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Proof of Lemma 1
For simplicity, below we will omit the source of the randomness for the various estimators. Implicitly, the randomness is
from minibatching in SGD, and from the normal random increments in the discretization of SGD (which we wil can dSGF).

By taking expectations in the SGD iteration, we find

Eβ(k) = Eβ(k−1) + ε · E 1

n
XT (y −Xβ(k−1)).

This identity only uses that the stochastic gradients are unbiased estimators for the true gradients. Thus, it is true even more
generally for any loss function, not just for quadratic loss. However, for quadratic loss, we have a very special property,
namely that the gradient is linear in the parameter. Using this, we can move the expectation inside, and we find

Eβ(k) = Eβ(k−1) + ε · 1

n
XT (y −XEβ(k−1)).

From this, it follows by a direct induction argument that Eβ(k) = β
(k)
gd , where β(k)

gd is the gradient descent iteration with

learning rate ε started from 0. Indeed, for k = 0, we have Eβ(k) = β
(k)
gd = 0. Next, the two sequences satisfy the same

recurrence. Hence the induction finishes the argument.

A similar reasoning holds for dSGF. This shows that EZ̃ β̃(k) = EI1,...,Ikβ(k).

By taking the covariance of the SGD iteration, conditionally on the previous iterate β(k−1), we find

Cov[β(k)|β(k−1)] = ε2 · Cov

[
1

m
XT
Ik(yIk −XIkβ(k−1))− 1

n
XT (y −Xβ(k−1))

]
= ε ·Qε(β(k−1)).

Note that the definition of Q already includes an ε. This shows that the conditional covariance of the SGD iterate, conditoned
on the previous iterate, is the same as for dSGF. As before, this observation holds not just for quadratic objectives, but
also for general objectives. However, noting that Q is a quadratic function of the parameter, it follows from an inductive
argument that the covariance matrix of the iterates β(k) and β̃(k) equals at every iteration. Indeed, the reason is that the
covariance at each iteration only depends on second order statistics of the previous iteration (including the mean and the
covariance), and so the induction step will hold. This shows that CovZ̃ β̃

(k) = CovI1,...,Ikβ
(k), finishing the proof.

We can also find the explicit form of the recursion. While this is not required in the statement of the lemma, it is used in our
numerical examples.
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Cov[β(k)] = ECov[β(k)|β(k−1)]

=
ε2

mn

n∑
i=1

E(yi − xTi β(k−1))2xix
T
i −

ε2

mn2
E(

n∑
i=1

E(yi − xTi β(k−1))xi)
⊗2

For the first term, we can write

=
ε2

mn

n∑
i=1

E(yi − xTi Eβ(k−1) + xTi Eβ(k−1) − xTi β(k−1))2xix
T
i

=
ε2

mn

n∑
i=1

(yi − xTi β
(k−1)
gd )2xix

T
i +

ε2

mn

n∑
i=1

[xTi (Eβ(k−1) − β(k−1))]2xix
T
i

=
ε2

mn

n∑
i=1

(yi − xTi β
(k−1)
gd )2xix

T
i +

ε2

mn

n∑
i=1

xTi Cov[β(k−1)]xi · xixTi .

For the first term, we can write

n∑
i=1

E(yi − xTi β(k−1))xi =

n∑
i=1

(yi − xTi Eβ(k−1))xi

=

n∑
i=1

(yi − xTi β
(k−1)
gd )xi +

n∑
i=1

xTi [β
(k−1)
gd − Eβ(k−1)]xi

=

n∑
i=1

(yi − xTi β
(k−1)
gd )xi +

n∑
i=1

nΣ̂[β
(k−1)
gd − Eβ(k−1)]

so

ε2

mn2
E(

n∑
i=1

E(yi − xTi β(k−1))xi)
⊗2

=
ε2

mn2
[

n∑
i=1

(yi − xTi β
(k−1)
gd )xi]

⊗2 +
ε2

m
E[Σ̂[β

(k−1)
gd − Eβ(k−1)]]⊗2

=
ε2

mn2
[

n∑
i=1

(yi − xTi β
(k−1)
gd )xi]

⊗2 +
ε2

m
Σ̂Cov[β(k−1)]Σ̂.

This gives an explicit linear recursion for the covariance matrices. The first term can be viewed as a covariance matrix of the
gradients evaluated at the mean value of the process (i.e., at the value of the GD iteration). The second term depends on the
covariance of the previous iteration.

