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A. Proof of Lemma 5.2
We will use the theorems below in order to prove the lemma.

Theorem A.1 (Multiplicative amplitude estimation (Ambainis, 2010)) Suppose we have access to a unitary U :
|0〉 → |ψ〉 and its inverse where

|ψ〉 =
√
a|ψ1〉+

√
1− a|ψ0〉, (1)

with the promise that a is either 0 or greater than p. For every c ∈ (0, 1), there exists an algorithm that, with probability
≥ 1 − δ, outputs an estimate ã, satisfying |a − ã| ≤ c · ã if a ≥ p, and ã = 0 if a = 0. Then the number of queries to
U , U−1 is

O

(
log(1/δ)

c

(
1 + log log

1

p

)√
1

max{a, p}

)
. (2)

Theorem A.2 (Nondestructive amplitude estimation (Harrow & Wei, 2019)) Let |ψ〉 be a quantum state. Suppose we
are given access to U : |0〉 → |ψ〉 and U−1 where

|ψ〉 =
√
a|ψ1〉+

√
1− a|ψ0〉. (3)

This subroutine uses ideas developed by Ambainis (Ambainis, 2010) and the proof uses ideas required to prove Theorem A.1.

Algorithm 1 Modified Amplitude Estimation

Input: Let ε̃,M > 0. The state |ψ〉 =
√
ε̃/M |φ1〉|1〉+

√
1− ε̃/M |φ0〉|0〉 and the unitary U such that U |0〉 = |ψ〉.

1: for J = 2π
√
M

δ to 16
√

2π
√
M

δ ·
√
QT 2 log(MT/δ) do

2: Let ε′/M be the output after performing non-destructive amplitude estimation (in Thm. A.2) to compute ε̃/M using
J queries to U and U−1.

3: Check if 2
√

2π
√

(1−δ)ε′

J
√
M

+ π2

J2 ≤ δε′

M . If yes, then output ε′ and quit the loop. Else, let J = 2 · J .
4: end for

Output: {ε′, yes} if there exists ε′ in step (3), else output {ε′ = 1/(QT 2), no}.

Lemma A.3 Let δ = 1/(10QT 2). Algorithm 1 satisfies the following: with probability ≥ 1 − 10δ/T , if the output is
{ε′, yes}, then |ε̃− ε′| ≤ δε′; and if the output is {ε′ = 1/(QT 2), no}, then |ε̃− ε′| ≤ 1/(QT 2). The total number queries
to U and U−1 used by Algorithm 1 is O(

√
MQ3/2T 3).

Proof. We first consider the case when Algorithm 1 outputs {ε′, yes}. In this case, there exists a J and ε′ which satisfies
the relation in step (3) of the algorithm. First observe that, since ε′/M was obtained by amplitude amplification in step (2),
we have ∣∣∣∣∣ ε′M − ε̃

M

∣∣∣∣∣ ≤
∣∣∣∣∣ ε′M − (1− δ)ε̃

M

∣∣∣∣∣ ≤ 2π
√

(1− δ)ε̃
J
√
M

+
π2

J2
≤

2
√

2π
√

(1− δ)ε′

J
√
M

+
π2

J2
, (4)

where the second inequality used Theorem A.2 and the third inequality used the first and second inequalities to conclude

|ε̃− ε′| ≤ 2π
√

(1−δ)Mε̃

J + π2M
J2 . This implies

ε̃ ≤ ε′ +
2π
√

(1− δ)Mε̃

J
+
π2M

J2
≤ 2ε′,
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Quantum Boosting

where we used J ≥ (2π
√
M)/δ. Putting together the upper bound in Eq. (4) along with the upper bound in Step (3) of the

algorithm, we get |ε̃− ε′| ≤ δε′. Furthermore, we also show that ε̃ ≥ (1− 2δ)/(64QT 2). Recall that J, ε′ satisfies step (3)
of the algorithm. In particular, this implies that

2
√

2π
√

(1− δ)ε′

Jmax
√
M

+
π2

J2
max

≤ δε′

M
,

since J ≤ Jmax. Substituting the value of Jmax in the inequality above gives
√

(1−δ)ε′

8
√
QT 2

+ δ
512QT 2 ≤ ε′. Solving for the

above equation, we obtain ε′ ≥ 1/(64QT 2) · (1− δ) (we ignore the other solution for ε′ since ε′ ≥ 0). Using |ε̃− ε′| ≤ δε′,
we get ε̃ ≥ (1− δ)ε′ ≥ (1− 2δ)/(64QT 2).

Now we consider the case when Algorithm 1 outputs {ε′ = 1/(QT 2), no}, and we argue that |ε̃− ε′| < 1/(QT 2). In order
to see this, first observe that∣∣∣∣∣ ε′M − ε̃

M

∣∣∣∣∣ ≤ 2
√

2π
√

(1− δ)ε′

J
√
M

+
π2

J2
≤ δ
√

2ε′

M
+

δ2

4M
≤ 10δ

M
, (5)

where the first inequality used Eq. (4), the second inequality used J ≥ (2π
√
M)/δ and the third inequality used ε′ < 1.

Using δ = 1/(10QT 2), we obtain |ε̃ − ε′| ≤ 1/(QT 2). Furthermore, we show that in the ‘no’ instance, we have
ε̃ < 1/(QT 2). We prove this by a contrapositive argument: suppose ε̃ ≥ 1/(QT 2), there exists a J ′ ∈

[
J∗, Jmax

]
, where

J∗ = 8π
√
M

δ
√

(1−δ)ε̃
, for which the inequality in step (3) of Algorithm 1 is satisfied with probability at least 1 − 10δ/T .1 In

order to see this, first observe that

2
√

2π
√

(1− δ)ε′

J
√
M

+
π2

J2
≤

4π
√

(1− δ)ε̃
J
√
M

+
π2

J2
≤ δ(1− δ)ε̃

2M
+
δ2(1− δ)ε̃

64M
≤ δ(1− δ)ε̃

M
, (6)

where the second inequality used J ≥ J∗ and the remaining inequalities are straightforward. Using Eq. (5) and Eq. (6),
we have |ε′ − ε̃| ≤ δ(1 − δ)ε̃. Moreover, using |ε̃ − ε′| ≤ δ(1 − δ)ε̃, we can further upper bound Eq. (6) by δε′/M ,
which implies step (3) of Algorithm 1 is satisfied, in which case the algorithm would have output ‘yes’ with probability
≥ 1− 10δ/T . Hence, by the contrapositive argument, if Algorithm 1 outputs ‘no’ with probability at least 1− 10δ/T , then
we have ε̃ < 1/QT 2.

Finally, we bound the total number of queries made to U and U−1 in Algorithm 1. Given that J is doubled in every round
and J ≤ Jmax = O(

√
MQT 2/δ), the total number of queries is

Jmax +
Jmax

2
+
Jmax

4
+ · · ·+ 2π

√
M

δ
< 2Jmax = O

(√
MQT 2/δ

)
= O(

√
MQ3/2T 3) (7)

using δ = O(1/QT 2). This concludes the proof of the lemma. �

B. Details of Algorithm 1

First, we describe the unitary operation that updates D̃1 (in step (2)) to D̃t (in step (3)). For t ∈ {1, . . . , T}, let Gt be the
quantum circuit that makes the distribution update from D̃1 → D̃t. Given access to h1, . . . , ht−1, c : {0, 1}n → {−1, 1}
and knowledge of ε′1, . . . , ε

′
t−1, define Gt as the map:

Gt :
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃1

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉

→ 1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉.
(8)

1Note that J∗ ≤ Jmax follows immediately by using the lower bound ε̃ ≥ 1/QT 2.
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We describe our quantum boosting algorithm in more details. In the tth step, we have quantum query access to the hypotheses
{h1, . . . , ht−1} and knowledge of the approximate weighted errors {ε′1, . . . , ε′t−1}. Let U1, U2 be unitaries that satisfy
U1 : |0〉 → |ψ1〉 and U2 : |0〉 → |Φ1〉, where

|ψ1〉 =

(
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃1

x〉 ⊗ |0〉⊗t+1

)
, |Φ1〉 =

(
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃1

x〉 ⊗ |0〉⊗t
)
.

