Low-loss connection of weight vectors: distribution-based approaches

Ivan Anokhin ¹ Dmitry Yarotsky ¹

Abstract
Recent research shows that sublevel sets of the loss surfaces of overparameterized networks are connected, exactly or approximately. We describe and compare experimentally a panel of methods used to connect two low-loss points by a low-loss curve on this surface. Our methods vary in accuracy and complexity. Most of our methods are based on “macroscopic” distributional assumptions, and some are insensitive to the detailed properties of the points to be connected. Some methods require a prior training of a “global connection model” which can then be applied to any pair of points. The accuracy of the method generally correlates with its complexity and sensitivity to the endpoint detail.

1. Introduction
Though loss surfaces of neural networks have a complex shape, it is generally accepted that large networks train well and their performance is not very dependent on the weight initialization, despite apparently different trained values resulting from different initializations (Choromanska et al., 2015). When thinking of the landscape of a complex non-convex function such as a loss surface, one can imagine different heuristic scenarios for the structure of the bottom of the surface (Baity-Jesi et al., 2018). One scenario is that the loss function has multiple isolated local minima. Another scenario is that there are, in contrast, few local minima, and the sub-level sets of the loss function have only one or a small number of connected components (despite their possibly complex shape). Of course, the second scenario agrees better with the practically observed efficiency of network training by gradient descent. In general, the second scenario is more likely in the setting of overparameterized networks (small networks are known to host numerous isolated local minima, see e.g. (Safran & Shamir, 2017)).

Recent research provides some further evidence in favor of the “connected sublevel set” scenario. A particular easy-to-formulate task that one can analyze both experimentally and theoretically is:

Given two low-loss weight vectors \(\Theta^A, \Theta^B \), connect them by a low-loss curve.

Recent studies of this connectedness problem can be divided into numerical and theoretical ones. The numerical studies have been performed in (Garipov et al., 2018; Draxler et al., 2018). In these papers, the desired low-loss curves are constructed by numerically optimizing the curves connecting the two given low-loss points. The results show that typically one can find a curve on which the loss value is only slightly worse than at the endpoints.

The theoretical studies rigorously confirm this effect under certain conditions (generally, overparameterization-related). For a single-hidden- layer ReLU network, (Freeman & Brun, 2016) prove that two weight vectors with loss \(\leq l_0 \) can be connected by a curve with loss \(\leq l_0 \) if the number of hidden neurons is sufficiently large. For pyramidal multilayer networks with piecewise linear activation functions, (Nguyen, 2019) proves that in the overparameterized setting (when the size of the first hidden layer is larger than the size of the training set), sublevel sets are connected and unbounded. (Kuditipudi et al., 2019) assume that the model is dropout-stable or noise-stable, and then construct a connecting path with a low loss.

Obviously, these experimental and theoretical works have quite different methodologies. The paths found in the experimental studies are numerically optimized to particular endpoints, and the structure of these optimal paths is not well understood. On the other hand, while the theoretical works offer some explicit rigorous constructions of low-loss paths, it is not clear to which extent they match the experimentally found ones.

Motivated by this discrepancy, in the present paper we adopt a somewhat different point of view on task (1). putting forward this general goal:

Describe universally applicable and possibly simple methods that, given two weight vectors \(\Theta^A, \Theta^B \) produce connecting curves of possibly low loss.

¹Skolkovo Institute of Science and Technology, Moscow. Correspondence to: Ivan Anokhin <i.anokhin.mm@gmail.com>, Dmitry Yarotsky <d.yarotsky@skoltech.ru>.
With this goal in mind, we propose a panel of methods of different complexity and accuracy, bridging the gap between the above numerical and theoretical studies.

In contrast to the numerical optimization of (Garipov et al. 2018; Draxler et al. 2018), we aim to construct the connecting curve by a more-or-less direct prescription (to a varying degree, depending on the method). While the above numeric optimization papers demonstrate but do not explain the connectedness phenomenon, our methods logically follow from either the particular form or certain assumptions about the trained networks.