Proof of Lemma 2
As the diffusion coefficient Qε(β(t))1/2 is Lipschitz continuous and positive semidefinite, standard results from numerical
analysis (e.g., Øksendal (2003)) show that the solution to the differential equation (4) exists and is unique.

Now consider the process β̃(t) = exp(tΣ̂)β(t). By Ito’s lemma,

dβ̃(t) = Σ̂ exp(tΣ̂)β(t)dt+ exp(tΣ̂)dβ(t).

Plugging in the expression for dβ(t) from (4) and simplifying, we see that

dβ̃(t) = exp(tΣ̂)
( 1

n
XT y

)
dt+ exp(tΣ̂)Qε(β(t))1/2dW (t),
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or, equivalently,

β̃(t) =

∫ t

0

exp(τ Σ̂)
( 1

n
XT y

)
dτ +

∫ t

0

exp
(
τ Σ̂
)
Qε(β(τ))1/2dW (τ).

Changing variables back yields

β(t) = exp(−tΣ̂) ·
∫ t

0

exp(τ Σ̂)
( 1

n
XT y

)
dτ + exp(−tΣ̂) ·

∫ t

0

exp(τ Σ̂)Qε(β(τ))1/2dW (τ).

Considering only the first integral above, by arguments similar to those given in Lemma 1 of Ali et al. (2018), we obtain∫ t

0

exp(τ Σ̂)
( 1

n
XT y

)
dτ =

(
exp(tΣ̂)− I

)
(XTX)+XT y,

and so

exp(−tΣ̂) ·
∫ t

0

exp(τ Σ̂)
( 1

n
XT y

)
dτ = (XTX)+

(
I − exp(−tΣ̂)

)
XT y = β̂gf(t),

which gives the result.

Proof of Lemma 3
To keep things simple, we prove the result using the uncentered covariance matrix of the stochastic gradients, i.e., we
let Qε(β̂sgf(t)) = (1/(nm))XTF (β̂sgf(t))X , where h(β) = (y1 − xT1 β, . . . , yn − xTnβ) are the residuals at β, and
F (β) = diag(h(β))2. A similar result holds for the actual covariance matrix, but it is a little difficult to interpret.

Calculations similar to those given in Lemma 4 (appearing below) show

EZ‖β̂sgf(t)− β̃sgf(t)‖22 = E
∫ t

0

tr

[
exp((τ − t)Σ̂)

(
Qε(β̂

sgf(τ))1/2 −
( ε
m
· Σ̂
)1/2

)2

exp((τ − t)Σ̂)

]
dτ.

Continuing on, and writing L = λmax(Σ̂), we have

EZ‖β̂sgf(t)− β̃sgf(t)‖22 = EZ
∫ t

0

tr

[(
Qε(β̂

sgf(τ))1/2 −
( ε
m
· Σ̂
)1/2

)2

exp(2(τ − t)Σ̂)

]
dτ

= EZ
∫ t

0

tr

[
V T

(
Qε(β̂

sgf(τ))1/2 −
( ε
m
· Σ̂
)1/2

)2

V exp(2(τ − t)S)

]
dτ

≤ EZ
∫ t

0

tr

[
V T

(
Qε(β̂

sgf(τ))1/2 −
( ε
m
· Σ̂
)1/2

)2

V

]
tr
[

exp(2(τ − t)S)
]
dτ

≤ 4Lp2ε

m
·
∫ t

0

n∑
i=1

EZ
[∣∣(yi − xTi β̂sgf(τ))2 − 1

∣∣]tr [ exp(2(τ − t)Σ̂)
]
dτ

≤ 4Lp3ε

m
·
∫ t

0

n∑
i=1

EZ
[∣∣(yi − xTi β̂sgf(τ))2 − 1

∣∣]dτ,
where we used the eigendecomposition Σ̂ = V SV T on the second line, the helper Lemma S.1 (appearing below) on the
third, the helper Lemma S.2 (appearing below) on the fourth, and the fact that the map A 7→ tr exp(A) is operator monotone
on the fifth. This proves the result.

Lemma S.1. Let A ∈ Rn×n be a nonnegative diagonal matrix, and B ∈ Rn×n be a positive semidefinite matrix. Then
tr (AB) ≤ tr (A)tr (B).
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Proof. Write tr (AB) =
∑n
i=1AiiBii. Cauchy-Schwarz shows that

n∑
i=1

AiiBii ≤
( n∑
i=1

A2
ii

)1/2( n∑
i=1

B2
ii

)1/2

.