Recall that D̃1 is the uniform distribution over the training set S where D̃1
x = 1/M for every (x, c(x)) ∈ S. We assume that

theoretically one could use a quantum RAM to prepare the state 1√
M

∑
x∈S |x, c(x)〉 in time O(logM). Since the training

set S = {(xi, c(xi))}i∈[M ] is classical and stored in a classical data structure, we assume that a QRAM can be used to
map this classical register into a uniform quantum state in time O(logM).2 Ofcourse, one can also assume that a quantum
learner has access to uniform quantum examples 1√

M

∑
x∈S |x, c(x)〉, in which case we do not need to assume a QRAM.

We now describe the quantum boosting algorithm. The algorithm begins by first preparing U1|0〉⊗U⊗Q2 |0〉 = |ψ1〉⊗|Φ1〉⊗Q.
We then apply (Q+ 1)(t− 1) quantum queries to the oracles {Oh1

, . . . , Oht−1
} to obtain3

|ψ2〉 ⊗ |Φ2〉⊗Q =

(
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃1

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉|0〉2
)

⊗

(
1√
M

∑
x∈S
|x, c(x)〉|D̃1

x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉

)⊗Q
.

(9)

We then apply the unitary Gt on |ψ2〉 and each of the Q copies of |Φ2〉 to update D̃1. The resulting state is

|ψ3〉 ⊗ |Φ3〉⊗Q =

(
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉|0〉2
)
⊗

(
1√
M

∑
x∈S
|x, c(x)〉|D̃t

x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉

)⊗Q
.

(10)

We now break down the algorithm into two steps, the first phase uses |Φ3〉⊗Q to obtain ht and the second phase uses ht and
|ψ3〉 to compute ε′t.

Phase (1): Obtaining hypothesis ht. Let V : |p〉|0〉|0〉 → |p〉
(√

1− p|0〉 +
√
p|1〉

)
| sin−1

(√
p
)
〉. For each of the Q

copies of |Φ3〉, append an auxiliary |0〉 and apply V to obtain

|Φ4〉 =
1√
M

∑
x∈S
|x, c(x)〉|D̃t

x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉
(√

D̃t
x|0〉+

√
1− D̃t

x|1〉
)
. (11)

Let Wt be the unitary that performs Wt : |Φ1〉 → |Φ4〉 and W̃t = WtU2 be the map W̃t : |0〉 → |Φ4〉. Let Yt be the
unitary that uses O(

√
M log(T/ζ)) invocations of W̃t and W̃−1

t to perform amplitude amplification on the state |Φ4〉 where
ζ = O(1). Then with probability ≥ 1− ζ/T , the resulting state is

|Φ5〉 = Yt|Φ4〉 =
∑
x∈S

√
D̃t
x|x, c(x)〉|D̃t

x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉+ |Ψ〉, (12)

2One could use the proposal of Lloyd et al. (Giovannetti et al., 2008) as a QRAM here. We make a couple of remarks: our quantum
algorithm only requires a QRAM to prepare the uniform superposition over classical data. Also, our quantum algorithm does not use
QRAM as an oracle for Grover-like algorithms, so the negative results of (Arunachalam et al., 2015) do not apply to our algorithm.

3To be precise, we obtain the t-th indicator function [ht(x) 6= c(x)] as follows: first use Oht to perform the map
1√
M

∑
x∈S |x, c(x)〉|D̃

1
x〉|0〉 = 1√

M

∑
x∈S |x, c(x)〉|D̃

1
x〉|ht(x)〉, next apply the CNOT gate on 1√

M

∑
x∈S |x, c(x)〉|D̃

1
x〉|ht(x)〉

to produce 1√
M

∑
x∈S |x, c(x)〉|D̃

1
x〉|ht(x) · c(x)〉
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where |Ψ〉 is orthogonal to the first register. Observe that without |Ψ〉, the state |Φ5〉 is no longer a quantum state because
{D̃t

x}x is a sub-normalized distribution. Using Claim 5.3, we have

‖|Ψ〉‖ ≤ 1−
∑
x∈S

D̃t
x ≤ 30δ. (13)

Observe that if we had run the boosting algorithm with the ideal distribution Dt, we would have obtained the state

|Φ′5〉 =
∑
x∈S

√
Dt
x|x, c(x)〉|Dt

x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉, (14)

instead of |Φ5〉. We now uncompute the auxiliary registers |D̃t
x〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉 in |Φ5〉 as

follows: let G−1
t be the unitary which maps |D̃t

x〉 → |D̃1
x〉 and let Oh1

, . . . , Oht−1
be the query operations that uncompute

the {|[hi(x) 6= c(x)]〉}i∈[t−1] registers. Applying G−1
t on the actual state |Φ5〉 (instead of the ideal state |Φ′5〉) gives

G−1
t |Φ5〉 =

∑
x∈S

√
D̃t
x|x, c(x)〉|0〉|[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], 0〉+ G−1

t |Ψ〉,

and then performing Oh1 , . . . , Oht−1 gives us

|Φ6〉 =
∑
x∈S

√
D̃t
x|x, c(x)〉|0〉|0〉t +Oht−1

· · ·Oh1
· G−1

t |Ψ〉. (15)

By performing the operations G−1
t , Oh1

, . . . , Oht−1
on the ideal state |Φ′5〉, we would have

|Φ′6〉 =
∑
x∈S

√
Dt
x|x, c(x)〉|0〉|0〉t. (16)

Ideally, our goal would be to pass Q copies of |Φ′6〉 to a quantum learner in order to obtain a hypothesis ht. Although, we do
not have access to |Φ′6〉, we continue our quantum boosting algorithm by passing Q copies of |Φ6〉 to a quantum learner
(instead of Q copies of |Φ′6〉). A priori, it is not clear what will be the output of the quantum learner on input |Φ6〉⊗Q. In
order to understand this, we first show that |Φ6〉 and |Φ′6〉 are close. Using this, it is not hard to see that a quantum learning
algorithm would behave the same when given |Φ6〉⊗Q instead of |Φ′6〉⊗Q. In order to formalize this, we first state the
following claim which we prove later.

Claim B.1 Let |Φ6〉 and |Φ′6〉 be as defined in Eq. (15), (16). Then we have |〈Φ6|Φ′6〉| ≥ 1− 50δ.

Recall that |Φ′6〉 is the ideal state that satisfies the following: suppose Q copies of |Φ′6〉 are given to a weak quantum learner,
then with probability at least 1− 1/T , the learner outputs a weak hypothesis ht. We now show that the same learner, when
fed Q copies of |Φ6〉 (instead of |Φ′6〉) will output ht with probability at least 1− 9/T . In order to see this, let p′ = Pr[A
outputs ht given |Φ′6〉⊗Q] ≥ 1− 1/T and p = Pr[A outputs ht given |Φ6〉⊗Q]. LetH be the hypothesis class and suppose
{Eht
}ht∈H (satisfying

∑
ht∈H Eht

= I) is the final POVM performed by A. Then we have the following,∣∣p′ − p∣∣ =
∣∣∣Tr
(
Eht
|Φ′6〉〈Φ′6|⊗Q

)
− Tr

(
Eht
|Φ6〉〈Φ6|⊗Q

)∣∣∣
≤
∑
ht∈H

∣∣∣Tr
(
Eht
|Φ′6〉〈Φ′6|⊗Q

)
− Tr

(
Eht
|Φ6〉〈Φ6|⊗Q

)∣∣∣
≤ ‖ (|Φ′6〉〈Φ′6|)⊗Q − (|Φ6〉〈Φ6|)⊗Q ‖1
= 2(1− 〈Φ6|Φ′6〉2Q)1/2

≤ 2(1− (1− 50δ)2Q)1/2 ≤ 2(1− (1− 50Qδ)2)1/2 ≤ 8/T,

(17)

where we have used the definition of trace distance in the second equality, Claim B.1 in the third inequality, Bernoulli’s
inequality (1− x)t ≥ 1− xt (for x ≤ 1 and t ≥ 0) in the penultimate inequality and δ = 1/(10QT 2) in the final inequality.
Additionally, the second inequality follows from the definition of the trace distance between quantum states

‖ ρ− σ ‖1 = max
{Em}

∑
m

|Tr(Em(ρ− σ))|.
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In particular, suppose we have a weak learner A that outputs ht with probability at least p′, then for every t ∈ [T ], we have

p = Pr[A outputs ht given |Φ6〉⊗Q] ≥ p′ − 8/T ≥ 1− 1/T − 8/T = 1− 9/T. (18)

Hence, on passing |Φ6〉⊗Q to a quantum learner A, it outputs a weak hypothesis ht with probability at least 1− 9/T using
Eq. (17). We assume that the output ht is presented in terms of an oracle Oht (which on query |x, b〉 outputs |x, b · ht(x)〉
for all b ∈ {−1, 1}, x ∈ {0, 1}n).