On the other hand, in contrast to the mentioned theoretical studies, we are interested in “general-purpose” low-loss connection methods that are, in principle, applicable to any pair of endpoints Θ^A, Θ^B, any network size, and any training data. To clarify this point, consider the most trivial connection performed by a straight line segment: $t \mapsto \Theta(t) = (1 - t)\Theta^A + t\Theta^B$. The performance of this method is quite poor (the loss can grow significantly for intermediate t), but the method is universally applicable, given by an explicit analytic formula, and the geometry of the path is essentially independent of the values Θ^A, Θ^B. The papers (Freeman & Bruna 2016; Nguyen 2019) represent another extreme case, where Θ^A and Θ^B are connected using a complex path and meticulous adjustment of individual neuron parameters (and only under rather restrictive assumptions on the model), but achieving a perfect solution of task $\mathcal{1}$.

In the present paper, we are interested in the intermediate setting: possibly generally applicable, endpoint-insensitive methods with possibly simple paths, yet improving performance of the trivial straight-line connection.

2. Our contribution and the structure of the paper

We start by considering networks with a single hidden layer (Section 3). Our connection methods are largely motivated by the “macroscopic” view of the network as a sample from some distribution in a suitable state space of neurons; we recall this picture in Section 3.1.

- In Section 3.2, we describe the idea of connections preserving the neuron distribution, and specifically describe “Arc Connection” which is an analytic method essentially as simple as the trivial segment connection, but preserving the variance of the neuron distribution. The Arc Connection is a perfect solution of the connection problem in the limit of infinitely wide networks if the neurons are normally distributed.

- In Section 3.3, we generalize Arc Connection to non-Gaussian distributions of neurons. To this end, we introduce “learnable methods” aimed to learn the neuron distribution in a typical local minimum of the loss function. In this way, we construct a “global connection model” that can be used subsequently to connect any two new local minima.

- In Section 3.4, we describe “Optimal Transportation” methods in which the connecting path consists of two stages. In the first stage, the distribution of neurons in one local minimum is optimally transported to the distribution in another minimum, and in the second stage, the neurons are permuted to be in the required order.

- Finally, in Section 3.5, we describe what we call “Weight Adjustment” methods in which the first layer weights are connected by a simple analytic prescription while the second layer weights (on which the network output depends linearly) are adjusted appropriately, by solving suitable linear systems.

In Section 4, we extend these methods to multi-layer networks (by a suitable layer-wise reduction) and convnets.

In Section 5, we perform an experimental comparison of these connection methods.

Finally, in Section 6, we discuss one potential practical application of the connection task: one can use low-loss connections between different low-loss weight vectors to form an “ensemble” of networks with an accuracy slightly better than that of the individual networks. In contrast to conventional ensembles, this can be achieved with only a small computational overhead on inference, by reusing initial computation of one of the networks.

3. One Hidden Layer

3.1. Reduction to Distributions

The theory of networks with a single hidden layer can be relatively easily translated into the language of distributions, so that the network output, the loss function, and the gradient descent are described in terms of the weight distributions rather than individual values. We sketch the main ideas, referring the reader to the papers (Mei et al. 2018; Rotskoff & Vanden-Eijnden 2018; Sirignano & Spiliopoulos 2018; Chizat & Bach 2018) for details and precise statements.

Consider the predictive model of the form

$$\hat{y}_n(x; \Theta) = \frac{1}{n} \sum_{i=1}^{n} \sigma(x; \theta_i), \quad (2)$$

where $x \in \mathbb{R}^d$ is the input, $\Theta = \{\theta_i\}_{i \in [n]}$ is the collection of weights $\theta_i \in \mathbb{R}^D$, and $\sigma : \mathbb{R}^d \times \mathbb{R}^D \rightarrow \mathbb{R}^m$ is some map. In particular, we obtain the standard fully-connected neural network with a single hidden layer by setting $\theta_i =$...
of neural networks along this path will be approximately the same:
\[\hat{y}_n(x; \psi(t)) \approx \hat{y}_n(x; p). \]