Using the simple fact that ‖x‖2 ≤ ‖x‖1, along with the fact that A,B have nonnegative diagonal entries, now yields the
result.

Lemma S.2. Fix y, X and β. Let h(β) = (y1 − xT1 β, . . . , yn − xTnβ) denote the residuals at β, and F (β) = diag(h(β))2.
Then,

tr

[(
Qε(β)1/2 −

( ε
m
· Σ̂
)1/2

)2]
≤ 4Lp2ε

m
· tr
[
|F (β)− I|

]
,

where the absolute value is to be interpreted elementwise.

Proof. Using the matrix perturbation inequality given in Lemma A.2 of Nguyen et al. (2019), we see that

tr

[(
Qε(β)1/2 −

( ε
m
· Σ̂
)1/2

)2]
=

∥∥∥∥∥Qε(β)1/2 −
( ε
m
· Σ̂
)1/2

∥∥∥∥∥
2

F

≤ p ·

∥∥∥∥∥Qε(β)1/2 −
( ε
m
· Σ̂
)1/2

∥∥∥∥∥
2

2

≤ 4p2 ·
∥∥∥Qε(β)− ε

m
· Σ̂
∥∥∥

2
. (S.1)

Noting the expression for the covariance matrix of the stochastic gradients given in (S.3), we obtain for (S.1) that

4p2 ·
∥∥∥Qε(β)− ε

m
· Σ̂
∥∥∥

2
=

4p2ε

m
·

∥∥∥∥∥ 1

n
XT
(
F (β)− I

)
X

∥∥∥∥∥
2

≤ 4Lp2ε

m
· ‖F (β)− I‖2

≤ 4Lp2ε

m
· tr
[
|F (β)− I|

]
.

Here, we let L = λmax(Σ̂), h(β) = (y1 − xT1 β, . . . , yn − xTnβ) denote the residuals at β, and F (β) = diag(h(β))2. This
shows the result.

Proof of Lemma 4
As β̂gf(t) is constant and the Brownian motion term in (4) has mean zero, we have

tr CovZ(β̂sgf(t)) = trEZ

[
exp(−tΣ̂)

(∫ t

0

exp(τ Σ̂)Qε(β̂
sgf(τ))1/2dW (τ)

)
(∫ t

0

exp(τ Σ̂)Qε(β̂
sgf(τ))1/2dW (τ)

)T
exp(−tΣ̂)

]
.

Using Ito’s isometry along with the linearity of the trace, we obtain

tr CovZ(β̂sgf(t)) = EZ
∫ t

0

tr

[
exp((τ − t)Σ̂)Qε(β̂

sgf(τ)) exp((τ − t)Σ̂)

]
dτ. (S.2)
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For the squared error loss, the covariance matrix of the stochastic gradients at β sampled with replacement has a relatively
well-known simplified form (cf. Hoffer et al. (2017); Zhang et al. (2017); Hu et al. (2017)). Let h(β) = (y1−xT1 β, . . . , yn−
xTnβ) denote the residuals at β, F (β) = diag(h(β))2, and F̃ (β) = n−1h(β)h(β)T . Then,

Qε(β) = CovI

(
1

m
XT
I (yI −XIβ)

)

=
1

nm
XT (F (β)− F̃ (β))X

� 1

nm
XTF (β)X. (S.3)

Letting A = exp((τ − t)Σ̂), the trace appearing in (S.2) may be expressed as
ε

mn
· tr
(
AXTF (β̂sgf(τ))XA

)
=

ε

mn
· tr
(
F (β̂sgf(τ))XA2XT

)
.

Since XA2XT is positive semidefinite, the matrix F (β̂sgf(τ))XA2XT is the product of a nonnegative diagonal matrix and
a positive semidefinite matrix; this satisfies the conditions of Lemma S.1, which yields the bound

tr
(
F (β̂sgf(τ))XA2XT

)
≤ tr

(
F (β̂sgf(τ))

)
tr (XA2XT ).

By straightforward manipulations, we see (1/n)tr (XA2XT ) = tr
(
Σ̂ exp(2(τ − t)Σ̂)

)
. Therefore, tr CovZ(β̂sgf(t)), as

in (S.2), may be bounded as

tr CovZ(β̂sgf(t)) ≤ ε

m
· EZ

∫ t

0

tr
(
F (β̂sgf(τ))

)
tr
(
Σ̂ exp(2(τ − t)Σ̂)

)
dτ

=
ε

m
·
∫ t

0

EZ
[
tr
(
F (β̂sgf(τ))

)]
tr
(
Σ̂ exp(2(τ − t)Σ̂)

)
dτ.

