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Abstract
The use of black-box optimization for the design
of new biological sequences is an emerging re-
search area with potentially revolutionary impact.
The cost and latency of wet-lab experiments re-
quires methods that find good sequences in few
experimental rounds of large batches of sequences
— a setting that off-the-shelf black-box optimiza-
tion methods are ill-equipped to handle. We find
that the performance of existing methods varies
drastically across optimization tasks, posing a sig-
nificant obstacle to real-world applications. To im-
prove robustness, we propose Population-Based
Black-Box Optimization (P3BO), which gener-
ates batches of sequences by sampling from an
ensemble of methods. The number of sequences
sampled from any method is proportional to the
quality of sequences it previously proposed, allow-
ing P3BO to combine the strengths of individual
methods while hedging against their innate brit-
tleness. Adapting the hyper-parameters of each
of the methods online using evolutionary opti-
mization further improves performance. Through
extensive experiments on in-silico optimization
tasks, we show that P3BO outperforms any single
method in its population, proposing higher quality
sequences as well as more diverse batches. As
such, P3BO and Adaptive-P3BO are a crucial step
towards deploying ML to real-world sequence de-
sign.

1. Introduction
The ability to design new protein or DNA sequences with de-
sired properties would revolutionize drug discovery, health-
care, and agriculture. However, this is a particularly chal-
lenging optimization problem: the space of sequences is
discrete and exponentially large; evaluating the fitness of
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proposed sequences requires costly wet-lab experiments;
and not just one but a diverse set of high-quality sequences
must be discovered to improve the chance of a candidate
surviving downstream screening (e.g., for toxicity).

The problem is not insurmountable, however, due to mod-
ern experimental technology, where hundreds to thousands
of sequences can be evaluated in parallel. This forms the
basis for directed evolution, a form of human-guided local
evolutionary search (Arnold, 1998), and several ML-based
methods (Section 4). Additionally, development of ML
methods suitable to guide sequence design can be aided by
working in-silico, instead of relying on wet-lab processes
during algorithmic development.

In this paper, we introduce several in-silico design problems
upon which we evaluate such ML methods. Unfortunately,
we find that popular optimization methods are particularly
sensitive to hyper-parameter choice and can have strong
inductive biases that allow them to excel at some problems
but perform poorly on others (Figure 1). This lack of robust-
ness is a serious concern for practical application of these
methods, which could cause wet-lab experiments to fail. We
further find that several existing methods are ill-suited to
generating diverse batches of sequences. Instead of using
the batch size efficiently, methods tend to generate very
similar sequences.

To improve robustness and sequence diversity, we introduce
Population-Based Black-box Optimization (P3BO). P3BO
draws inspiration from portfolio algorithms (Leyton-Brown
et al., 2003; Tang et al., 2014) for numerical optimization:
instead of generating a batch of sequences using a single po-
tentially brittle algorithm, P3BO samples sequences from a
portfolio of algorithms, allocating budget to each algorithm
based on the quality of its past proposed sequences.

To our knowledge, P3BO is the first approach to leverage an
ensemble of optimizers for batched optimization, a crucial
characteristic of wet-lab optimization loops. We show that
batching offers a dimension along which ensembling yields
significant gains.

Notably, samples acquired by one algorithm are shared with
all other algorithms, allowing each of them to learn from
data acquired by all. By combining the strengths of multiple
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Figure 1: Motivating example: comparison of optimization trajectories for baseline ML methods and P3BO on optimization problems
(Section 5) with qualitatively-different functional forms: PdbIsing (left) and PfamHMM (right). The rank ordering of performance among
the baseline methods for these two seemingly similar problems is inverted, showing the potential brittleness of existing approaches for
biological sequence design.

algorithms, P3BO hedges against the risk of choosing an un-
suitable optimization algorithm for the problem at hand (Sec-
tion 2.2). Sampling sequences from multiple algorithms
additionally allows P3BO to produce more diverse batches
and find distinct optima faster. We employ a heterogenous
population, consisting of global model-based optimizers
based on discriminative and generative models along evo-
lutionary strategies. Finally, we further improve P3BO by
introducing a variant, Adaptive-P3BO, which adapts the
hyper-parameters of the algorithms themselves on the fly
using evolutionary search.