3.2. Distribution Preserving Methods

The above arguments suggest reducing the connection task to constructing a “distribution-preserving” deformation. Specifically, let \(X \) and \(Y \) be two independent random vectors of length \(D \) sampled from an unknown distribution \(p \) on \(\mathbb{R}^D \). We want to construct a continuous path \(\psi : [0, 1] \to \mathbb{R}^D \) such that \(\psi(0) = X, \psi(1) = Y \), and the distribution of the random vector \(\psi(t) \) is \(p \) for any \(t \in [0, 1] \). Once we have such a method, we can apply it to connect the network weight vectors \(\Theta^A, \Theta^B \) in a component-wise way:
\[\Theta(t) = (\psi_i(t))_{i=1}^n, \]
where \(\psi_i \) connects \(X = \theta^A_i \) to \(Y = \theta^B_i \).

Now we will consider several particular methods of connecting \(X \) to \(Y \), and we start from the trivial baseline:

Linear Connection is the basic most naive way to connect two weight vectors:
\[\psi(t) = (1 - t)X + tY. \]

Note that this method is not measure-preserving, in general: if \(X, Y \sim p \), then \(\psi(t) \not\sim p \) for \(t \in (0, 1) \). This can be seen, for example, by considering the covariance matrix \(\Sigma_{\psi(t)} \) of \(\psi(t) \), which is equal to \((1 - t)^2 \Sigma_X + t^2 \Sigma_Y = (1 - t)^2 \Sigma_X + t^2 \Sigma_Y = (1 - t)^2 + t^2) \Sigma_p \not= \Sigma_p \) (so the Linear Connection “squeezes” the distribution \(p \)). This explains why performance of the Linear Connection is typically rather poor.

The following proposition suggests how to modify formula to make the connection measure preserving in the case of a multivariate Gaussian distribution \(p \) (see Fig. 2).

Proposition 1 If \(X, Y \) are i.i.d. vectors with the same centered multivariate Gaussian distribution \(p \), then for any \(t \in \mathbb{R}, \psi(t) = \cos(\frac{\pi}{2}t)X + \sin(\frac{\pi}{2}t)Y \) has the same distribution \(p \), and also \(\psi(0) = X, \psi(1) = Y \).

One can easily prove this known fact by using characteristic function of multivariate normal distribution. We can then give our first improvement of Linear Connection.

Arc Connection is the method that assumes that \(X, Y \) are already Gaussian with the same covariance matrix and center: \(\mu = \mathbb{E}X = \mathbb{E}Y \). Then, we set:
\[\psi(t) = \mu + \cos(\frac{\pi}{2}t)(X - \mu) + \sin(\frac{\pi}{2}t)(Y - \mu). \]

However, the assumed normality is a severe restriction: the distribution of weights is non-normal in general. We can
We want to learn a suitable transformation \(\nu \) that aims to transform simple known probability distributions. We consider two optimizing procedures, Flow and Bijections. In Flow, we follow the algorithm proposed in (Dinh et al., 2016) and maximize the likelihood \(\mathbb{E}_{x \sim p} \log [\eta(\nu(x))] \det \frac{\partial \nu}{\partial x} \), where \(\eta \) is the standard normal probability density function. After training is done, we can use Eq. (7) to generate samples along the path. Note that the transformation \(\nu \) should map samples from the target distribution to the standard Gaussian if the training procedure is successful.

We also propose a new training procedure which we call Bijections. Assume we have a dataset \(V = \{ \Theta \} \) of low loss weight vectors for a One Hidden layer network. We can easily create such \(V \) by training models that minimize any user-specified loss \(L(\Theta) \). Now we want to have low loss for any two models in \(V \) and any point \(t \) on the curve (7) that is convenient to rewrite as

\[
\psi_W(t, \Theta^A, \Theta^B) = \nu_W^{-1}[\cos(\frac{\pi}{2} t)\nu(X) + \sin(\frac{\pi}{2} t)\nu(Y)]
\]