The equality followed by Fubini’s theorem (which applies here, since the product of the trace of a nonnegative diagonal
matrix and the trace of a positive semidefinite matrix, is nonnegative). As EZ

[
tr
(
F (β̂sgf(τ))

)]
= 2nf(β̂sgf(τ)), this shows

the result.

Proof of Lemma 5
In this lemma, it will be helpful to start slightly more generally, with the SDE for SGF on a general loss function g. The
specific proofs of this lemma are in Sections S.0.1 and S.0.2.

To approximate discrete time SGD with learning rate ε and batch size m, it is not hard to see that the same logic we have
used throughout the paper leads to the SDE

dβ(t) = −∇g(β(t))dt+ ησ(β(t))dW (t)

where σ(β(t))σ(β(t))T is the covariance of the gradients at parameter value β(t), and η = ε/
√
m.

We derive the SDE for the behavior of the loss function itself, for a general loss. For gradient flow on a loss function g, i.e.,
the dynamics dβ(t) = −∇g(β(t))dt, it is well known that the dynamics induced on the loss function is:

dg(β(t)) = −|∇g(β(t))|2dt.

This shows that the loss function is always non-increasing, i.e., that gradient flow is a descent method. In contrast, we will
find that the loss for stochastic gradient flow is not always non-increasing. We mention that a related calculation has been
performed in (Zhu et al., 2018), under different assumptions (starting from a local min, integrating over time), and for a
different purpose (to understand dynamics escaping local minima).
Proposition 1 (Dynamics of the loss for SGF). For SGF on a loss function g, the value of the loss function g evolves
according to the following SDE:

dg(β(t)) =

(
−|∇g(β(t))|2 +

η2

2
tr [∇2g(β(t)) · σ(β(t))σ(β(t))T ]

)
dt− η∇g(β(t))Tσ(β(t))dW (t),
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where Σ(β) := σ(β)σ(β)T is the covariance of the stochastic gradients at parameter value β. Also η = ε/
√
m, where SGF

approximates discrete time SGD with learning rate ε and batch size m. This can be written in a distributionally equivalent
way as

dg(β(t)) =

(
−|∇g(β(t))|2 +

η2

2
tr [Σ(β(t)) · ∇2g(β(t))]

)
dt− η

√
∇g(β(t))TΣ(β(t))∇g(β(t))dZ(t),

where Z = {Z(t)}t≥0 is a 1-dimensional Brownian motion.

For the special case of least squares, let r(t) = Y −Xβ(t) be the residual and defineM(t) = [XXTdiag[r(t)2]XXT ]/n2.
Then we find that the equation for SGF with second moment matrix of stochastic gradients is

dg(β(t)) =

(
−‖X

T r(t)‖2

n2
+
ε2 · tr [M(t)]

2m2

)
dt+

ε · ‖M(t)1/2r(t)‖
mn1/2

dZ(t). (S.4)

where Z = {Z(t)}t≥0 is a 1-dimensional Brownian motion.

Proof. We start with the SDE for SGF

dβ(t) = −∇g(β(t))dt+ ησ(β(t))dW (t)

where σ(β(t))σ(β(t))T is the covariance of the gradients at parameter value β(t). Then, Ito’s rule leads to

dg(β(t)) = ∇g(β(t))T dβ(t) +
1

2
dβ(t)T ·Hxg · dβ(t)

=

(
−|∇g(β(t))|2 +

η2

2
tr [σ(β(t))T · ∇2g(β(t)) · σ(β(t))]

)
dt− η∇g(β(t))Tσ(β(t))dW (t).

For the special case of least squares loss, we have the following. We have already calculated most terms, and we have in
addition that the second moment matrix of the gradients is

σ(β(t))σ(β(t))T =
1

mn
XTdiag[r(t)2]X

where r(t) = Y −Xβ(t) is the residual. Plugging in the terms for least squares,

dg(β(t)) =

(
−‖X

T r(t)‖2

n2
+
ε2 · tr [XXTdiag[r(t)2]XXT ]

mn2

)
dt+

ε · ‖diag[r(t)]XXT r(t)‖
m1/2n3/2

dZ(t).