We evaluate P3BO and Adaptive-P3BO empirically on over
100 batched black-box optimization problems, and show
that P3BO and Adaptive-P3BO are considerably more ro-
bust, generate more diverse batches of sequences, and find
distinct optima faster than any single method in their popu-
lation. Adaptive-P3BO improves upon P3BO results, and
furthermore is able to recover from a poor initial population
of methods. Our contributions are as follows:

– We introduce new in-silico optimization problems for
benchmarking biological sequence design methods.

– We evaluate state-of-the-art sequence design methods
across these problems, bringing to light two significant
shortcomings of existing methods: (a) lack of generaliza-
tion across similar problem classes, and (b) sub-optimal
use of the large batch sizes crucial to wet-lab settings.

– We introduce P3BO: a population-based optimization
framework for discrete batched black-box function opti-
mization that ensembles over algorithms to hedge against
brittleness and improve diverse sequence discovery.

– We introduce Adaptive-P3BO, an extension of P3BO that
tunes the hyper-parameters of population members using
evolutionary search, yielding further improvements upon
P3BO.

2. Problem Setting and Motivation
We define sequences x as elements of VL, where V is a
finite vocabulary (for DNA, |V| = 4; for proteins, |V| = 20)
and L is the sequence length. For variable length sequences,
we assume that sequences are padded to length L by an
end-of-sequence token.

Sequence design aims to maximize a function f : VL → R,
which can be evaluated on batches of sequences X ⊆ VL

size B = |X |, but only a limited number of times T .

2.1. Algorithm Requirements

Most discrete black-box optimization methods have asso-
ciated hyper-parameters. Throughout the paper, an algo-
rithm A refers to an instance of a particular method class
(e.g., evolutionary search), which is instantiated by a spe-
cific hyper-parameter configuration (e.g., mutation rate for
evolutionary search). As P3BO ensembles heterogeneous
algorithms, including global model-based optimizers and
local search strategies, we make the following assumptions
about the interface of algorithms.

A.fit(X ,Y) updates its internal state (e.g., ML model) using
a batch of sequences X and their objective values Y =
{f(x) | x ∈ X}. Next, A.propose() suggests a single
sequence to be evaluated next. We require that fit(X ,Y) can
leverage data obtained by other algorithms, which prohibits
the use of on-policy RL methods.

2.2. Robustness of Black-Box Optimizers

Figure 1 demonstrates the lack of robustness of existing
optimization methods (Section 6.1) on two representative
in-silico optimization problems (Section 5). On PDBIs-
ing (left), model-based optimization (MBO), an optimizer
based on a discriminative model of f(x), performs well, and
DbAs-VAE, which employs a generative model, struggles.
On PfamHMM, their relative performance reverses order.
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Figure 2: P3BO (left) adjusts the fraction of each batch that is allocated to a particular algorithm in its population based on the quality of
sequences that the algorithm proposed in the past. Adaptive-P3BO (right) additionally adapts the hyper-parameters Θ of algorithms by
evolutionary search.

This is in large part due to differences in the compatibility
of methods’ inductive biases with the form of f(x). On
PDBIsing, the objective function is the sum of local terms at
each sequence position and long-range pairwise interactions
between positions. Given limited samples, the discrimina-
tive model can estimate both of these terms, and propose
high-quality sequences accordingly. On PfamHMM, the ob-
jective function is the likelihood of a generative model fit to
data with insertions and deletions. A optimization method
based on a generative model can capture such variability. In
real applications, it is crucial that methods are robust to the
structure of f(x). P3BO, our proposed population-based
approach, performs at least as well as the best algorithm in
its population and often exceeds its performance.

3. Population-Based Optimization for
Batched Sequence Design

We introduce P3BO, a robust black-box optimization
method that constructs batches of sequences with which
to query f(x) using a population of heterogeneous opti-
mization algorithms. By sharing data between algorithms,
algorithms benefit from each other’s distinct exploration
strategies.