Similarly to (Garipov et al., 2018), in order to achieve this we propose to optimize the computationally tractable loss

\[
l(W) = \mathbb{E}_s L(\psi_W(t, \Theta^A, \Theta^B)),
\]

where expectation \(\mathbb{E}_s \) is w.r.t. \(t \sim U(0, 1), \Theta^A \sim U(V), \Theta^B \sim U(V \setminus \Theta^A) \). To minimize Eq. (8), at each iteration we sample \(t \) from the uniform distribution \(U(0, 1) \), \(\Theta^A, \Theta^B \) are drawn from \(V \) uniformly in a way that \(\Theta^A \neq \Theta^B \), then we make a gradient step for \(W \) with respect to the loss \(L(\psi_W(t, \Theta^A, \Theta^B)) \). We repeat these updates until convergence.

We have found experimentally that it is usually sufficient to optimize the model only in the middle point \(t = 0.5 \), as the model tends to always have the highest loss there:

\[
l(W) = \mathbb{E}_{\Theta^A \sim U(V), \Theta^B \sim U(V \setminus \Theta^A)} L(\psi_W(0.5, \Theta^A, \Theta^B)).
\]
Strictly speaking, **Bijection**-based connection methods are not constructed as distribution-preserving along the path, but they are expected to generate low-loss paths between any similarly trained models. However, let us note that one possible solution for **Bijection** procedure is to learn a map to centered Gaussian distribution.

We name learnable methods in the following manner: the first part of the name is a network architecture name, and the second is a training procedure name. Combining various architecture and training procedure, we get four connection methods: **RNVP Flow**, **IAF Flow**, **RNVP Bijection** and **IAF Bijection**. However, training a network with **Bijection** requires a fast computation of \(v_W \) and \(v_W^{-1} \). For this reason, in this case we use only **RealNVP** networks, not **IAF**.

Note that the approach proposed in this section can be described as “training a global connection model”. We perform a single initial training of this model, but once done, we can connect any pair of unseen samples from the distribution \(p \) using our learned transformation \(v_W \). In terms of connecting network weights, this means that we can use this global model to connect any pair of weight vectors, assuming they have been trained in the way similar to the one used to generate the training data for the global connection model.

3.4. Optimal Transportation Methods

We consider now an alternative approach (referred to as OT in the sequel) that is also based on the idea of connecting two distributions, but attempts to do it by taking into account the whole set of “butterflies”. Specifically, we use a version of Optimal Transportation (OT) in the neuron state space \(\mathbb{R}^D \) to connect the sample of hidden neurons of the network \(A \) to that of \(B \). If the number of neurons is large, then we can find a bijective map between the neurons of \(A \) and \(B \) that maps each neuron of \(A \) to a nearby neuron of \(B \). In this way, we can transform the network \(A \) to a network isomorphic to \(B \) (namely, different from \(B \) only by the order of hidden neurons) by a short linear segment in the full weight space \(\mathbb{R}^{nD} \), so that the distribution of neurons remains approximately constant on this segment. We use the POT library ([Flamary & Courty, 2017](#)) for the solution of this OT problem.

Note, however, that the OT transformation alone does not solve our connection task, since this task requires us to connect each neuron of \(A \) to a particular target neuron of \(B \), i.e., keep the prescribed order of neurons. Therefore, we supplement the above OT-stage of the path by the “permutation” stage. This second stage can be implemented by a continuous piecewise linear curve adjusting the neurons one-by-one. In each step, a pair of neurons is swapped placing one of them at the required position. The swap can be implemented by a single linear transformation. Since the contribution of each hidden neuron to the network output is \(O(1/n) \) and completed swaps do not change the network output, this path maintains low values of the loss function.

3.5. Joint Weight Adjustment

For completeness, we also consider a connection method that goes beyond the distributional picture and uses a direct analytic weight adjustment for the given pair of weight vectors \(\Theta_A, \Theta_B \). Let us write a network with a single hidden layer in the standard form

\[
\tilde{y} = W_2 \phi(W_1 x),
\]

where \(W_1, W_2 \) are matrices (of size \(d_1 \times d_0, d_2 \times d_1 \), respectively), and the activation function \(\phi \) is meant to act separately on each component of the vector \(W_1 x \). For simplicity, we do not include the bias terms in this formula (the bias can be introduced in the first layer by assuming that \(x \) has an additional component with a constant value).

