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A. Proof of Theorem 1
We begin from (14). By taking the squared norm on both sides, and recalling that the random vectors ζk have zero mean and
are mutually independent, we have
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Recall that the spectral radius of a square matrix A ∈ R2d×2d is defined as maxi=1,...,2d |λi(A)|, where λi(A) is the ith
eigenvalue of A. The spectral radius satisfies (Horn & Johnson, 2013)

ρ(A)k ≤
∥∥Ak

∥∥ for all k,

and (Gelfand’s theorem)
lim
k→∞

∥∥Ak
∥∥1/k = ρ(A).

Hence, for any ε > 0, there exists a Kε such that
∥∥Ak

∥∥1/k ≤ (ρ(A) + ε) for all k ≥ Kε. Let

Cε = max
k<Kε

max

{
1,

∥∥Ak
∥∥

(ρ(A) + ε)k

}
. (26)

Then
∥∥Ak

∥∥ ≤ Cε(ρ(A) + ε)k for all k. Moreover, if
∥∥Ak

∥∥1/k converges monotonically to ρ(A), then Cε ≤ ‖A‖ /ρ(A).

Now, recall that we have assumed f(x) = 1
2x
>Hx− b>x+ c where H ∈ Rd×d is symmetric, and we have also assumed

that f is L-smooth and µ-strongly convex. Thus all eigenvalues of H satisfy µ ≤ λi(H) ≤ L.

Lemma 2. For A as defined in (15), we have ρ(A) = max{ρµ(α, β), ρL(α, β)} where

ρλ(α, β) =

{
1
2 |(1 + β)(1− αλ)|+ 1

2

√
∆λ if ∆λ ≥ 0,√

β(1− αλ) otherwise,

and ∆λ = (1 + β)2(1− αλ)2 − 4β(1− αλ).
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Proof. Since H is real and symmetric, it has a real eigenvalue decomposition H = UΛHU
>, where U ∈ Rd×d is an

orthogonal matrix and ΛH is the diagonal matrix of eigenvalues of H . Observe that A can be viewed as a 2× 2 block matrix
with d× d blocks that all commute with each other, since each block is an affine matrix function of H . Thus, by Polyak
(1964, Lemma 5), ξ is an eigenvalue of A if and only if there is an eigenvalue λ of H , such that ξ is an eigenvalue of the
2× 2 matrix

B(λ) :=

[
1− α(1 + β)λ β2

−αλ β

]
. (27)

The characteristic polynomial of B(λ) is

ξ2 − (1 + β)(1− αλ)ξ + β(1− αλ) = 0,

from which it follows that eigenvalues of B(λ) are given by ρλ(α, β); see, e.g.., Lessard et al. (2016, Appendix A). Note
that the characteristic polynomial of B(λ) is the same as the characteristic polynomial of a different matrix appearing in
Lessard et al. (2016), that arises from a different analysis of the AG method. Finally, as discussed in Lessard et al. (2016),
for any fixed values of α and β, the function ρλ(α, β) is quasi-convex in λ, and hence the maximum over all eigenvalues of
A is achieved at one of the extremes λ = µ or λ = L.

To complete the proof of Theorem 1, use Lemma 2 with (25) to obtain that, for any ε > 0, there is a positive constant Cε
such that

E[‖yk+1 − x?‖2] ≤ Cε


(ρ(A) + ε)2k ‖x0 − x?‖2 + α2((1 + β)2 + 1)σ2

k∑

j=1

(ρ(A) + ε)2(k−j)




≤ Cε
(

(ρ(A) + ε)2k ‖x0 − x?‖2 +
α2((1 + β)2 + 1)

1− (ρ(A) + ε)2
σ2

)
.

A.1. Estimating the constant Cε

For the theoretical plots in the numerical experiments in Section 3.2 and in Appendix G below, we estimate the constant Cε
by taking Kε ≈ 2 in (26). That is, for arbitrarily small ε and all k ≥ 2, we approximate

∥∥Ak
∥∥1/k by (ρ (A) + ε). Therefore,

the summation term in (25) is approximated as

α2((1 + β)2 + 1)

(
1

1− ρ(α, β)2
+ (‖A‖2 − ρ(α, β)2)

)
, (28)

where ‖A‖ denotes the largest singular value of A in (15), and ρ(α, β) is the largest eigenvalue of A. The first term in (28)
corresponds to the geometric limit of the summation term in (25) after taking matrix norms and approximating the norms of
matrix products by powers of the spectral radius for all products k ≥ 2. The difference term in (28) is simply used to correct
for the case k = 1. Setting Cε

α2((1+β)2+1)
1−ρ(α,β)2 equal to (28) and solving for Cε gives us the approximate expression for Cε

used in the theoretical plots in Section 3.2.