3.1. Method Summary

The high-level structure of P3BO is summarized in Algo-
rithm 1 and Figure 2. The input is an initial population
P0 = {A1, ..., AN} of N constituent algorithms, which
can be sampled from a distribution over algorithms or cho-
sen using prior knowledge. At experimental round t, P3BO
constructs a batch X t of B sequences by iteratively sam-
pling algorithm an Ai from a categorical distribution pa-
rameterized by pt. The sampled algorithm Ai is then used
to propose a sequences x, which is added to the batch X t.
Note that the constructed batch is a set X t of unique se-
quences, assuring that f(x) is not evaluated on identical
sequences, which would be a waste of resources.

P3BO weights algorithms proportional to the quality of
sequences that they found in the past, sampling more
sequences from algorithms that found higher quality se-
quences. This is done by computing a reward rti for each
algorithm Ai at each step t and adjusting the probability of
sampling from Ai based on rti . To evaluate the performance
of each algorithm in the population, P3BO keeps track of
which algorithms proposed each sequence in X t using sub-
sets X t

i . If two algorithms Ai and Aj propose the same
sequence x ∈ X t, x is added to both X t

i and X t
j .

After generating batch X t, the target function f(x) is evalu-
ated, yielding observations Yt. These are used to compute
rewards for each method (Section 3.2), which are used in
turn to compute sampling probabilities pt+1 for the next
round. Finally, the fit() method of all algorithms is called on
the extended data (X ,Y) to update their internal state. The
fitting step itself is algorithm-specific, and can entail time-
consuming steps such as fitting discriminative or generative
models.

3.2. Selecting from a Population of Algorithms

To generate high-quality sequences consistently across opti-
mization rounds and different optimization problems, P3BO
must adjust each constituent algorithm’s contribution over
time. At round t, P3BO observes all objective function val-
ues for sequences X t

i that were proposed by algorithm Ai.
These observations are converted into a per-algorithm re-
ward rti . Doing so is challenging because the the qualities of
the sequences from each algorithm are correlated, since the
algorithms share observations between optimization rounds.

In our experiments, we used the improvement of f(x) rela-
tive to fmax = max{f(x) | x ∈ X}, the maximum of f(x)
of all previous rounds:

rti =
max{f(x) | x ∈ X t

i } − fmax

fmax
. (1)

Future work should consider alternative reward functions
to (1), such as novelty search (Lehman & Stanley, 2008).
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Algorithm 1 P3BO

Input: Population P = {A1, . . . , AN}
Input: Softmax temperature τ > 0.
Input: Initial sampling weights p1

X ,Y = ∅, ∅ . Sequences and labels
for t = 1 to T do
X t = ∅
X t

1 , . . . ,X t
N = ∅, . . . , ∅

while |X t| ≤ B do
i ∼ Categorical(pt)
x = Ai.propose()
X t ← X t ∪ {x} . Only add x if novel
X t

i ← X t
i ∪ {x} . Only add x if novel

Yt = {f(x) | x ∈ X t}
X ,Y ← X ∪ X t,Y ∪ Yt

rt = get rewards
(
X ,Y, {X t

i }i
)

. Eq. 1
st = decayed rewards(rt) . Eq. 2
if Adaptive P3BO then
P, st = adapt(Pt, st) . Alg. 2

pt+1 = softmax(ŝt/τ) . Eq. 3
for Ai ∈ P do

Ai.fit(X ,Y)
return X

As P3BO aims to address lack of robustness in existing
methods, we prefer algorithms that consistently propose
good sequences. To do so, the probability pi of sampling
algorithm Ai depends not only on its reward at time t but
the sum of exponentially decayed rewards via a credit score
sti:

sti =
∑
t≤t

rtiγ
t−t, (2)

pi =
exp(ŝi/τ)∑
j exp(ŝj/τ)

, (3)

The decay rate γ trades-off past and present improvements,
assigning higher credit scores to algorithms that improve
f(x) consistently across optimization rounds. ŝi are min-
max normalized values of the credit scores, which ensures
that the pi are independent of the scale of the rewards. The
hyper-parameter τ controls the entropy of the distribution,
effectively trading off the exploration and exploitation of
algorithms. If τ is set to a high value, sequences are sampled
uniformly from the population, regardless of their rewards.