Here Z = {Z(t)}t≥0 is a 1-dimensional Brownian motion, which is obtained by transforming the original diffusion term,
which is a linear combination of the entries of dW (t), into a distributionally equivalent 1-dimensional process. Letting

M(t) =
XXTdiag[r(t)2]XXT

n2

we can simplify the above as

dg(β(t)) =

(
−‖X

T r(t)‖2

n2
+
ε2 · tr [M(t)]

m

)
dt+

ε · ‖M(t)1/2r(t)‖
m1/2n1/2

dZ(t).

Comparing this with the noiseless case, i.e., when η = 0, we note that both the drift and the diffusion terms have changed.
The drift term is reduced by a term that is proportional to η2. The diffusion term is new altogether. This shows that for
sufficiently large η, the drift will not be positive, and hence the process will not converge to a point mass limit distribution.
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Let us start with studying the diffusion with the second moment matrix first. We will show a geometric contraction of the
loss. We can bound the terms in the drift term as follows. We have (using � for elementwise product of two conformable
vectors or matrices)

r2 � vec[diag[(XXT )2]] ≤ ‖r‖2 max
i

[(XTX)2]ii

‖XT r(t)‖2 ≥ σmin(XT )2‖r(t)‖2

The second inequality holds with σmin(XT ) being the smallest nonzero singular value of XT . Why? Because it is easy to
see that we always have the decomposition

1

2n
‖y −Xβ‖22 =

1

2n
‖Pcol(X)y −Xβ‖22 +

1

2n
‖Pnull(XT )y‖22, (S.5)

i.e., we may think of the residual r(t) above (and in the rest of this document) as Pcol(X)(y − Xβ). It follows that
‖XT r(t)‖22 ≥ s · ‖r(t)‖22, where s denotes the smallest nonzero singular value of XT . It is also clear that the expressions
for the gradient flow and stochastic gradient flow solutions do not change, if we use the decomposition in (S.5) as the loss.
Hence, for the rest of this document, we always write σmin to mean the smallest nonzero singular value. Below, we consider
the situation when p > n separately from the case n ≥ p.

Now, let Vt = g(β(t)). Since Vt is an integral with respect to Brownian motion, it is a local martingale. Moreover, since it
is non-negative (as the loss is non-negative), it follows that it is a supermartingale. Hence, writing (S.4) abstractly (defining
At, Bt appropriately and denoting Z(t) = Zt) as

dVt = Atdt+BtdZt

VT =

∫ T

0

Atdt+

∫ T

0

BtdZt

We have that |Bt| = ε · ‖diag[r(t)]XXT r(t)‖/(mn3/2) ≤ C‖r(t)‖2 ≤ C ′Vt for some problem-dependent constants C,C ′.
Hence, as the growth of the diffusion coefficient is at most linear in |Vt|, it follows that Vt is not only a supermartingale, but
also a martingale. Thus the expectation of the integral with respect to Brownian motion vanishes.

Below we will prove inequalities of the form At ≤ −A(Vt −B) for certain constants A > 0 and B. This leads to

EVT =

∫ T

0

EAtdt ≤ A
∫ T

0

(EVt −B)dt

Letting l(t) := EVt and differentiating the above leads to l′(t) ≤ −A(l(t)−B). We will see this in the overparametrized
and underparametrized regimes in turn.

S.0.1. Overparametrized case

We find, with M(t) = [XXTdiag[r(t)2]XXT ]/n2,(
−‖X

T r(t)‖2

n2
+
ε2 · tr [M(t)]

2m2

)
≤ −α[‖r(t)‖2/2n] = −α · l(t)

α = 2n[σmin(X)2/n2 − ε2 max
i

[(XTX)2]ii/(2m
2)].

Then by taking expectations in the SDE for the loss, we find l′(t) ≤ −αl(t). Hence l(t) ≤ exp(−αt)l0. For the diffusion
with the covariance matrix of the gradients as a diffusion term, Σ(β(t)) ≺ Eβ(t)β(t)T , hence tr [Σ(β(t)) · ∇2g(β(t))] ≤
tr [Eβ(t)β(t)T · ∇2g(β(t))]. Thus, the drift term in this case is at most as large as the one in the second moment case, and
so the contraction happens at least as fast. This proves the claim for the covariance matrix of the gradients as a diffusion
term. The same argument will also apply to this case when p < n.