Phase (2): Computing ε′t. Using Oht
produced in Phase (1), we now perform the query operation Oht

on |ψ3〉 (defined
in Eq. (10)) and obtain

|ψ4〉 = Oht
|ψ3〉 =

1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)], 0〉. (19)

Using arithmetic operations, one can additionally produce the following state

|ψ5〉 =
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x · [ht(x) 6= c(x)]〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)], 0〉. (20)

We now apply the controlled reflection operator V : |p〉|0〉|0〉 → |p〉
(√

1− p|0〉 +
√
p|1〉

)
| sin−1

(√
p
)
〉 to |ψ5〉|0〉 to

obtain

|ψ6〉 =
1√
M

∑
x∈S
|x, c(x)〉⊗ |βtx〉⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)]〉⊗

(√
1− βtx|0〉+

√
βtx|1〉

)
⊗ | sin−1

(√
βtx
)
〉,

where βtx = D̃t
x[ht(x) 6= c(x)]. We can rewrite the above equation as

|ψ6〉 =
√
ε̃t/M |φ1〉|1〉+

√
1− ε̃t/M |φ0〉|0〉, (21)

where ε̃t =
∑
x∈S β

t
x =

∑
x∈S D̃

t
x[ht(x) 6= c(x)] and |φ0〉, |φ1〉 are defined as

|φ0〉 =
1√
M

∑
x∈S

√
1− βtx√

1− ε̃t/M
|x, c(x)〉 ⊗ |βtx〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)]〉 ⊗ | sin−1

(√
βtx
)
〉, (22a)

|φ1〉 =
1√
M

∑
x∈S

√
βtx√
ε̃t/M

|x, c(x)〉 ⊗ |βtx〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)]〉 ⊗ | sin−1
(√

βtx
)
〉. (22b)

Let Ft be the unitary given by the map Ft : |ψ1〉 → |ψ6〉 and F̃t = FtU1 be the map F̃t : |0〉 → |ψ6〉. Let Pt be the
unitary that implements amplitude estimation using Jt invocations of F̃t and F̃−1

t . Our aim is to estimate ε̃t with ε′t up
to a multiplicative error δ, i.e., |ε̃t − ε′t| ≤ δε′t. We now run Algorithm 1 on the state |ψ6〉 assuming unitary access to F̃t.
Using the output of Algorithm 1, we compute α′t = 1

2 ln
(
(1− ε′t)/ε′t

)
. This concludes the tth step of the quantum boosting

algorithm. In the (t + 1)th step, we use ε′t and α′t to update the distribution from D̃t to D̃t+1 and obtain the (t + 1)th
approximate weighted error ε′t+1 and the corresponding α′t+1 respectively.

C. Proof of unproven claims
In this section, we state and prove a few unproven claims from the previous section. We restate these claims for convenience
of the reader and define the distribution update from Phase (3) in our quantum boosting algorithm: If subroutine 1 outputs
‘yes’: let Zt = 2

√
ε′t(1− ε′t), α′t = ln

(√
(1− ε′t)/ε′t

)
and update D̃t

x:

D̃t+1
x =

D̃t
x

(1 + 2δ)Zt
×

{
e−α

′
t if ht(x) = c(x)

eα
′
t otherwise .

(23)
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If subroutine 1 outputs ‘no’: let Zt =
(

2
√
QT 2 − 1

)
/(QT 2), α′t = ln

(√
QT 2 − 1

)
and update D̃t

x:

D̃t+1
x =

D̃t
x

(1 + 2/(QT 2))Zt
×

{
(2− 1/(QT 2))e−α

′
t if ht(x) = c(x)

(1/(QT 2))eα
′
t otherwise .

(24)

Additionally, we will crucially use the following relations multiple times in this section: for every t ≥ 1, let D̃t be the
pseudo-distribution defined in Algorithm 1 (in particular, Eq. (23), (24)) and recall ε̃t = Prx∼D̃t [ht(x) 6= c(x)], then∑

x∈S
D̃t
x exp(−α′tc(x)ht(x)) =

∑
i:ht(xi)=c(xi)

D̃t(xi) · e−α
′
t +

∑
i:ht(xi)6=c(xi)

D̃t(xi) · eα
′
t

= (1− ε̃t) · e−α
′
t + ε̃t · eα

′
t .

(25)

Again, for every t ≥ 1, let D̃t be the pseudo-distribution defined in Algorithm 1 (in particular, Eq. (24)), then∑
x∈S

D̃t
x exp(−α′tc(x)ht(x) + κ[ht(x)6=c(x)]) =

∑
i:ht(xi)=c(xi)

D̃t(xi) · e−α
′
t+κ0 +

∑
i:ht(xi)6=c(xi)

D̃t(xi) · eα
′
t+κ1

= (1− ε̃t) · e−α
′
t+κ0 + ε̃t · eα

′
t+κ1 .

(26)

Claim 4.3 Let t ≥ 1, D̃t : {0, 1}n → [0, 1] be as defined in Eq. (23), (24). Then
∑
x∈S D̃

t
x ∈ [1− 30δ, 1].

Proof. We divide the proof of the claim into two cases. Recall δ = 1/(10QT 2).

Case I: Suppose Algorithm 1 outputs ‘yes’ in the tth iteration. Recall the definition of D̃t+1.

D̃t+1
x =

D̃t
x

2(1 + 2δ)
√
ε′t(1− ε′t)

×

{
e−α

′
t if ht(x) = c(x)

eα
′
t otherwise ,

(27)

where α′t = 1
2 ln

(
1−ε′t
ε′t

)
and |ε̃t − ε′t| ≤ δε′t. In order to prove the lower bound, observe that

∑
x∈S

D̃t+1
x =

1

2(1 + 2δ)
√
ε′t(1− ε′t)

∑
x∈S

D̃t
x exp(−α′tc(x)ht(x))

=

∑
x∈S D̃

t
x exp(−α′tc(x)ht(x))

(1− ε̃t)e−α
′
t + ε̃teα

′
t

· (1− ε̃t)e−α
′
t + ε̃te

α′t

2(1 + 2δ)
√
ε′t(1− ε′t)

=
(1− ε̃t)e−α

′
t + ε̃te

α′t

2(1 + 2δ)
√
ε′t(1− ε′t)

(using Eq. (25))

=
1

2(1 + 2δ)

1√
ε′t(1− ε′t)

·

(
(1− ε̃t)

√
ε′t

1− ε′t
+ ε̃t

√
1− ε′t
ε′t

)
(using the definition of α′t)

=
1

2(1 + 2δ)

(
1− ε̃t
1− ε′t

+
ε̃t
ε′t

)
,

where the second equality used
∑
x∈S D̃

t
x exp(−α′tc(x)ht(x)) = (1− ε̃t)e−α

′
t + ε̃te

α′t , which follows from the following
equation

Zt =

M∑
i=1

D̃t(xi) exp
(
− α′tht(xi)c(xi)

)
=

∑
i:ht(xi)=c(xi)

D̃t(xi) · e−α
′
t +

∑
i:ht(xi)6=c(xi)

D̃t(xi) · eα
′
t

= (1− ε̃t) · e−α
′
t + ε̃t · eα

′
t .