Let \(\Theta_A = (W_1^A, W_2^A) \) and \(\Theta_B = (W_1^B, W_2^B) \) be two weight vectors for which the network has close outputs. This condition can be written as follows. Let \(X \) be the \(d_0 \times N \) matrix of the set \(S = \{x_q\}_{q=1}^N \in \mathbb{R}^{d_0} \) of \(N \) input vectors on which we consider the action of the network. On this set \(S \), the network output can be written as

\[
\tilde{Y} = W_2 \phi(W_1 X).
\]

Let \(\tilde{Y}^A, \tilde{Y}^B \) be the outputs with the weight values \(\Theta_A, \Theta_B \); we then assume that \(\tilde{Y}^A \approx \tilde{Y}^B \).

We choose now a path \(\Theta = \Theta(t) = (W_1(t), W_2(t)), t \in [0, 1] \), that connects \(\Theta_A \) to \(\Theta_B \) and approximately preserves the output \(\tilde{Y} \). To this end, we first connect \(W_1^A \) to \(W_2^B \) in a more or less arbitrary way, for example using the basic linear connection \(W_1(t) = (1 - t)W_1^A + tW_1^B \). Then, we adjust the weights in the second layer, which essentially means that we need to solve the linear system

\[
W_2(t)\phi(W_1(t)X) \approx \tilde{Y}^A
\]

for \(W_2(t) \), at each \(t \in [0, 1] \). A solution can be written as

\[
W_2(t) = \tilde{Y}^A\left[\phi(W_1(t)X)\right]^{+},
\]

where \([\cdot]^{+}\) denotes the pseudo-inverse matrix. In general, this solution may be discontinuous in \(t \) (at the points where the rank of \(\phi(W_1(t)X) \) changes), and the boundary values \(W_2(0), W_2(1) \) may be different from \(W_2^A, W_2^B \). The last issue is related to the degeneracy of the system (9) and, by linearity, can be resolved simply by adding to the path two extra legs linearly connecting \(W_2^A \) to \(W_2(0) \) and \(W_2(1) \) to \(W_2^B \). As for discontinuity, we resolve this issue by applying Eq. (10) only at finitely many values of \(t \), and
We propose to connect two weight vectors, Θ_A and Θ_B, of a multi layer dense net with the following intermediate points:

$\Theta_A \rightarrow \Theta_2^{AB} \rightarrow \Theta_3^{AB} \rightarrow \ldots \rightarrow \Theta_n^{AB} \rightarrow \Theta_B$ (see Fig. 4).

The output of the network at any intermediate point Θ_k^{AB} is approximately equal to \hat{Y}_A as we have appropriately adjusted the weights W_{k}^{AB} in the layer k.

To connect any intermediate points $\Theta_k^{AB} \rightarrow \Theta_{k+1}^{AB}$ or $\Theta_A \rightarrow \Theta_{2}^{AB}$ note that Θ_k^{AB} and Θ_{k+1}^{AB} differ only in layers k and $k+1$. So we can consider these two layers in Θ_k^{AB} and Θ_{k+1}^{AB} as One Hidden layer subnetworks. The inputs of these subnetworks are identical, and the outputs are approximately the same thanks to the weight adjustment. This means we can use any method we describe in Section 3 to connect the weights of these subnetworks.

The name convention is similar to the one we use for One Hidden layer network. We refer to the method as Linear + Butterfly, Arc + Butterfly or OT + Butterfly if we connect One Hidden layer subnetworks of intermediate points using the Butterfly weight representation and one of our distributional method. Alternatively, in the methods Linear + Weight Adjustment, Arc + Weight Adjustment and OT + Weight Adjustment we consider the rows in the weight matrix of the first subnetwork layer as samples, connect them with one of our methods, and perform weight adjustment on the second layer.