3.3. Adaptive Population-Based Optimization

Although the credit assignment and selection strategy de-
scribed in Section 3.2 increases robustness by sampling few
or no sequences from poorly performing methods in the
population, it is limited to the set of algorithms that are al-
ready in the population. For example, the hyper-parameters

of algorithms in the population can be sub-optimal for a
particular problem, which upper-bounds the performance
of P3BO. We address this limitation by optimizing hyper-
parameters of algorithms in the population online by evolu-
tionary search (Algorithm 2).

We first select the set S of algorithms with the top-q credit
scores from P , where q is a quantile cut-off. We then use
tournament selection (Miller et al., 1995) to select k = 2 par-
ent algorithms from the pool of survivors S , and recombine
their hyper-parameters. If the parents belong to different
classes of algorithms and their hyper-parameters are incom-
patible, we select one of them randomly. Otherwise, we
crossover their hyper-parameters with some crossover rate.
Finally, we mutate the resulting hyper-parameters with some
mutation rate by either resampling hyper-parameters values
from a prior distribution, or scaling them by a constant.

Algorithm 2 Adaptation of population members

Input: Population of algorithms P = {A1, . . . , AN}
Input: Algorithm scores s = {s1, . . . , sN}
Input: Quantile cutoff q
S = {Ai ∈ P | fi ≥ q}
P̃, s̃ = ∅, ∅
for i = 1 to N do

parents = tournament select(S)
Ai, si = recombine(parents)
Ãi = mutate(Ai)

P̃ ← P̃ ∪ {Ãi}
s̃← s̃ ∪ {si}

return P̃, s̃

4. Related Work
Our work draws from related research in both ML-guided
sequence design and population-based optimization.

ML for Sequence Design. Methods based on generative
models seek to maximize the expected value Ep(x)[f(x)]
of the objective function f(x) when sampling sequences
x from a distribution p(x) that is parameterized, for exam-
ple, using a RNN. Most approaches for maximizing this
expectation can be seen as instances of the cross-entropy
method (De Boer et al., 2005; Neil et al., 2018; Brookes &
Listgarten, 2018; Gupta & Zou, 2018; Brookes et al., 2019).
At each round, the distribution is trained to maximize the
likelihood of high-reward sequences seen so far. The next
batch is sampled from this distribution.

Throughout the paper, we use ‘model-based optimization’
to refer to machine learning approaches that employ a
discriminative surrogate model f̂(x) that approximates
f(x). The surrogate is converted into an acquisition func-
tion, which is optimized to propose the next batch of se-
quences (Hashimoto et al., 2018; Wang et al., 2019; Yang
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et al., 2019; de Jongh et al., 2019; Liu et al., 2019; Sample
et al., 2019; Wu et al., 2019b; Biswas et al., 2020).

Approximating f(x) by a surrogate f̂(x) has two advan-
tages. First, f̂(x) is inexpensive to evaluate unlike f(x),
which can require costly wet-lab experiments. Second,
knowledge of the structure of f̂(x) or its gradients can be
used to guide the optimization of the acquisition function.
Existing methods differ in the form of f̂(x), the type of the
acquisition function (e.g., expected improvement (Mockus
et al., 2014)), and the optimization of the acquisition.

Recently, Angermueller et al. (2020) proposed a hybrid ap-
proach for sequence design, where a generative policy is
updated using model-based RL if the surrogate discrimina-
tive model is accurate, and model-free RL otherwise.