(28)
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Quantum Boosting

Since |ε̃t − ε′t| ≤ δε′t, we have

ε̃t
ε′t
≥ ε′t(1− δ)

ε′t
= 1− δ. (29)

Additionally,

1− ε̃t
1− ε′t

≥ 1− ε′t(1 + δ)

1− ε′t
= 1− δε′t

1− ε′t
≥ 1− 2δ, (30)

where the second inequality uses ε′t ≤ 2/3 (since we assume εt ≤ 1/2). Putting together Eq. (29) and Eq. (30) into the
expression for

∑
x∈S D̃

t+1
x , we get

∑
x∈S

D̃t+1
x ≥ 2− 3δ

2(1 + 2δ)
≥ 1− 4δ ≥ 1− 30δ.

Next, we prove the upper bound. Note that

ε̃t
ε′t
≤ ε′t(1 + δ)

ε′t
= 1 + δ, (31)

and

1− ε̃t
1− ε′t

≤ 1− ε′t(1− δ)
1− ε′t

= 1 +
δε′t

1− ε′t
≤ 1 + 2δ, (32)

where the second inequality uses ε′t ≤ 2/3. Using Eq. (31), (32), we have

∑
x∈S

D̃t+1
x =

1

2(1 + 2δ)

(
1− ε̃t
1− ε′t

+
ε̃t
ε′t

)
≤ 1

2(1 + 2δ)
·
(

(1 + 2δ) + (1 + δ)
)
≤ 2 + 4δ

2(1 + 2δ)
= 1.

Case II: Suppose Algorithm 1 outputs ‘no’ in the tth iteration. The distribution D̃t+1 is then updated according to

D̃t+1
x =

D̃t
x

(1 + 2/(QT 2))Zt
×

{
(2− 1/(QT 2))e−α

′
t if ht(x) = c(x)

(1/(QT 2))eα
′
t otherwise ,

(33)

where we use ε′t = 1/(QT 2), α′t = ln
√

(1− ε′t)/ε′t and Zt = 2
√
ε′t(1− ε′t). Let κ0 = ln(2 − 1/(QT 2)) and κ1 =

ln(1/(QT 2)). In order to prove the upper and lower bounds of the claim, we first observe that∑
x∈S

D̃t+1
x =

1

(1 + 2/(QT 2)) · 2
√
ε′t(1− ε′t)

∑
x∈S

D̃t
x exp

(
− α′tc(x)ht(x) + κ[ht(x) 6=c(x)]

)
=

(1− ε̃t)e−α
′
t+κ0 + ε̃te

α′t+κ1

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

(using Eq. (26))

=
(2− 1/(QT 2))(1− ε̃t)e−α

′
t + (1/(QT 2))ε̃te

α′t

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

=
1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1− ε̃t

1− ε′t
+

1

2QT 2
· ε̃t
ε′t

)
,

where the second equality used ε̃t =
∑
x:ht(x)6=c(x) D̃

t
x, third equality follows by the definition of κ0, κ1 and the final

equality used α′t = 1
2 ln

(
1−ε′t
ε′t

)
. We now prove the lower bound in the claim:
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Quantum Boosting

∑
x∈S

D̃t+1
x =

1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1− ε̃t

1− ε′t
+

1

2QT 2
· ε̃t
ε′t

)

≥ 1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1− ε̃t

1− ε′t

)
(using ε̃t > 0)

≥ 1

(1 + 2/(QT 2))
·

(
1− 1

2QT 2

)
(using 1− ε̃t ≥ 1− ε′t)

≥ 1− 3

QT 2
= 1− 30δ, (since δ = 1

10QT 2 )

where we used ε̃t ≤ ε′t in the penultimate inequality because we are in the ‘no’ instance of Lemma 5.2 in Case II of our
proof. We finally get the desired upper bound in the claim as follows

∑
x∈S

D̃t+1
x =

1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1− ε̃t

1− ε′t
+

1

2QT 2
· ε̃t
ε′t

)

≤ 1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1− ε̃t

1− 1/(QT 2)
+

1

2QT 2

)
(using ε̃t ≤ ε′t = 1/(QT 2))

≤ 1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
· 1

1− 1/(QT 2)
+

1

2QT 2

)
(using 1− ε̃t ≤ 1)

≤ 1

(1 + 2/(QT 2))

((
1− 1

2QT 2

)
·

(
1 +

2

QT 2

)
+

1

2QT 2

)
≤ 1.

�

Claim 4.4 Let t ≥ 1, ε̃t = Prx∼D̃t [ht(x) 6= c(x)] be the weighted error corresponding to the pseudo-distribution D̃t and
εt = Prx∼Dt [ht(x) 6= c(x)] correspond to the true distribution Dt, which is defined as

Dt+1
x =

D̃t
x

Zt
×

{
e−α

′
t if ht(x) = c(x)

eα
′
t otherwise ,

(34)

where α′t = ln
(√

(1− ε′t)/ε′t
)

and ε′t, ε̃t are defined in step (8) of Algorithm 1, and Zt is defined in Eq. (28). Then

|ε̃t − εt| ≤ 50δ.

Proof. We break down the proof of the claim into two cases.

Case I: Algorithm 1 outputs ‘yes’ in the tth iteration. Recall the definition of the pseudo-distribution D̃t in Eq. (23) and the
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Quantum Boosting

true distribution Dt in Eq. (34). We then have

|ε̃t+1 − εt+1| =

∣∣∣∣∣∑
x∈S

D̃t+1
x [ht+1(x) 6= c(x)]−

∑
x∈S

Dt+1
x [ht+1(x) 6= c(x)]

∣∣∣∣∣
≤
∑
x∈S

∣∣∣D̃t+1
x −Dt+1

x

∣∣∣ · ∣∣∣[ht+1(x) 6= c(x)]
∣∣∣

≤
∑
x∈S

∣∣∣D̃t+1
x −Dt+1

x

∣∣∣ (since [ht+1(x) 6= c(x)] ≤ 1)

=
∑
x∈S

D̃t
x exp(−α′tc(x)ht(x))

∣∣∣∣∣ 1

2(1 + 2δ)
√
ε′t(1− ε′t)

− 1

(1− ε̃t) · e−α
′
t + ε̃t · eα

′
t

∣∣∣∣∣
=

∑
x∈S D̃

t
x exp(−α′tc(x)ht(x))

(1− ε̃t)e−α
′
t + ε̃teα

′
t

∣∣∣∣∣ (1− ε̃t)e−α
′
t + ε̃te

α′t

2(1 + 2δ)
√
ε′t(1− ε′t)

− 1

∣∣∣∣∣
=

1

2(1 + 2δ)

∣∣∣∣∣1− ε̃t1− ε′t
+
ε̃t
ε′t
− 2(1 + 2δ)

∣∣∣∣∣ (using Eq. (25))

≤ 1

2(1 + 2δ)

(∣∣∣∣∣ ε̃t − ε′t1− ε′t

∣∣∣∣∣+

∣∣∣∣∣ ε̃t − ε′tε′t

∣∣∣∣∣+ 4δ

)
(using triangle inequality)

≤ δ

2(1 + 2δ)

(∣∣∣∣∣ ε′t
1− ε′t

∣∣∣∣∣+ 5

)
(using |ε̃t − ε′t| ≤ δε′t)

≤ 7δ

2(1 + 2δ)
≤ 4δ. (using ε′t ≤ 2/3)

Case II: Algorithm 1 outputs ‘no’ in the tth iteration. Recall the definition of the pseudo-distribution D̃t in Eq. (24). Let
κ0 = ln(2− 1/(QT 2)) and κ1 = ln(1/(QT 2)). We have

|ε̃t+1 − εt+1|

=

∣∣∣∣∣∑
x∈S

D̃t+1
x [ht+1(x) 6= c(x)]−

∑
x∈S

Dt+1
x [ht+1(x) 6= c(x)]