Let us also note that in case of Butterfly–methods we can skip the Θ_n^{AB} intermediate point from the proposed path, so it becomes $\Theta_A \rightarrow \Theta_2^{AB} \rightarrow \Theta_3^{AB} \rightarrow \ldots \rightarrow \Theta_n^{AB} \rightarrow \Theta_B$.

4.2. CNNs and networks with skip connections

The connection methods described above can be naturally generalized to convnets. In this case, the analog of the distribution of neurons would be the distribution of filters (since different filters can be viewed as independent, permutable entities). Of course, the distributional point of view should be more efficient if the number of filters is large. Our experiments below include connection of convnets such as VGG16.

In the present paper we do not consider connection for networks with skip connections such as ResNets, mainly because the implementation in this case is relatively complex. We remark, however, that it is rather clear how that can be done by generalizing the stepwise procedure of Section 4.1.

5. Experiments

In this section, we test experimentally the proposed connection methods on the datasets CIFAR10 and MNIST. For each method, we measure the worst accuracy that the method provides along the path1. For both datasets, we use the standard train–test split.

All considered models were trained using the cross-entropy

1We release source code at https://github.com/avecplezir/distribution-based-connectivity
We compare our methods with connection curves numerically found in (Garipov et al., 2018). In Table 1, Garipov (3) refers to the polygon with two segments, Garipov (5) refers to the polygon with four segments between the end points. Each Garipov’s curve was optimized for 200 and 60 epochs for CIFAR10 and MNIST datasets, respectively, with batch size 128 as described in the original paper.

Table 1 shows results for One Hidden Layer networks with 2000 hidden neurons, on MNIST and CIFAR10. In the supplementary materials (Section A) we show how the “train” and “test” columns in Table 1 refer to the respective subsets of MNIST and CIFAR10. In the case of learnable connection methods, learning only used the training part of the dataset; moreover, both “train” and “test” results were computed for endpoints \(\Theta^A, \Theta^B \) not belonging to the model set \(V \) used to learn the connection method. IAF Flow failed to converge on CIFAR10. In the methods involving Weight Adjustment (Section 3.5), adjustment of the second layer was also performed using only the training part of the dataset.

In the supplementary materials (Section A) we analyze how the considered methods perform for other network widths.

Table 2 shows results for Three Layer networks with 6144 neurons in the first hidden layer and 2000 neurons in the second hidden layer. In columns Conv2FC1 and VGG16 of Table 2, we report results for the respective convolutional networks. Conv2FC1 is a simple network having 32 and 64 channels in the convolution layers (with kernel size 5), and 3136 neurons in the fully connected layer. VGG16 is used without batch normalization. The results show that methods without the WA procedure fail to construct low-loss paths for VGG16. Otherwise, the trends in the performance of different methods are similar to those observed for dense multi-layer networks. See Section C in Supplementary materials for more results.
Table 1: Train and test accuracy (%) of different methods for networks with a single hidden layer. End Point values show accuracy at the ends of the path. WA is short for Weight Adjustment. We show mean and one standard deviation of the worst point along the path.

<table>
<thead>
<tr>
<th>Methods</th>
<th>MNIST</th>
<th>CIFAR10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>train</td>
<td>test</td>
</tr>
<tr>
<td>Linear, test</td>
<td>96.54 ± 0.40</td>
<td>95.87 ± 0.40</td>
</tr>
<tr>
<td>Arc, test</td>
<td>97.89 ± 0.11</td>
<td>97.03 ± 0.14</td>
</tr>
<tr>
<td>IAF flow, test</td>
<td>94.34 ± 0.54</td>
<td>95.80 ± 0.45</td>
</tr>
<tr>
<td>RealNVP bijection, test</td>
<td>98.50 ± 0.09</td>
<td>97.53 ± 0.11</td>
</tr>
<tr>
<td>Linear + WA, test</td>
<td>98.76 ± 0.01</td>
<td>97.86 ± 0.05</td>
</tr>
<tr>
<td>Arc + WA, test</td>
<td>98.75 ± 0.01</td>
<td>97.86 ± 0.05</td>
</tr>
<tr>
<td>OT, test</td>
<td>98.78 ± 0.01</td>
<td>97.87 ± 0.04</td>
</tr>
<tr>
<td>OT + WA, test</td>
<td>98.92 ± 0.01</td>
<td>97.91 ± 0.03</td>
</tr>
<tr>
<td>Garipov (3), test</td>
<td>99.10 ± 0.01</td>
<td>97.98 ± 0.02</td>
</tr>
<tr>
<td>Garipov (5), test</td>
<td>99.03 ± 0.01</td>
<td>97.93 ± 0.02</td>
</tr>
<tr>
<td>End Points, test</td>
<td>99.14 ± 0.01</td>
<td>98.01 ± 0.03</td>
</tr>
</tbody>
</table>