B. Proofs of Corollary 1.1 and Theorem 2

Taking α = 1/L and β =
√
Q−1√
Q+1

, we find that ρ(α, β) =
√
Q−1√
Q

. Since f(x) = 1
2x

THx−bTx+c is an L-smooth µ-strongly
convex quadratic, all eigenvalues of H are bounded between µ and L. Therefore, from Polyak (1964, Lemma 5), we have
that

∥∥Ak
∥∥
2
≤ maxλ∈[µ,L]

∥∥B(λ)k
∥∥
2
≤ maxλ∈[µ,L]

√
d
∥∥B(λ)k

∥∥
∞, where B(λ) is as defined in (27). The eigenvalues of

B(λ)k are maximized at λ = µ for k > 1, therefore, for large k,
∥∥B(λ)k

∥∥
∞ is maximized at λ = µ.

Note that the Jordan form of B(µ) is given by V JV −1, where

V =

[√
Q(
√
Q−1)√

Q+1
Q

−1 0

]
and J =

[√
Q−1√
Q

1

0
√
Q−1√
Q

]
.
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Using the Jordan form, we determine that B(µ)k is

B(µ)k =
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Q

)k
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Q
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)(√
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Q

)k


 .

Therefore, we have that

∥∥B(µ)k
∥∥
∞ ≤

(
1 +

k√
Q+ 1

)(√
Q− 1√
Q

)k
+ kmax

{
1

Q
,

(√
Q− 1√
Q+ 1

)2
}(√

Q− 1√
Q

)k−1
. (29)

Therefore for large k

∥∥Ak
∥∥2
2
≤ d

∥∥B(µ)k
∥∥2
∞ =

(√
Q− 1√
Q

+ εk

)2k

,

where εk ∼ ( k
√
k − 1). Also observe that

α2((1 + β)2 + 1)

1− ρ(α, β)2
=

1

L2

(
2
√
Q√
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)2
+ 1
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=
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(
√
Q+ 1)2(2
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.

Since f is L-smooth,

f(yk+1)− f? ≤ L

2
‖yk+1 − x?‖2 .

Thus, by Theorem 1 we have

E[f(yk+1)]− f? ≤ L

2

(√
Q− 1√
Q

+ εk

)2k

‖x0 − x?‖2 + Cε
5Q2 + 2Q3/2 +Q

2L(2
√
Q− 1)(

√
Q+ 1)2

σ2,

which completes the proof of Corollary 1.1.

To prove Theorem 2, first observe that when β = 0, the recursion simplifies significantly. Specifically, then yk+1 = xk,
vk = −αgk, and we have (using similar notation as in the proof of Theorem 1)

rk+1 = (I − αHk)rk − αζk

=

k∏

j=1

(I − αHj)r1 − αζk − α
k−1∑

j=1

k∏

l=j+1

(I − αHl)ζj ,

where

Hj =

∫ 1

0

∇f2(x? − t rj)dt.

Of course, since f is L-smooth and µ-strongly convex, all eigenvalues of Hj lie in the interval [µ,L] for all j ≥ 0.

Now, taking the squared norm on both sides, and recalling that the random vectors ζk have zero mean and are mutually
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independent, we have

E ‖yk+1 − x?‖2 = E ‖rk+1‖2

= Eζk,...,ζ1

∥∥∥∥∥∥
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k∏

j=1

‖I − αHj‖2

 ‖x1 − x?‖2 + α2σ2 + α2σ2

k−1∑

j=1




k∏

l=j+1

‖I − αHl‖2

 .

Now, since I − αHj is symmetric, we have ‖(I − αHj)‖2 = ρ(I − αHj)
2, where ρ(I − αHj) denotes the spectral radius

of I − αHj (the largest magnitude of an eigenvalue of I − αHj). For α = 2
µ+L , and since the eigenvalues of Hj lie in the

interval [µ,L], it is straightforward to show that ρ(I − αHj) = Q−1
Q+1 .

Therefore we have

E
[
‖yk+1 − x?‖2

]
≤
(
Q− 1

Q+ 1

)2k

‖x0 − x?‖2 + α2σ2
k∑

j=1

(
Q− 1

Q+ 1

)2(k−j)

≤
(
Q− 1

Q+ 1

)2k

‖x0 − x?‖2 +
α2σ2

1− (Q−1Q+1 )2

=

(
Q− 1

Q+ 1

)2k

‖x0 − x?‖2 +
Q

2L
σ2,

which completes the proof of Theorem 2.

C. Permutation Matrix Construction
For a vector x ∈ Rd, let diag(x) denote a d× d diagonal matrix with its ith diagonal entry equal to xi. Let a, b, c, d ∈ Rd
and suppose M ∈ R2d×2d is the matrix

M =

[
diag(a) diag(b)
diag(c) diag(d)

]
.