∣∣∣∣∣
≤
∑
x∈S
|D̃t+1

x −Dt+1
x |

=
∑
x∈S

D̃t
x exp(−α′tc(x)ht(x) + κ[ht(x)6=c(x)]) ·

∣∣∣∣∣ 1

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

− 1

(1− ε̃t)e−α
′
t+κ0 + ε̃teα

′
t+κ1

∣∣∣∣∣
=

∑
x∈S D̃

t
x exp(−α′tc(x)ht(x) + κ[ht(x) 6=c(x)])

(1− ε̃t)e−α
′
t+κ0 + ε̃teα

′
t+κ1

·

∣∣∣∣∣ (1− ε̃t)e−α
′
t+κ0 + ε̃te

α′t+κ1

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

− 1

∣∣∣∣∣
=

1

2(1 + 2/(QT 2))

∣∣∣∣∣
(

2− 1

QT 2

)
· 1− ε̃t

1− ε′t
+

1

QT 2
· ε̃t
ε′t
− 2

(
1 +

2

QT 2

)∣∣∣∣∣ (using Eq. (26))

≤ 1

2(1 + 2(QT 2))

(
2 ·

∣∣∣∣∣1− ε̃t1− ε′t
− 1

∣∣∣∣∣+
1

QT 2
·

(∣∣∣∣∣1− ε̃t1− ε′t

∣∣∣∣∣+

∣∣∣∣∣ ε̃tε′t
∣∣∣∣∣
)

+
4

QT 2

)
(using triangle inequality)

≤ 1

2(1 + 2/(QT 2))

(
2

QT 2
·

(
1

1− 1/(QT 2)

)
+

1

QT 2
·

(
1

1− 1/(QT 2)
+ 1

)
+

4

QT 2

)

≤ 5

QT 2
= 50δ, (using δ = 1/(10QT 2))

where the second last inequality used 0 ≤ ε̃t ≤ ε′t = 1/(QT 2) and |ε̃t − ε′t| ≤ 1/(QT 2). �
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Claim B.1 Let t ≥ 1, |Φ6〉 =
∑
x∈S

√
D̃t
x|x, c(x)〉|0〉|0〉t + Oht−1

· · ·Oh1
· G−1

t |Ψ〉 and |Φ′6〉 =∑
x∈S

√
Dt
x|x, c(x)〉|0〉|0〉t be defined as in Eq. (15), (16) respectively. Then we have |〈Φ6|Φ′6〉| ≥ 1− 50δ.

Proof. We break down the proof into two cases.

Case I: Algorithm 1 outputs ‘yes’ in the tth iteration. We now lower bound the inner product between

|Φ6〉 =
∑
x∈S

√
D̃t
x|x, c(x)〉|0〉|0〉t +Oht−1

· · ·Oh1
· G−1

t |Ψ〉︸ ︷︷ ︸
:=|Ψ′〉

, |Φ′6〉 =
∑
x∈S

√
Dt
x|x, c(x)〉|0〉|0〉t.

In order to do so, we first lower bound the following quantity

∑
x∈S

√
D̃t+1
x Dt+1

x =
∑
x∈S

√
D̃t
x exp(−α′tc(x)ht(x))

2(1 + 2δ)
√
ε′t(1− ε′t)

·

√
D̃t
x exp(−α′tc(x)ht(x))

(1− ε̃t)e−α
′
t + ε̃teα

′
t

=

(
1

2(1 + 2δ)
√
ε′t(1− ε′t)

· 1

(1− ε̃t)e−α
′
t + ε̃teα

′
t

)1/2 ∑
x∈S

D̃t
x exp(−α′tc(x)ht(x))

=

(
(1− ε̃t)e−α

′
t + ε̃te

α′t

2(1 + 2δ)
√
ε′t(1− ε′t)

)1/2

·
∑
x∈S D̃

t
x exp(−α′tc(x)ht(x))

(1− ε̃t)e−α
′
t + ε̃teα

′
t

=

(
1

2(1 + 2δ)

(
1− ε̃t
1− ε′t

+
ε̃t
ε′t

))1/2

· 1 ≥ 1− 2δ,

(35)

where the first equality used Eq. (23) and (34), the final equality used Eq. (25), and the final inequality used Eq. (29) and
Eq. (30) to conclude

1

2(1 + 2δ)

(
1− ε̃t
1− ε′t

+
ε̃t
ε′t

)
≥ 1− 4δ.

We are now ready to prove the claim

|〈Φ6|Φ′6〉| =
∣∣∣∑
x∈S

√
D̃t
xD

t
x + 〈Ψ′|Φ6〉

∣∣∣ ≥ ∣∣∣∣∣∣∣∣∑
x∈S

√
D̃t
xD

t
x

∣∣∣− ∣∣∣〈Ψ′|Φ6〉
∣∣∣∣∣∣∣∣ (by reverse triangle inequality)

≥
∣∣∣∑
x∈S

√
D̃t
xD

t
x

∣∣∣− ∣∣∣〈Ψ′|Φ6〉
∣∣∣

≥ 1− 2δ −
∣∣∣〈Ψ′|Φ6〉

∣∣∣ (using Eq.(35))

≥ 1− 2δ −
∥∥∥|Ψ′〉∥∥∥ = 1− 2δ −

∥∥∥|Ψ〉∥∥∥ ≥ 1− 50δ (using Eq. (13))

where the penultimate inequality used 〈Ψ′|Φ6〉 ≤ ‖|Ψ′〉‖ ≤ 30δ from Eq. (13).

Case II: Algorithm 1 outputs ‘no’ in the tth iteration. Recall that κ0 = ln(2− 1/(QT 2)) and κ1 = ln(1/(QT 2)). Using
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Eq. (24) and 0 ≤ ε̃t ≤ ε′t = 1/(QT 2), we have∑
x∈S

√
D̃t+1
x Dt+1

x

=
∑
x∈S

√√√√D̃t
x exp(−α′tc(x)ht(x) + κ[ht(x) 6=c(x)])

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

·

√
D̃t
x exp(−α′tc(x)ht(x) + κ[ht(x) 6=c(x)])

(1− ε̃t)e−α
′
t+κ0 + ε̃teα

′
t+κ1

=

(
1

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

· 1

(1− ε̃t)e−α
′
t+κ0 + ε̃teα

′
t+κ1

)1/2

·
∑
x∈S

D̃t
x exp(−α′tc(x)ht(x) + κ[ht(x) 6=c(x)])

=

(
(1− ε̃t)e−α

′
t+κ0 + ε̃te

α′t+κ1

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

)1/2

·
∑
x∈S D̃

t
x exp(−α′tc(x)ht(x) + κ[ht(x)6=c(x)])

(1− ε̃t)e−α
′
t+κ0 + ε̃teα

′
t+κ1

=

(
(2− 1/(QT 2)) · (1− ε̃t)e−α

′
t + (1/(QT 2)) · ε̃teα

′
t

2(1 + 2/(QT 2))
√
ε′t(1− ε′t)

)1/2

=

(
1

(1 + 2/(QT 2))
·

((
1− 1

2QT 2

)
· 1− ε̃t

1− ε′t
+

(
1

2QT 2

)
· ε̃t
ε′t

))1/2

≥ 1− 3

2QT 2
.