and discussion.

6. Ensembling with Weight Adjustment

In [Izmailov et al., 2018] the authors perform averaging of several neural networks lying near each other in the weight space. Such close networks are taken from those obtained by SGD iterations. [Izmailov et al., 2018] show that this leads to a better generalization and that such averaging approximates ensembling of close models in the first order of approximation. The averaging has computational benefit compared to the usual ensemble of n models that requires n times more computation.

In this section we propose another method to perform ensembling via weight averaging, applicable to any finite set of models on the weight manifold (typically, models optimized with different randomly chosen initial weights). The method is based on the Weight Adjustment procedure described in Section 3.5.

The idea is to use the first network as a common backbone to extract features on some intermediate layer (see Fig. 6). Given a particular data set and the k’th model, let us denote the output of this intermediate layer by F_k and the weights of the next layer by W_k. Also, we will denote by head_k the computation performed in the k’th model after the multiplication by W_k. Performing weight adjustment on the next layer, W^1_k = W_k F_k F_k^T, we make adjusted weights to operate on the same “basis” F_1, for every model k. Note that a net with these adjusted weights approximates the output of the k’th network. So, the average of the adjusted prediction \frac{1}{n} \sum_{k=1}^{n} head_k(W^1_k F_1) approximates the true ensembling of the models, where n is the number of models in the ensemble.

Figure 6: A WA-ensemble of three models. Models B and C are adjusted to have the same backbone as model A. A longer common backbone reduces the amount of computation and required storage.

Note that if we adjust the last layer, there is no head_k sub-networks to compute and we can just average the adjusted weights in the last layer. Moreover, if the loss is convex with respect to the model output, the loss of thus averaged models does not exceed the largest of the single model losses.

In Figure 7 we compare this WA-ensemble method against the usual ensemble of independently trained networks. We see that a longer common backbone reduces the amount of computation and required storage at the cost of accuracy: the ensemble of independently trained models performs the best, followed by the WA(14) ensemble with two common layers, etc. We refer the reader to Section B in supplementary material for more results.

7. Discussion

We have described and compared a panel of generally applicable methods to connect a pair of weight vectors with a low-loss path. Our methods are inspired by the distributional picture of weights in the networks and vary in complexity and accuracy. On the whole, our experiments show that on the realistic datasets such as MNIST and CIFAR10, our
connection methods are reasonably efficient, with efficiency naturally correlated with the complexity of the method. The simplest nontrivial method – Arc Connection – is practically as simple and explicit as the baseline linear connection, but nevertheless provides a consistent improvement over the latter. The learnable methods (IAF flow, ReLNVP bijection) further improve performance, thanks to taking into account the actual distribution of neurons.

Optimal Transportatnion and Weight Adjustment perform even better, approximately matching and in some cases even slightly improving the direct numerical optimization results of Garipov et al. [2018]. The key difference between them and the learnable methods is that the latter transform a neuron to the given state disregarding the states of the other neurons. In contrast, transformation of a single neuron under OT and WA takes into account the states of all neurons, which obviously creates an opportunity for a lower loss connection, at the cost of a higher computational complexity.