S.0.2. Underparametrized case

Now, if p < n, then in this case, in general the loss cannot converge to zero, because the number of equations is larger than
the number of constraints. Instead, the loss converges close to the loss of the OLS estimator:

l∗ = ‖Y −Xβ̂ols‖2/(2n) = ‖P⊥XY ‖2/(2n).
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Then we can write
l(t)− l∗ = ‖X(β(t)− β̂ols)‖2/(2n)

Moreover, XT r(t) = −XTX(β(t)− β̂ols). Also, letting b = P⊥XY , r(t) = b+X(β̂ols − β(t)), and hence

‖r(t)‖2 ≤ 2(‖b‖2 + ‖X(β̂ols − β(t))‖2)

so that

r2 � diag[(XXT )2] ≤ ‖r‖2 max
i

[(XTX)2]ii ≤ v + 2‖X(β̂ols − β(t))‖2 max
i

[(XTX)2]ii

where v = 2‖b‖2 maxi[(X
TX)2]ii. Let q(t) = X(β(t)− β̂ols). Then, as l(t)− l∗ = ‖q(t)‖2/(2n)(
−‖X

T r(t)‖2

n2
+
ε2 · tr [M(t)]

m

)
≤ −c0[l(t)− l∗] + C0

c0 = 2n[σmin(X)2/n2 − 2ε2 max
i

[(XTX)2]ii/(2m
2)]

C0 = 2ε2‖b‖2 max
i

[(XTX)2]ii/(2m
2)

By taking expectations in the SDE for the loss, we find

l′(t) ≤ −c0[l(t)− l∗] + C0.

Or also
l′(t) ≤ −c0[l(t)− (l∗ + C0/c0)].

This shows that l converges geometrically to the level l∗ + C0/c0, which is higher than the minimum OLS loss. In this case,
the additional fluctuations occur because of the inherent noise in the algorithm.

Calculations for the In-Sample Risks, for Theorem 2
For in-sample risk, we have the bias-variance decomposition

Risk(β̂sgf(t);β0) = ‖Eη,Z(β̂sgf(t))− β0‖2Σ̂ + tr
[
Covη,Z(β̂sgf(t))Σ̂

]
= ‖Eη,Z(β̂sgf(t))− β0‖2Σ̂ + tr

[
Covη(β̂gf(t))Σ̂

]
+ Eηtr

[
CovZ(β̂sgf(t) | η)Σ̂

]
,

where we write ‖x‖2A = xTAx.

Following the same logic as in the proof of Theorem 2, we see that

‖Eη,Z(β̂sgf(t))− β0‖2Σ̂ =
(

Biasin(β̂sgf(t);β0)
)2

=
(

Biasin(β̂gf(t);β0)
)2

tr
[
Covη(β̂gf(t))Σ̂

]
= Varin(β̂gf(t))

Eηtr
[
CovZ(β̂sgf(t) | η)Σ̂

]
≤ ε · n

m

p∑
i=1

( w̃si
si − u/2

(
exp(−ut)− exp(−2tsi)

)
+ ṽ
(
1− exp(−2tsi)

))
si,

where (cf. Lemma 5 in Ali et al. (2018))

(
Biasin(β̂gf(t);β0)

)2

=

p∑
i=1

(vTi β0)2si exp(−2tsi)

Varin(β̂gf(t)) =
σ2

n

p∑
i=1

(1− exp(−tsi)).2
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Proof of Lemma 6
Looking back at (17), we have

Risk(β̂sgf(t);β0) (S.6)

≤ Bias2(β̂gf(t);β0) + Varη(β̂gf(t)) + ε · n
m

p∑
i=1

( w̃si
si − u/2

(
exp(−ut)− exp(−2tsi)

)
+ ṽ
(
1− exp(−2tsi)

))
= Bias2(β̂gf(t);β0) + Varη(β̂gf(t)) + T + ε · n

m

p∑
i=1

ṽ
(
1− exp(−2tsi)

)
,

where we let

T = ε · n
m

p∑
i=1

( w̃si
si − u/2

(
exp(−ut)− exp(−2tsi)

))
.

Focusing on just T for now, and noting that si > u/2 for i = 1, . . . , p, we see

T ≤ pw̃ε · n
m

µ

µ− u/2
exp(−ut),

implying that
(T/α)2L/u ≤ exp(−2Lt) ≤ exp(−2sit),

for i = 1, . . . , p, which means that

‖β0‖22 · (T/α)2L/u = ‖V β0‖22 · (T/α)2L/u ≤
p∑
i=1

(vTi β0)2 exp(−2sit) = Bias2(β̂gf(t);β0).