(36)

The first equality used Eq. (24) and Eq. (26), the fourth equality used the modified distribution update in Eq. (24) to conclude∑
x∈S

D̃t
x exp

(
− α′tc(x)ht(x) + κ[ht(x)6=c(x)]

)
=

∑
x:ht(x)=c(x)

D̃t
x exp(−α′t + κ1) +

∑
x:ht(x)6=c(x)

D̃t
x exp(α′t + κ0)

= (1− ε̃t) · e−α
′
t+κ0 + ε̃t · eα

′
t+κ1 .

and the last inequality used the lower bound on
∑
x∈S D̃

t
x in Claim 4.3 (Case II). We are now ready to prove the claim

|〈Φ6|Φ′6〉| ≥
∣∣∣∑
x∈S

√
D̃t
xD

t
x

∣∣∣− ∣∣∣〈Ψ′|Φ6〉
∣∣∣

≥ 1− 3

2QT 2
−
∣∣∣〈Ψ′|Φ6〉

∣∣∣ (using Eq.(36))

≥ 1− 3

2QT 2
−
∥∥∥|Ψ′〉∥∥∥

≥ 1− 3

2QT 2
− 3

QT 2
≥ 1− 5

QT 2
= 1− 50δ. (using Eq. (13) and δ = 1/(10QT 2))

This concludes the proof of the claim. �

D. Proof of correctness
It remains to argue that the training error of H is ≤ 1/10, i.e., H(x) = c(x) for (9/10)-th fraction of the (x, c(x)) ∈ S. To
prove this, we analyze the training error of H with respect to the uniform distribution D̃1 as follows. We break the proof of
correctness into two cases and argue separately. In fact in the first case we will argue that H has zero training error and in
the second case we will show the training error of H is at most 1/10.

Case I: Suppose Algorithm 1 outputs ‘yes’ for every t ∈ [T ]. This case corresponds to the setting where each weighted
error ε̃t is estimated by an ε′t such that |ε′t − ε̃t| ≤ δε′t for every iteration of the quantum boosting algorithm. If the output is
‘yes’, recall that

D̃t+1(x) =
D̃t(x)

Z ′t
×

{
e−α

′
t if ht(x) = c(x)

eα
′
t otherwise

=
D̃t(x) exp

(
− c(x)α′tht(x)

)
Z ′t

. (37)
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Quantum Boosting

where Z ′t = 2(1 + 2δ)
√
ε′t(1− ε′t). By definition, we obtain

D̃T+1(x) = D̃1(x) ·
T∏
t=1

exp
(
− c(x)α′tht(x)

)
Z ′t

=
D1(x) exp

(
− c(x) ·

∑T
t=1 α

′
tht(x)

)
ΠT
t=1Z

′
t

, (38)

where the second equality used D̃1 = D1 which is the uniform distribution. We now upper bound the training error under
the distribution D1

Pr
x∼D1

[H(x) 6= c(x)] = Pr
x∼D1

[
sign

( T∑
t=1

α′tht(x)
)
6= c(x)

]
≤ Pr
x∼D1

[
exp

(
−

T∑
t=1

α′tht(x) · c(x)
)]

=

M∑
i=1

D1(xi) exp
(
− c(xi)

T∑
t=1

α′tht(xi)
)

=

M∑
i=1

D̃T+1(xi)Π
T
t=1Z

′
t ≤ ΠT

t=1Z
′
t,

(39)

where the first equality used the definition of H(x) = sign(
∑T
t=1 α

′
tht(x)), the first inequality used [sign(z) 6= y] ≤ e−z·y

for z ∈ R, y ∈ {−1, 1}, the final equality used Eq. (38) and the final inequality used the fact that D̃T+1 is a pseudo-
distribution. We are now in a stage to analyze the training error of H on D1,

Pr
x∼D1

[H(x) 6= c(x)] ≤
T∏
t=1

Z ′t = (1 + 2δ)T
T∏
t=1

2
√
ε′t(1− ε′t) (using Eq. (39) and definition of Z ′t)

≤ e2δT
T∏
t=1

2

√
ε̃t

1− δ
·
(

1− ε̃t
1 + δ

)
(since |ε̃t − ε′t| ≤ δε′t)

≤ e2δT
T∏
t=1

2
√
ε̃t(1 + 2δ)(1− ε̃t(1− δ))

≤ e2δT
T∏
t=1

2
√

(εt + 4δ)(1 + 2δ)(1− (εt − 4δ)(1− δ)) (using |ε̃t − εt| ≤ 4δ)

≤ e2δT
T∏
t=1

2
√
εt(1− εt) + 75δ

≤ e2δT
T∏
t=1

2
√

1/4− γ2
t + 75δ (since εt ≤ 1/2− γt)

= e2δT
T∏
t=1

√
1− 4(γ2

t − 75δ)

≤ e2δT
T∏
t=1

√
1− 4(γ2 − 75δ) (since γ ≤ γt for all t)

≤ exp

(
2δT − 2

T∑
t=1

(
γ2 − 75δ

))
(since 1 + x ≤ ex for x ∈ R)

≤ exp
(
− 2Tγ2 + 16/(QT )

)
, (since δ = 1/(10QT 2))

where we used Claim 4.4 (Case I) in the third inequality to conclude |ε̃t − εt| ≤ 4δ.

In order to conclude the proof-of-correctness, note that for T = O((logM)/γ2) and for a sufficiently large constant in the
O(·), the final upper bound on the expression is

Pr
x∼D1

[H(x) 6= c(x)] < 1/M.
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Quantum Boosting

SinceD1 is the uniform distribution over S, i.e., D1
x = 1/M for (x, c(x)) ∈ S, this implies that Prx∼D1 [H(x) 6= c(x)] = 0.

Hence H has zero training error.

Case II: In this case, we assume that Algorithm 1 outputs ‘no’ in the first ` ∈ [T ] rounds of the quantum boosting
Algorithm 1.4 We additionally assume that ` ≤ T/ log(2

√
QT )− 1, which is standard in AdaBoost for the following reason:

suppose the weighted errors of each of the first t ∈ [`] hypotheses satisfies εt ≤ 1/QT 2 � 1/3 (which is the ‘no’ instance
of Algorithm 1), then observe that the resulting learner is strong and we need not do boosting in the first place. Moreover,
suppose ` ≥ T/ log(2

√
QT ), then observe that the final hypothesis after the T rounds of AdaBoost has training error at

most 1/10 and we are done:

Pr
x∼D1

[H(x) 6= c(x)] = Pr
x∼D1

[
sign

( T∑
t=1

αtht(x)
)
6= c(x)

]
≤

T∏
t=1

Zt =

T∏
t=1

2
√
εt(1− εt)

≤
∏̀
t=1

2
√
εt ≤

(
2√
QT

)`
≤ 1

10
,

where the last equality used ` ≥ T/ log(2
√
QT ) and T ≥ logM .

So from here onwards we will assume ` ≥ T/ log(2
√
QT ) and still show that the training error is at most 1/10. Note that

for the first ` iterations, the distribution follows the update rule, which defers from the standard AdaBoost update: for every
k ∈ [`],

D̃k+1
x =

D̃k
x

2(1 + 2/(QT 2))
√
ε′k(1− ε′k)

×

{
(2− 1/(QT 2))e−α

′
k if hk(x) = c(x)

(1/(QT 2))eα
′
k otherwise

=
D̃k(x) exp

(
− α′k · c(x)hk(x) + κ[hk(x)6=c(x)]

)
Z ′k

,

(40)

where ε′k = 1/(QT 2) and Z ′k = 2(1 + 2/(QT 2))
√
ε′k(1− ε′k). Let κ0 = ln(2 − 1/(QT 2)) and κ1 = ln(1/(QT 2)). In

particular, observe that for every ` ≥ 1, we have

D̃`+1
x =

D1
x

Π`
i=1Z

′
i

· exp
(
− c(x) ·

∑̀
i=1

α′ihi(x)
)
· exp

(∑̀
i=1

κ[hi(x)6=c(x)]

)
. (41)

We bound the training error as follows:

Pr
x∼D1

[H(x) 6= c(x)] ≤
∑
x∈S

D1
x exp

(
− c(x)

T∑
t=1

α′tht(x)
)

=
∑
x∈S

D1
x exp

(
− c(x)

∑̀
t=1

α′tht(x)
)
· exp

(
− c(x)

T∑
t=`+1

α′tht(x)
)

=
∏̀
t=1

Z ′t
∑
x∈S

D̃`+1
x exp

(
− c(x)

T∑
t=`+1

α′tht(x)
)
· exp

(
−
∑̀
i=1

κ[hi(x) 6=c(x)]