The observed efficiency of the Optimal Transportation confirms the distribution-based explanation of the low-loss structure of the loss surface. Note, however, that the path constructed by OT is a rather complex piecewise linear curve, with the number of pieces scaling linearly with the network size. Also, this construction depends on the initial neuron matching that requires a separate optimization for each pair of endpoints. In contrast, global learnable methods (IAF flow, ReLNVP bijection), while not achieving the accuracy of OT, provide relatively simple paths that depend on the endpoints only through the explicit arc formula.

Summarizing, our results provide a relatively clear picture of connectedness of local minima in a large network. We see that natural “macroscopic” ideas lead to relatively simple low-lying paths, which can be further improved by taking into account more “microscopic” details. The resulting connection performance agrees with previously known experimental results. Moreover, we have shown that low-loss connection paths give rise to a new kind of ensembling capable of improving the accuracy of the trained model with only a moderate increase of its complexity. It would be interesting to further explore the structure of connecting paths, with the view of a further computational simplification and better guarantees of performance improvement.

8. Acknowledgment

IA thanks Denis Korzhenkov for helpful discussions and comments. DY acknowledges support of Huawei in the framework of the joint Skoltech–Huawei project “CNN expressiveness”.

Table 2: The same as Table [1] but for complex networks on CIFAR100. B-fly is short for Butterfly.

<table>
<thead>
<tr>
<th>Methods</th>
<th>FC3 train</th>
<th>FC3 test</th>
<th>Conv2FC1 train</th>
<th>Conv2FC1 test</th>
<th>VGG16 train</th>
<th>VGG16 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Arc</td>
<td>31.10 ± 0.84</td>
<td>27.19 ± 1.12</td>
<td>25.86 ± 4.62</td>
<td>25.41 ± 4.54</td>
<td>10. ± 0.</td>
<td>10. ± 0.</td>
</tr>
<tr>
<td>Linear + B-fly</td>
<td>47.81 ± 0.76</td>
<td>38.38 ± 0.84</td>
<td>44.08 ± 3.59</td>
<td>42.46 ± 3.43</td>
<td>8.41 ± 3.79</td>
<td>8.57 ± 3.49</td>
</tr>
<tr>
<td>Linear + WA</td>
<td>60.60 ± 0.79</td>
<td>49.63 ± 0.86</td>
<td>56.67 ± 3.93</td>
<td>54.56 ± 3.73</td>
<td>3.67 ± 4.56</td>
<td>4.54 ± 4.30</td>
</tr>
<tr>
<td>Linear + WA</td>
<td>60.93 ± 0.25</td>
<td>51.87 ± 0.24</td>
<td>71.09 ± 0.38</td>
<td>67.07 ± 0.49</td>
<td>94.16 ± 0.38</td>
<td>87.55 ± 0.41</td>
</tr>
<tr>
<td>OT + B-fly</td>
<td>81.95 ± 0.29</td>
<td>59.11 ± 0.46</td>
<td>76.94 ± 1.41</td>
<td>73.66 ± 1.44</td>
<td>75.42 ± 18.83</td>
<td>68.56 ± 17.80</td>
</tr>
<tr>
<td>OT + WA</td>
<td>87.53 ± 0.18</td>
<td>61.67 ± 0.49</td>
<td>82.37 ± 0.44</td>
<td>78.11 ± 0.61</td>
<td>96.61 ± 0.18</td>
<td>89.24 ± 0.14</td>
</tr>
<tr>
<td>Garipov (3)</td>
<td>94.56 ± 0.08</td>
<td>61.38 ± 0.36</td>
<td>85.10 ± 0.25</td>
<td>80.95 ± 0.16</td>
<td>99.69 ± 0.03</td>
<td>91.25 ± 0.14</td>
</tr>
<tr>
<td>End Points</td>
<td>95.13 ± 0.08</td>
<td>63.25 ± 0.36</td>
<td>87.18 ± 0.14</td>
<td>82.61 ± 0.18</td>
<td>99.99 ± 0.0</td>
<td>91.67 ± 0.10</td>
</tr>
</tbody>
</table>
REFERENCES