Let P ∈ {0, 1}2d×2d be the permutation matrix with entries Pi,j for i, j = 1, . . . , 2d given by

Pi,j =





1 if i is odd and j = (i− 1)/2 + 1

1 if i is even and j = d+ b i−12 c+ 1

0 otherwise.

Then one can verify that

PMP> =




T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Td




where, for j = 1, . . . , d, Tj is the 2× 2 matrix

Tj =

[
aj bj
cj dj

]
.
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D. Proof of Lemma 1
Recall that α = 1/L and β =

√
Q−1√
Q+1

. For matrices of the form

Tk = B(L)B(µ)k1B(L)B(µ)k2 · · ·B(L)B(µ)ksB(L),

where

B(λ) =

[
1− α(1 + β)λ β2

−αλ β

]
,

we would like to show that the spectral radius ρ(Tk) is equal to

ρ(Tk) =

(√
Q− 1√
Q

)k
× k1k2 · · · ks.

To see this, first note that the Jordan form of B(µ) is given by V JV −1, where

V =

[√
Q(
√
Q−1)√

Q+1
Q

−1 0

]
and J =

[√
Q−1√
Q

1

0
√
Q−1√
Q

]
.

Using the Jordan form, we determine that B(µ)k` is

B(µ)k` =




(
1 + k`√

Q+1

)(√
Q−1√
Q

)k`
k`

(√
Q−1√
Q+1

)2 (√
Q−1√
Q

)k`−1

−k`Q
(√

Q−1√
Q

)k`−1 (
1− k`√

Q+1

)(√
Q−1√
Q

)k`


 .

Through direct matrix multiplication

B(L)B(µ)k`B(L) = −
(√

Q− 1√
Q

)k`+1

k`B(L).

Therefore,

Tj = (−1)s−1
(√

Q− 1√
Q

)k−1−ks
k1k2 · · · ks−1B(L)B(µ)ks .

Finally, the spectral-radius of B(L)B(µ)ks is

ρ
(
B(L)B(µ)ks

)
=

(√
Q− 1√
Q

)ks+1

ks,

and hence

ρ (Tk) =

(√
Q− 1√
Q

)k
k1k2 · · · ks.

E. Proof of Theorem 4
Since the functions fi are assumed to be twice continuously differentiable, by (10) we can express the mini-batch gradients
as

gk = H̃krk + zk, (30)

where

H̃k =
n∑

i=1

vk,i

∫ 1

0

∇2fi(x
? + trk)dt
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and

zk =
n∑

i=1

vk,i∇fi(x?).

By convexity of norms,

‖zk‖ ≤
n∑

i=1

vk,i ‖∇fk(x?)‖ .

Hence, taking expectations gives

Ek[‖zk‖] ≤
1

n

n∑

i=1

‖∇fi(x?)‖

= σ.

Using (30) in (9) and unrolling, we obtain

[
rk+1

vk

]
= Ak · · ·A1

[
r1
v0

]
− α

[
(1 + β)I

I

]
zk − α

k−1∑

j=1

(Ak · · ·Aj+1)

[
(1 + β)I

I

]
zj , (31)

where

Ak =

[
I − α(1 + β)H̃k β2I

−αH̃k βI

]
.

By submultiplicativity of matrix norms, ‖Ak · · ·Aj+1‖ ≤
∏k
l=j+1 ‖Al‖. Thus we turn our attention to bounding the

spectral norm of Ak.

Lemma 3.
‖Ak‖ ≤ max

λ∈[µ,L]
‖B(λ)‖ = R(α, β).

Proof. For all k ≥ 0, every eigenvalue of H̃k lies in the interval [µ,L], based on the assumption that each function fi is
L-smooth and µ-strongly convex. It follows from Polyak (1964, Lemma 5) that there exists an eigenvalue λ of H̃k such that
‖Ak‖ is equal to the spectral norm of

B(λ) =

[
1− α(1 + β)λ β2

−αλ β

]
.

We next compute ‖B(λ)‖, which is equal to the square root of the largest eigenvalue of

B(λ)>B(λ) =

[
(1− α(1 + β)λ)2 + α2λ2 β2(1− α(1 + β)λ)− αβλ
β2(1− α(1 + β)λ)− αβλ β2(β2 + 1)

]
.

The characteristic polynomial of B(λ)>B(λ) is

ξ2 − Cλ(α, β)ξ + β2(1− αλ)2 = 0,

where
Cλ(α, β) = (1− α(1 + β)λ)2 + α2λ2 + β2(β2 + 1).

The largest root of the characteristic polynomial is equal to

Rλ(α, β)2 =
1

2

(
Cλ(α, β) +

√
Cλ(α, β)2 − 4β2(1− αλ)2

)

which is equal to ‖B(λ)‖2. Therefore
‖Ak‖ ≤ max

λ∈[µ,L]
Rλ(α, β).
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Assume that α and β have been chosen so that R(α, β) < 1. Then for all k and j + 1, ‖Ak · · ·Aj+1‖ ≤
∏k
l=j+1 ‖Al‖ ≤

R(α, β)k−j .