)

=

T∏
t=1

Z ′t
∑
x∈S

D̃T+1
x exp

(
−
∑̀
i=1

κ[hi(x) 6=c(x)]

)
≤

T∏
t=1

Z ′t · (QT 2)` ·
∑
x∈S

D̃T+1
x ≤

T∏
t=1

Z ′t · (QT 2)`,

where the second equality uses Eq. (41) (i.e., distribution update for ‘no’ instances) and third equality uses Eq. (38) (i.e.,
distribution update for the ‘yes’ instances), the penultimate inequality uses exp(−κ0) ≤ exp(−κ1) ≤ QT 2 (we remark that
this bound is very loose, since exp(κ0) = O(1)) and the final inequality uses the fact that D̃ is a pseudo-distribution by

4Our analysis also works when Algorithm 1 outputs ‘no’ for arbitrary ` rounds of the quantum boosting algorithm instead of the first `
rounds.
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Claim 4.3. Continuing to upper bound the above expression, we get

Pr
x∼D1

[H(x) 6= c(x)] ≤ (QT 2)`
T∏
t=1

Z ′t

=

(
(QT 2)`

∏̀
t=1

Z ′t

)
·

(
T∏

t=`+1

Z ′t

)

=

(
(QT 2)`(1 + 2/(QT 2))`

∏̀
t=1

2
√

1/(QT 2) · (1− 1/(QT 2))

)
·

(
(1 + 2δ)T−`

T∏
t=`+1

2
√
ε′t(1− ε′t)

)

≤

(
(QT 2)`(1 + 2/(QT 2))`

∏̀
t=1

2/
√
QT 2

)
·

(
(1 + 2δ)T−`

T∏
t=`+1

2
√
ε′t(1− ε′t)

)

≤

(
(2
√
QT )` exp

(
(2`)/(QT 2)

)
− 2(T − `)γ2 + (16T − 16`)/(QT 2)

)
≤ (2

√
QT )` exp

(
− 2(T − `)γ2 + 16/(QT )

)
≤ exp

(
2`(ln(2

√
QT ) + γ2)− 2Tγ2 + 1

)
,

where the second equality used

Z ′t =

{
2(1 + 2/(QT 2))

√
1/(QT 2) · (1− 1/(QT 2)) for t ≤ `

2(1 + 2δ) ·
√
ε′t(1− ε′t) for t ≥ `+ 1,

the third inequality used 1 + x ≤ ex for x ∈ R and the second factor

exp
(
− 2(T − `)γ2 + (16T − 16`)/(QT 2)

)
,

came from the upper bound of the training error derived in Case I with T replaced by T − ` (recall that we had showed
Prx∼D1 [H(x) 6= c(x)] ≤

∏T
t=1 Z

′
t ≤ exp

(
− 2Tγ2 + 16/(QT )

)
). Finally, using ` ≤ T/ ln(2

√
QT ) − 1, we have

Pr
x∼D1

[H(x) 6= c(x)] ≤ exp
(

2`(ln(2
√
QT ) + γ2)− 2Tγ2 + 1

)
≤ exp

(( 2T

ln(2
√
QT )

− 2
)
·
(

ln(2
√
QT ) + γ2

)
− 2Tγ2 + 1

)
= exp

(
2T − 2γ2 − 2 ln(2

√
QT ) +

2Tγ2

ln(2
√
QT )

− 2Tγ2 + 1
)
≤ e

4QT 2
≤ 1

10
,

where the final inequality used that Q,T = O(logM) are sufficiently large. Hence, we have shown that H has training
error at most 1/10.

E. Complexity of the algorithm
First we analyze the query complexity of the quantum boosting algorithm (where the query complexity refers to the total
number of queries made to the hypothesis-oracles {Oh1 , . . . , OhT

}). We consider the complexity of the tth iteration: in
phase 1, the number of queries made to {h1, · · · , ht−1} in order for the quantum weak learnerA to output the hypothesis ht
is at most

√
MQ · t: the

√
M -factor comes from amplitude amplification and the application of the unitary W̃t : |0〉 → |Φ4〉

involvesQ(t−1) queries for theQ copies of the input to the weak learner. An additionalQ(t−1) queries to {h1, · · · , ht−1}
are required while applying Oh1

, . . . , Oht−1
to uncompute the queries. In phase 2, the number of queries made during

multiplicative amplitude estimation in order to compute ε′t is
√
MQ3/2T 3 · t: the

√
MQ3/2T 3-factor is due to multiplicative

amplitude estimation (in Lemma 5.2). Furthermore, each application of F̃t : |0〉 → |ψ6〉 involves making t queries. Putting
together the contribution from both phases, the total query complexity of the quantum boosting algorithm is

T∑
t=1

√
MQ(t− 1) +Q(t− 1) +

√
MQ3/2T 3t = O(

√
MQ3/2T 5 +

√
MQT 2) = Õ(

√
MQ3/2T 5).
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We now discuss the time complexity of the quantum boosting algorithm. We begin by analyzing the time complexity of the
tth iteration. Assuming that a quantum RAM can prepare a uniform superposition 1√

M

∑
x∈S |x, c(x)〉 using O(n logM)

gates, the time complexity of preparing the initial state |ψ1〉 ⊗ |Φ1〉⊗Q is O(nQ).5 In the second step, in order to prepare
|ψ2〉 ⊗ |Φ2〉⊗Q, our quantum algorithm uses O(Qt) quantum queries to {h1, . . . , ht−1} and this can be performed in time
O(Qt). The third step involves updating the registers from D̃1 to D̃t which requires Q + 1 applications of the control
unitary Gt. Since there are t− 1 control qubits and updating the distribution register is an arithmetic operation, the third step
for implementing O(Q) operations of Gt can be performed in O(n2Qt) time.6

In phase 1 of the quantum algorithm, we perform amplitude amplification with the unitary Y ⊗Qt which makes O(
√
MQ)

calls to W̃t and W̃−1
t . This takes time O(n2

√
MQt). Next, in order to uncompute the t − 1 quantum queries in the Q

copies, our algorithm uses O(nQt) time. The weak learner A takes as input Q samples and outputs a hypothesis ht in time
O(n2Q). Note that we require the quantum learning algorithm to output an oracle for ht instead of explicitly outputting a
circuit for ht.

In phase 2, the algorithm initially performs an arithmetic operation
∑
x∈S |x〉|D̃t

x〉|[ht(x) 6= c(x)]〉 →∑
x∈S |x〉|D̃t

x[ht(x) 6= c(x)]〉|[ht(x) 6= c(x)]〉 using O(n) gates. Then a controlled reflection operator V : |p〉|0〉|0〉 →
|p〉
(√

1− p|0〉 +
√
p|1〉

)
| sin−1

(√
p
)
〉 is applied where the operation |p〉|0〉|0〉 → |p〉|0〉| sin−1

(√
p
)
〉 is an arithmetic

process and uses O(n) gates while the operation |p〉|0〉| sin−1
(√
p
)
〉 → |p〉

(√
1− p|0〉+

√
p|1〉

)
| sin−1

(√
p
)
〉 uses one

controlled rotation gate. The next step is phase estimation which involves applying QFT using O(n · log n) gates. The
time required for amplitude estimation in order to compute ε′t is O(

√
MQ3/2T 3 · tn2): the

√
MQ3/2T 3 calls are made to

the unitaries F̃t, F̃−1
t and each application of F̃t : |0〉 → |ψ6〉 requires O(n2 · t) time. The overall time complexity of the

quantum algorithm is
T∑
t=1

O
(
n2
√
MQ3/2T 3t+ n2

√
MQt+ n2Qt

)
= Õ(n2

√
MQ3/2T 5).