Population-Based Optimization. Ensembling is a com-
mon strategy to produce robust algorithms by combin-
ing diverse algorithms that have individual weaknesses.
Ensembles of evolutionary and swarm algorithms have
been proposed for non-batched optimization, including
multi-strategy methods (Du & Li, 2008), portfolio algo-
rithms (Leyton-Brown et al., 2003; Tang et al., 2014), and
hyper-heuristics (Burke et al., 2013). Existing approaches
surveyed in Wu et al. (2019a) can be categorized into low-
level ensembles, which agglomerate different instances of
the same class of algorithm such as different mutation op-
erators for evolutionary search, and high-level ensembles,
which operate over algorithms belonging to heterogeneous
families. P3BO belongs to the later category.

Ensemble optimizers differ in how constituent algorithms
are selected over time, also known as adaptive operator se-
lection (AOS) (Maturana et al., 2009; Fialho et al., 2010;
Li et al., 2013). AOS first defines the credit score of opera-
tors based on their past rewards and then selects operators
based on their score. The average reward, relative reward
improvement, or sum of ranks are common credit assign-
ment strategies. Wu et al. (2019a) includes a review of
such operator selection techniques, which tend to resemble
the popular weighted majority method (Littlestone et al.,
1989) for multi-armed bandits. AOS is not a bandit problem,
however, since the action at time t impacts the rewards that
different algorithms experience at later steps.

Evolutionary reinforcement learning (Pourchot & Sigaud,
2018; Khadka & Tumer, 2018) adapts a population of agents
over time and exchanges observations between them. How-
ever, it is a low-level ensemble, combining homogeneous RL
agents, and it performs non-batched, continuous optimiza-
tion in the space of agents’ parameters. Population-based
training (PBT) (Jaderberg et al., 2017) jointly optimizes the
weights and hyper-parameters of neural networks. However,
the optimization is on a static training set, instead of data
collected on-the-fly. AlphaStar applies population-based

training to evolve a set of agents in a multi-agent RL setting
(Vinyals et al., 2019).

5. In-Silico Benchmarking Problems
Before deploying optimization methods on expensive wet-
lab experiments, it is crucial to analyze them using in-silico
surrogates. This section describes the benchmark problems
that we have used to study the strengths and weaknesses of
different methods. See Suppl. Section A for further details.

Creating realistic problems is challenging because pro-
tein fitness landscapes have not been experimentally well-
characterized, and understanding their properties is an open
research question. However, we can create problems with a
range of functional forms containing elements that appear
in real landscapes. Our problems fall into four categories:
(1) exhaustive wet-lab measurements of all sequences of a
small search space, (2) regressors fit to wet-lab measure-
ments for a subset of sequences from problems with larger
search spaces, (3) neural networks with random weights,
and (4) statistical models for protein sequence evolution
fit using experimental data. Problems vary in the size of
their search space, the number of initial samples provided
to optimizers, and the sensitivity f(x) to shifts, insertions,
and deletions of x. See Section 5 for more details about
individual optimization problems.

TfBind8: Barrera et al. (2016) measured the binding activ-
ity between a variety of human transcription factors and ev-
ery possible length-8 DNA sequence. For each transcription
factor, the optimization goal is to identify DNA sequences
that maximize the binding activity score.

TfBind10: (Le et al., 2018) provides neural network pre-
dicted estimates of the relative binding affinities between all
unique length-10 DNA sequences and each of two protein
targets. For each target, the goal to identify DNA sequences
that maximize the predicted binding affinity.

UTR: Sample et al. (2019) introduced a CNN to predict the
impact of a 5’UTR sequence on the expression level of its
corresponding gene. The goal is to identify length-50 DNA
sequences that maximize the predicted expression level.

RandomMLP/RandomRNN: Following Brookes & List-
garten (2018), we design optimization problems with the
goal find inputs that maximize the scalar output of randomly
initialized fully-connected or recurrent neural networks.