Here, we used the eigendecomposition Σ̂ = V SV T , and Lemma 5 in Ali et al. (2018). Hence,

T = ε · n
m

p∑
i=1

( w̃si
si − u/2

(
exp(−ut)− exp(−2tsi)

))

≤ α ·

(
|Bias(β̂gf(t);β0)|

‖β0‖2

)µ/L
= δ · |Bias(β̂gf(t);β0)|1/κ. (S.7)

Therefore, putting (S.6) and (S.7) together, along with Lemma 5 in Ali et al. (2018), we obtain

Risk(β̂sgf(t);β0)

≤ Bias2(β̂gf(t);β0) + δ · |Bias(β̂gf(t);β0)|1/κ +
σ2

n

∑
i:si>0

(1− exp(−tsi))2

si︸ ︷︷ ︸
A

+ ṽε · n
m

∑
i:si>0

(1− exp(−2tsi))︸ ︷︷ ︸
B

.

Now for convenience, write A = σ2

n

∑
i:si>0 ai and B = ε

2m ·
∑
i:si>0 bi. Let f(x) be the continuous extension of f̃(x),

where f̃(x) = x 1+exp(−x)
1−exp(−x) (i.e., f(x) = f̃(x) when x > 0, but f(x) = 2 when x = 0). It can be checked that f(x) is

nondecreasing, so that supx∈[0,L] f(tx) = f(tL).

As f(tsi) ≤ f(tL), we have for each i such that si > 0,

tsi
1 + exp(−tsi)
1− exp(−tsi)

≤ f(tL).

Multiplying both sides by (1− exp(−tsi))2 and rearranging yields

(1 + exp(−tsi))(1− exp(−tsi)) ≤
f(tL)

t

(1− exp(−tsi))2

si
,
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i.e.,

bi ≤
f(tL)

t
ai.

Therefore,

A+B ≤

(
1 +

ṽε · n2f(tL)

mtσ2

)
A.

Now, note that f(x) is increasing on x > 0, and f(x)/x is decreasing on x > 0. Also, note that f(x) ≤ 2.164 when x ≤ 1,
and f(x)/x ≤ 2.164 when x > 1. Thus, f(x)/x ≤ max{2.164/x, 2.164}. So,

A+B ≤

(
1 + 2.164ε · ṽn

2 max(1/t, L)

mσ2

)
A.

Putting together the pieces, we obtain

Risk(β̂sgf(t);β0) ≤ Bias2(β̂gf(t);β0) + δ · |Bias(β̂gf(t);β0)|1/κ + γ(t) ·Var(β̂gf(t)),

which shows the claim for gradient flow. Applying Theorem 1 shows the result for ridge. Turning to in-sample risk, the
exact same bounds actually follow by similar arguments, just as discussed before.

Proof of Lemma 7
Letting X = n1/2US1/2V T be a singular value decomposition, we may express

β̂gf(t) = n−1/2V S+(I − exp(−tS))S1/2UT y = n−1/2t1/2V (tS)+(I − exp(−tS))(tS)1/2UT y,

and

β̂ridge(1/t) = n−1/2V
(
S +

1

t
· I
)−1

S1/2UT y = n−1/2t1/2V (tS + I)−1(tS)1/2UT y.

Therefore,

‖β̂gf(t)− β̂ridge(1/t)‖2 =
∥∥∥n−1/2t1/2

(
(tS)+(I − exp(−tS))− (tS + I)−1

)
(tS)1/2UT y

∥∥∥
2
. (S.8)

Now define f(x) = (1− exp(−x))(1 + x)/x with domain x ≥ 0 (let f(0) = 0). Lemma 7 in Ali et al. (2018) shows that f
attains its unique maximum at x∗ = 1.7933, where f(x∗) = 1.2985. Moreover, it can be checked that f is unimodal. This
means that, for i = 1, . . . , p and t ≤ 1.7933/L,

(1− exp(−sit))(1 + sit)

sit
≤ (1− exp(−Lt))(1 + Lt)

Lt
,

i.e.,
1− exp(−sit)

sit
− 1

1 + sit
≤ (g(t)− 1) · 1

1 + sit
.

Similar reasoning shows that, for t ≥ 1.7933/µ,

1− exp(−sit)
sit

− 1

1 + sit
≤ (g(t)− 1) · 1

1 + sit
.

When 1.7933/L < t < 1.7933/µ, we may simply take

1− exp(−sit)
sit

− 1

1 + sit
≤ (1.2985− 1) · 1

1 + sit
= (g(t)− 1) · 1

1 + sit
.