F. A special case of quantum boosting with better dependence on 1/γ

In the previous section, we presented a quantum boosting algorithm with complexity TQ which depended on 1/γ11. In
this section, we consider a special case of our quantum boosting algorithm and show how to improve the complexity from
1/γ11 to 1/γ6. Our quantum boosting Algorithm 1 has two important phases, the first phase for obtaining the hypothesis ht
and second phase for computing the approximate weighted errors. In this section, we assume that our quantum boosting
algorithm has oracle access to the T weak hypotheses {h1, . . . , hT } without the need of invoking a quantum weak learner
to produce {h1, . . . , hT } (note that these hypotheses are weak with respect to the pseudo-distributions D̃1, . . . , D̃T ). We
remark that Wang et al. (Wang et al., 2019) consider this setting in their quantum AdaBoost algorithm.

Theorem F.1 Fix η > 0 and γ > 0. Let n ≥ 1 and C ⊆ {c : {0, 1}n → {−1, 1}} be a concept class and D : {0, 1}n →
[0, 1] be an unknown distribution. Let M be the smallest integer exceeding M ≥ (VC(C)/γ2) · (log(VC(C)/γ2)/η2).
Suppose Algorithm 1 has oracle access to T ≥ ((logM) · log(1/δ))/γ2 hypotheses, where the t-th hypothesis ht is weak
with respect to the t-th pseudo-distribution D̃t on the training sample S, i.e.,

∑
x∈S D̃t[ht(x) = c(x)] ≥ 1/2 + γ. Then

with probability ≥ 2/3 (over the randomness of the algorithm), a quantum algorithm can produce a hypothesis H that has
training error at most 1/10 and small generalization error

Pr
x∼D

[H(x) = c(x)] ≥ 1− 1/10− η.

Moreover, the time complexity of the algorithm is

TQ = O(n2
√
MT 5/2) = Õ

(√
VC(C)
η

· n
2

γ6
· polylog(1/δ)

)
. (42)

Picking η = 1/10 we get that H has generalization error at most 1/5.

5As we mentioned earlier, we could also assume that a quantum learning algorithm has access to the uniform quantum examples
1√
M

∑
x∈S |x, c(x)〉, in which case we do not need to assume a quantum RAM.

6A quantum circuit can perform arithmetic operations with the same time complexity as a Boolean circuit (Kitaev, 1995).
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Proof sketch. The proof of the algorithm follows the same structure as the proof of Theorem 5.1. The only difference is
the following: observe that in the tth round of Algorithm 1, we made t quantum queries to the hypotheses {h1, . . . , ht}
to update the pseudo-distribution D̃t to D̃t+1. This eventually led to an overall query complexity of

∑T
t=1O(t) = O(T 2)

to the hypothesis functions. The improvement in this section follows from the observation that in order to update the
psedo-distribution D̃t+1 to D̃t+2, we need not make t+ 1 further queries to {h1, . . . , ht+1}. Alternatively, we could reuse
the queries that were already made in order to compute D̃t+1 and then make one additional query to ht+1. Hence, the overall
query complexity to the hypothesis functions can be brought down to

∑T
t=1O(1) = O(T ). In order to reuse the queries, we

use a version of coherent amplitude estimation which was recently proposed by Harrow and Wei in Theorem A.2.

Let D̃0
x = D̃1

x = 1/M for every (x, c(x)) ∈ S. Let h0 be the identity function and ε′0 = 1/2. We analyze our quantum
algorithm. In the tth round of the special boosting algorithm, we have quantum query access to the hypotheses {h1, . . . , hT },
the approximate weighted errors {ε′1, . . . , ε′t−1} and the algorithm begins with the state |ψt1〉 where

|ψt1〉 =
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t−1

x 〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉. (43)

Apply the controlled unitary G′t : 1√
M

∑
x∈S |x, c(x)〉 ⊗ |D̃t−1

x 〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉 →
1√
M

∑
x∈S |x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉 on the state |ψt1〉 to update the pseudo-distribution

{D̃t−1
x }x. The resulting state |ψt2〉 is

|ψt2〉 =
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)]〉. (44)

Computing εt: Now we use |ψt2〉 to compute ε′t. By making a query to Oht , we obtain

|ψt3〉 =
1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht−1(x) 6= c(x)], [ht(x) 6= c(x)]〉.

Let Ft be a unitary that takes as input |ψt1〉 and produces the state

|ψt4〉 =

(√
1− ε̃t/M |φt0〉|0〉+

√
ε̃t/M |φt1〉|1〉

)
, (45)

where ε̃t =
∑
x∈S D̃

t
x[ht(x) 6= c(x)]. We do not explicitly describe the states |φt0〉 and |φt1〉 (since they were already

present in Eq. (22) in the proof of Theorem 5.1). Let F̃t = FtU
t
1 be the map F̃t : |0〉 → |ψt4〉. Suppose Pt is the unitary

that implements non-destructive amplitude estimation ( Theorem A.2 ) using Jt invocations of F̃t and F̃−1
t . Our aim is

to estimate ε̃t with ε′t such that |ε̃t − ε′t| ≤ δε′t where δ = 1/(10T ). Using the state |ψt4〉 and the unitary F̃t, we invoke
Algorithm 1 to compute ε′t and the corresponding α′t = ln

√
(1− ε′t)/ε′t.

In addition, by Theorem A.2, the unitary Pt (after outputting ε′t) restores the original state |ψt4〉 with probability at least
1−O(1/T ). Since we run the non-destructive amplitude estimation unitary Pt for T rounds, then by a union bound, the
probability that all the Pts restore the original state |ψt4〉 is at least 2/3. Suppose Pt restores the original state |ψt4〉, then
after applying the inverse of the unitary Vt : |ψt3〉 → |ψt4〉, we obtain

|ψt+1
1 〉 =

1√
M

∑
x∈S
|x, c(x)〉 ⊗ |D̃t

x〉 ⊗ |[h1(x) 6= c(x)], . . . , [ht(x) 6= c(x)]〉. (46)

Proof of correctness. We now prove that the final hypothesis H(x) = sign
(∑T

t=1 α
′
tht(x)

)
is strong following the

analysis of the proof of correctness of Theorem 5.1.

Case I: Suppose Algorithm 1 outputs ‘yes’ for every t ∈ [T ]. Then for δ = 1/(10T ), we have

Pr
x∼D1

[H(x) 6= c(x)] = (1 + 2δ)T
T∏
t=1

2
√
ε′t(1− ε′t) ≤ exp

(
− 2Tγ2 + 16

)
.
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Quantum Boosting

When T ≥ (logM)/γ2, the training error Prx∼D1 [H(x) 6= c(x)] < 1/M . Since D1
x = 1/M for every (x, c(x)) ∈ S, the

final hypothesis H achieves zero training error on the training set S.

Case II: We assume that Algorithm 1 outputs ‘no’ in the first ` ∈ [T ] rounds of the special boosting algorithm and
` ≤ (Tγ2)/(2 log T ). We show that after T = O((logM)/γ2) rounds of boosting, H achieves training error at most 1/10.
For the first ` iterations, the pseudo-distribution D̃t follows the update rule: for every k ∈ [`]

D̃k+1
x =

D̃k
x

2(1 + 2/T )
√
ε′k(1− ε′k)

×

{
(2− 1/T )e−α

′
k if hk(x) = c(x)

(1/T )eα
′
k otherwise ,

(47)

where ε′k = 1/T . The training error of H is bounded by:

Pr
x∼D1

[H(x) 6= c(x)] ≤
∑
x∈S

D1(x) exp
(
− c(x)

T∑
t=1

α′tht(x)
)
≤ exp

(
2`(ln(

√
T ) + γ2)− 2Tγ2 + 1

)
. (48)

Using ` ≥ T/ log(2
√
QT ) and T = O((logM)/γ2), the training error Prx∼D1 [H(x) 6= c(x)] < 1/10.

Complexity of quantum algorithm. In the tth round, the number of queries made by multiplicative amplitude esti-
mation ( Theorem A.2 ) in order to compute ε′t is O(

√
MT 3/2). Then the total query complexity of the algorithm is∑T

t=1O(
√
MT 3/2) = O(

√
MT 5/2) and the overall time complexity is O(n2

√
MT 5/2).
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