PfamHMM: Pfam (El-Gebali et al., 2018) is a widely-used
database of families of protein domain sequences. Each
family consists of a small set of human-curated seed se-
quences, along with sequences that have been added auto-
matically based on the likelihood under a profile hidden
Markov model (HMM) fit using the seed sequences (Finn
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Problem Adap. P3BO MBO DbAs Latent Evo SMWP3BO VAE MBO

PdbIsing 7.0 5.6 5.2 3.8 3.0 2.3 1.1
PfamHMM 5.8 5.0 2.4 6.0 3.6 2.2 3.0
ProteinDist. 6.8 6.2 4.8 3.0 4.1 2.1 1.0
RandomMLP 7.0 5.9 4.5 3.6 3.9 2.0 1.0
RandomRNN 6.2 6.7 5.1 1.2 2.9 3.7 2.2
TfBind10 5.0 6.5 6.5 3.0 2.0 1.0 4.0
TfBind8 6.8 5.9 4.5 3.0 1.3 1.9 4.6
UTR 7.0 6.0 2.0 4.0 1.0 5.0 3.0

Table 1: Ranking of methods in terms of the area under the Max
reward curve per optimization class (higher is better). Shown is
the mean rank over all instances per optimization problem (Suppl.
Table 1). As also shown in Figure 3, both P3BO and Adaptive-
P3BO outperform or are comparable to all other baseline methods
for sequence optimization.

Figure 3: Ranking of methods in terms of the area under the Max
reward curve per optimization problem (higher is better). Shown
is the distribution of ranks over all instances per optimization
problem (Suppl. Table 1). The box of P3BO is flat since both the
25th and 75th percentile over all 105 optimization problems is 6.

et al., 2011). We construct optimization problems for 24
diverse protein families. For each, we use the likelihood
of the profile HMM as a black-box objective function. All
optimization methods are provided with an initial dataset
consisting of a random subset of the sequences in the family
with a likelihood below the 50th percentile. This simu-
lates practitioners’ use of tools such as HMMer (Finn et al.,
2011) or HHblits (Remmert et al., 2012) to find a set of
evolutionarily-related sequences to inform sequence design.

ProteinDistance: Bileschi et al. (2019) introduced a CNN
for protein domain classification that yields informative
1100-dimensional embeddings of protein domains. The
ProteinDistance problem tasks methods to find sequences
with high cosine similarity in the embedding space of this
model to representative sequences from Pfam families.

PDBIsing: As introduced in Angermueller et al. (2020),
the goal of this problem is to find protein sequences that
maximize the energy of an Ising model parameterized by
a protein structure from the Protein Data Bank (Berman

et al., 2003) (PDB). We reweight the objective function to
place more emphasis on long-range pairwise interactions
between amino acids. Optimization methods are provided
with an initial dataset of mutants of the sequence that the
PDB structure is based on.

6. Experiments
We next analyze the performance of a set of competitive
optimization methods on the benchmark problems described
the previous section.

6.1. Baseline Optimization Methods
We consider the following methods that have been designed
for batched black-box optimization of biological sequences.

SingleMutantWalker (SMW) simulates site-saturation
mutagenesis, where all single-mutation neighbors of the
best sequence seen so far are proposed in a given optimiza-
tion round (Wu et al., 2019b).

Evolution performs directed evolutionary search by select-
ing the top k sequences, recombining them, and mutating
them (unter Rudolph, 1958; Brindle, 1980).

Cross-Entropy Method fits a generative model to maxi-
mize the likelihood of high-quality sequences and samples
the next batch of sequences from this model. DbAs-VAE
uses the same example weighting scheme and generative
model, a fully-connected variational autoencoder (Kingma
& Welling, 2014), as in (Brookes & Listgarten, 2018). Sup-
plementary material also considers FBGAN (Gupta & Zou,
2018), which uses a generative adversarial network.

Model-Based Optimization (MBO) automatically tunes
the hyper-parameters of diverse candidate regressor models
as described in (Angermueller et al., 2020). All models with
cross-validation performance above a predefined threshold
are ensembled, yielding a predicted mean and variance for
each seqeunce. These are converted into an acquisition
function (e.g., expected improvement), which is optimized
with regularized evolution (Real et al., 2019) to yield the
next batch of sequences.