Returning to (S.8), we have shown that

(tS)+(I − exp(−tS))− (tS + I)−1 � (g(t)− 1) · (tS + I)−1.
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Thus,

‖β̂gf(t)− β̂ridge(1/t)‖2 ≤ ‖(g(t)− 1) · n−1/2t1/2(tS + I)−1(tS)1/2UT y‖2
= (g(t)− 1) · ‖β̂ridge(1/t)‖2,

as claimed.
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Additional Numerical Simulations
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Figure S.1. Risks for ridge regression, discrete-time SGD, stochastic gradient flow (as in Theorem 2), discrete-time gradient descent, and
gradient flow on Student-t and Bernoulli data, where n = 100, p = 500, m = 20, and ε was set following Lemma 5. The excess risk of
stochastic gradient flow over ridge is given by the distance between the cyan and black curves. The vertical lines show the stopping times
that balance bias and variance.
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Figure S.2. Risks for ridge regression, discrete-time SGD, stochastic gradient flow (as in Theorem 2), discrete-time gradient descent, and
gradient flow on Gaussian, Student-t, and Bernoulli data. The excess risk of stochastic gradient flow over ridge is given by the distance
between the cyan and black curves. The vertical lines show the stopping times that balance bias and variance. In the first row, we set
n = 500, p = 100, m = 20, and ε following Lemma 5. In the second, we set n = 100, p = 10, m = 10, and ε following Lemma 5.
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Figure S.3. Risks for ridge regression, discrete-time SGD, stochastic gradient flow (as in Theorem 2), discrete-time gradient descent, and
gradient flow on Gaussian, Student-t, and Bernoulli data, where n = 100, p = 10, m = 2, and ε = 0.1. The excess risk of stochastic
gradient flow over ridge is given by the distance between the cyan and black curves. The vertical lines show the stopping times that
balance bias and variance.

Further Comparisons Between the Non-Constant and Constant Covariance Processes
Following the discussion surrounding Lemma 3 in the main paper, it is interesting to compare the excess risk bound (18)
to the analogous bound for the time-homogeneous process (10). Using Lemma 2, we may denote the solution to the
time-homogeneous process (10) as β̃sgf(t). Then, following the same logic as in the proof of Theorem 2, we obtain

Risk(β̃sgf(t);β0) = Bias2(β̂gf(t);β0) + Varη(β̂gf(t)) + trEη
[
CovZ(β̃sgf(t) | η)

]
.

Ito’s isometry shows that

trEη
[
CovZ(β̃sgf(t) | η)

]
=

ε

m
· trEη

[(
exp(−tΣ̂)

∫ t

0

exp(τ Σ̂)Σ̂1/2dW (τ)

)(
exp(−tΣ̂)

∫ t

0

exp(τ Σ̂)Σ̂1/2dW (τ)

)T]

=
ε

m
· trEη

[(∫ t

0

exp(−tΣ̂) exp(τ Σ̂)Σ̂ exp(τ Σ̂) exp(−tΣ̂)dτ

]

=
ε

m
· tr

(
Σ̂

∫ t

0

exp(2(τ − t)Σ̂)dτ

)
(S.9)

=
ε

2m
· tr
(

Σ̂Σ̂+(I − exp(−2tΣ̂))
)
.

Finally, expanding exp(−2tΣ̂) into its power series representation and using the eigendecomposition Σ̂ = V SV T shows
that Σ̂Σ̂+(I − exp(−2tΣ̂)) = I − exp(−2tΣ̂), which gives

Risk(β̃sgf(t);β0) = Risk(β̂gf(t);β0) +
ε

2m
· tr
(
I − exp(−2tΣ̂)

)
. (S.10)

From (S.10), it is straightforward to derive expressions analogous to those appearing in (12), (13), (18), for the process
β̃sgf(t). It is also possible to follow the same logic as in the proof of Lemma 6 to arrive at a similar expression for β̃sgf(t)
(i.e., with γ(t) suitably redefined).

Comparing the preceding calculations with those given in the proof of Theorem 2, we see that a key simplification occurs in
(S.9), above. Here, the (relatively) complicated expression appearing in the proof of Theorem 2,

2nε

m
·
∫ t

0

Eη[f(β̂sgf(τ))]dτ,

is replaced with the comparatively simpler expression (ε/m) · Σ̂ in (S.9). This simplification allows the risk expression in
(S.10) to hold with equality, though it is evidently less refined than the bound appearing in, e.g., (12).
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