is one thing we lose with varying β1t in theory.

Next, we estimate the terms in the second line of (14)

1

1− β1t
(〈mt, xt − x〉 − 〈mt−1, xt−1 − x〉) =

1

1− β1t
〈mt, xt − x〉 −

1

1− β1(t−1)
〈mt−1, xt−1 − x〉

+

(
β1(t−1) − β1t

(1− β1t)(1− β1(t−1))

)
〈mt−1, xt−1 − x〉.

Now, for the last line we use that β1t is non-increasing,
β1t ≤ β1, ‖mt‖1 ≤ dG and ‖xt − x‖∞ ≤ D, to get(

β1(t−1) − β1t
(1− β1t)(1− β1(t−1))

)
〈mt−1, xt−1 − x〉

≤ dDG

(1− β1)2
(
β1(t−1) − β1t

)
. (15)

Thus upon summation over t = 1 to T , as m0 = 0,

T∑
t=1

1

1− β1t
(〈mt, xt − x〉 − 〈mt−1, xt−1 − x〉) ≤

1

1− βT
〈mT , xT − x〉+

dDG

(1− β1)2
(β10 − β1T ), (16)

where we let β10 = β11 < 1. Indeed, the contribution
of this term will only be constant as (1 − β1t) ≤ 1,∀t,
‖mt‖∞ ≤ G, ‖xt − x‖∞ ≤ D.

Note that the estimation of the terms on the first and third
lines of (14) are the same, as in the constant β1 case (up
to constants). Also, the contribution of the terms in the
second line of (14) with varying β1t is a constant. Thus, one
can repeat our proofs, with any nonincreasing β1t schedule
and obtain the same optimal regret bounds, but with worse
constants (compared to constant β1 case).
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