Latent-Space MBO (LatentMBO): We adapt the method
of (Gómez-Bombarelli et al., 2018) to batched optimization.
Model-based optimization is performed in the continuous
latent space of a generative model that is trained jointly
with a regressor model, which predicts f(x) given the latent
embedding of x. We use the cross-entropy method for
optimizing the regressor.

6.2. Population-Based Optimization
We used a population with N = 15 constituent algorithms
belonging to the following classes: SMW, MBO with vari-
ous regressors, acquisition functions, and mutation rates of
the evolution acquisition function optimizer; DbAs with
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Figure 4: Performances curves for different problem classes. Lines show the average over all instances per problem class. The shaded
area corresponds to the 95% bootstrap confidence interval. The synergistic effect of the ensembling by P3BO is noteworthy: not only does
it match the performance of the best ensemble member, but it outperforms it. Adaptive P3BO provides a further improvements in most
cases. Due to space limitations, results for RandomMLP and TfBind10 are shown in Suppl. Figure 2, and results for additional baselines
in Suppl. Figure 3.

different generative models (VAE or LSTM) and quan-
tile thresholds; and Evolution with varying mutation and
crossover probabilities. See Suppl. Section B.7 for more
details.

We sampled the initial population of algorithms randomly,
ensuring that P3BO includes at least one instance per class to
promote diversity, and at most four MBO instances to reduce
computational costs. We used a decay factor of γ = 0.25
for computing credit scores, and a softmax temperature of
τ = 1.0 for computing selection probabilities.

We compare P3BO to Adaptive-P3BO, which adapts popu-
lation members as described in Section 3.3. For Adaptive-
P3BO, we use a quantile cutoff of q = 0.5 for selecting
the pool of survivors S, a recombination rate of 0.1, and a
mutation rate of 0.5. Experimentally, we observed that the
performance of Adaptive-P3BO remained robust to any of
these hyper-parameters.

6.3. Evaluation of Sample-Efficiency and Robustness
We evaluate sample-efficiency for a particular optimization
problem by comparing the cumulative maximum of f(x)
(Max reward) depending on the number of samples pro-
posed. We further use the area under the Max reward curve
to summarize sample-efficiency in a single number and com-
paring methods across optimization problems. We repeat

each experiment 20 times with different random seeds.

Figure 4 illustrates the mean optimization trajectories of
P3BO, Adaptive-P3BO, and baselines over 6 different prob-
lem classes. P3BO and Adaptive-P3BO systematically find
high-reward sequences faster than any baseline method,
which shows that population-based optimization can in-
crease both sample-efficiency and robustness. Adapting
the population of optimizers (Adaptive-P3BO) yields fur-
ther performance improvements. Non-population-based
methods have inconsistent performance: there is no best
non-population-based method across problems. Optimiza-
tion trajectories for additional problem classes and baseline
methods are shown in Suppl. Figure 2 and Suppl. Figure 3,
respectively.

Table 1 and Figure 3 summarize results, which report the
average ranking of different optimization methods across
all 105 optimization problems. P3BO and Adaptive-P3BO
are systematically more sample-efficient than any baseline
method.

6.4. Evaluation of Diversity

We evaluate the ability of methods to find distinct sequences
of high reward using the metrics summarized in Suppl. Sec-
tion C.
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Figure 5: Insights into Adaptive-P3BO applied to PfamHMM target PF16186. Shown are the credit score (left), the number of sequences
sampled (middle), and the number of instances (right) per algorithm class over time. Since DbAs-VAE has the highest credit score
(relative improvement) in early rounds, more sequences are sampled from DbAs-VAE (middle), and Adaptive-P3BO increases the number
of DbAs-VAE instances from 4 to 11 (the total population size is 15). The adaptation starts after three warm-up rounds used to reliably
estimate the credit score of algorithms. See Suppl. Figure 4 for another example.

Adaptive-P3BO P3BO MBO DbAs-VAE SMW Evolution
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TfBind8_binding_site=CRX_R90W_R1_CRX_R90W_R1

x

y

x

y

(a) Batch 1
x

y

(b) Batch 5
x

y

(c) Batch 9
x

y

(d) Rewards in 75th percentile

Figure 6: t-SNE plots of sequences found by methods in different rounds (a-c), and of all sequences with a reward greater than the 75th
percentile of rewards found by all methods (d). Results are for TfBind8, targetet CRX R90W R1. SMW, Evolution, and DbAs-VAE
increasingly focus on a single search region, whereas MBO, P3BO and Adaptive-P3BO maintain a diversity of sequences within each batch
(Fig. a-c). When showing only sequences that achieved a relatively high reward in Figure 6(d), we see that P3BO and Adaptive-P3BO
still find diverse clusters of high-reward sequences. In fact, P3BO and Adaptive-P3BO find sequences in nearly all clusters identified by
baseline methods.

Figure 7: Fraction of optima found by each method averaged over
all TfBind8 targets.

Figure 7 reports one of these metrics—the fraction of optima
found by each method for TfBind8. P3BO and Adaptive-
P3BO find more optima than the best individual method
(MBO), and considerably more optima than all remaining
methods. Suppl. Figure 1 further shows the mean distance
of sequences in proposed batches, and the number of distinct
clusters of sequences with a high reward that were found by
methods. These results confirm that P3BO and Adaptive-
P3BO find diverse sequences with a high reward across
optimization problems.

Figure 6 uses t-SNE to illustrate the diversity of sequences
obtained over time and at the end of optimization for each
method. P3BO and Adaptive-P3BO not only find more
diverse sequences per batch during the optimization, but
also obtain diverse and high-reward sequences at the end
of the optimization, fulfilling a crucial requirement for real-
world sequence validation.
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6.5. Ablation Experiments

We perform ablation experiments to better understand the
behavior of P3BO and Adaptive-P3BO.

Figure 5 illustrates how the scoring of algorithms affects the
number of sequences sampled from each algorithm class
and the number of instances per class for one PfamHMM
problem. Adaptive-P3BO correctly identifies DbAs-VAE as
the best performing algorithm (see Figure 4, PfamHMM),
and hence samples more sequences from DbAs-VAE and
enriches for the number of DbAs-VAE instances in the popu-
lation. We observe the same behavior on other optimization
problems (Suppl. Figure 4).

Suppl. Figure 5(a) analyzes the performance of P3BO when
removing individual algorithm classes from its population.
As expected, the performance of P3BO is most sensitive to
the best performing algorithm in its population. However,
since the performance of algorithms varies across problems,
removing individual algorithms results in a performance
drop on some problems but not on others. Suppl. Figure 5
also shows that sharing data between optimization methods
enables poorly performing algorithms to learn from the
sequences found by well performing algorithms and to find
high-quality sequences faster, which results in an overall
performance gain of P3BO. This is confirmed visually by
Suppl. Figure 6, which shows the t-SNE visualization of
sequences proposed by individual algorithms over time with
and without data sharing.

Suppl. Figure 6 highlights that Adaptive-P3BO recovers
faster than P3BO when starting with a poorly initialized
population of algorithms, which it can improve online by
evolutionary search as described in Section 3.3.

Finally, we investigate the sensitivity of P3BO to the choice
of the scoring function (Suppl. Figure 8, 9), the temperature
τ of the softmax scoring function (Suppl. Figure 10), the
population size (Suppl. Figure 11), and the batch size of the
optimization problem (Suppl. Figure 12).

7. Conclusion
We show on extensive novel in-silico benchmarks that stan-
dard ML approaches to sequence design lack robustness
across optimization problems. By ensembling over algo-
rithms, P3BO increases sample-efficiency, robustness, and
the ability to discover diverse optima. Online adaptation
of the population of algorithms (Adaptive-P3BO) further
improves performance. Efficient ways of selecting the ini-
tial population and enabling transfer learning across opti-
mization problems remain crucial open questions. Finally,
although P3BO is motivated by biological sequence design,
P3BO is also applicable to non-biological black-box opti-
mization problems.
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