Taking the norm on both sides of (31) and using the triangle inequality, we have

∥∥∥∥
[
rk+1

vk

]∥∥∥∥ ≤ R(α, β)k
∥∥∥∥
[
r1
v0

]∥∥∥∥+ α
√

(1 + β)2 + 1
k∑

j=1

R(α, β)k−j ‖zk‖ . (32)

Taking the expectation gives

Ek ‖yk+1 − x?‖ ≤ Ek
∥∥∥∥
[
rk+1

vk

]∥∥∥∥ (33)

≤ R(α, β)k ‖x0 − x?‖+
α
√

(1 + β)2 + 1

1−R(α, β)2
σ. (34)

F. Proof of Corollaries 4.2 and 4.1
When β = 0, we have yk+1 = xk and vk = −αgk for all k. In this case we have

rk+1 = rk − αgk.

Since the objectives fi are twice continuously differentiable, the mini-batch gradients can again be written as (using the
same notation as in the proof of Theorem 4)

gk = H̃krk + zk.

Thus, with Ak = I − αH̃k, we have

rk+1 = Akrk − αzk

= Ak · · ·A1r1 − αzk − α
k−1∑

j=1

(Ak · · ·Aj+1)zk.

Since H̃k is symmetric, it follows that Ak is also symmetric, and so ‖Ak‖ is equal to the largest magnitude of any
eigenvalue of Ak. Recall that all eigenvalues of H̃k lie in the interval [µ,L]. Therefore, ‖Ak‖ ≤ maxλ∈[µ,L] |1− αλ| =
max{|1− αµ| , |1− αL|}. Choosing α < 2

L and taking the norm and expectation thus yields that

Ek ‖xk − x?‖ = Ek ‖rk+1‖

≤
∣∣∣1− αλ̃

∣∣∣
k

‖x0 − x?‖+
α

1−
∣∣∣1− αλ̃

∣∣∣
σ, (35)

where λ̃ := argmaxλ∈{µ,L} |1− αλ|. When α = 2
µ+L , we have that maxλ∈[µ,L] |1− αλ| = Q−1

Q+1 , and equation (35)
simplifies as

Ek ‖xk − x?‖ = Ek ‖rk+1‖

≤
(
Q− 1

Q+ 1

)k
‖x0 − x?‖+

1

µ
σ.

G. Additional Experiments
G.1. Least Squares

To provide additional experiments illustrating the relationship between empirical observations and the theory developed in
Section 3 for the stochastic approximation setting, we conduct additional experiments on randomly-generated least-squares
problems. We generate the least-squares problem using the approach described in (Lenard & Minkoff, 1984). Visualizations
are shown in Figure G.1.
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(a) (Q = 2): Coefficient multiplying σ2

0.00 0.25 0.50 0.75 1.00 1.25

1.0

0.5

0.0

0.5

1.0

Theoretical

0.00

0.15

0.30

0.45

0.60

0.75

0.90

0.00 0.25 0.50 0.75 1.00 1.25

1.0

0.5

0.0

0.5

1.0

Empirical

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(b) (Q = 2): Convergence rate ρ(α, β)
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(c) (Q = 8): Coefficient multiplying σ2
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(d) (Q = 8): Convergence rate ρ(α, β)
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(e) (Q = 32): Coefficient multiplying σ2
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(f) (Q = 32) Convergence rate ρ(α, β)

Figure G.1. Visualizing the accuracy with which the theory predicts the coefficient of the variance term and the convergence rate for
different choices of constant step-size and momentum parameters, and various objective condition numbers Q. Plots labeled “Theoretical”
depict theoretical results from Theorem 1. Plots labeled “Empirical” depict empirical results when using the ASG method to solve a
least-squares regression problem with additive Gaussian noise; each pixel corresponds to an independent run of the ASG method for a
specific choice of constant step-size and momentum parameters. In all figures, the area enclosed by the red contour depicts the theoretical
stability region from Theorem 1 for which ρ(α, β) < 1. Fig. G.1a/G.1c/G.1e: Pixel intensities correspond to the coefficient of the
variance term in Theorem 1 (limk→∞

1
σ
E ‖yk − x?‖∞), which provides a good characterization of the magnitude of the neighbourhood

of convergence, even without explicit knowledge of the constant Cε. Fig. G.1b/G.1d/G.1f: Pixel intensities correspond to the theoretical
convergence rates in Theorem 1, which provides a good characterization of the empirical convergence rates. Moreover, the theoretical
conditions for convergence in Theorem 1 depicted by the red-contour are tight.

We run the ASG method on least-squares regression problems with various condition numbersQ. The objectives f correspond
to randomly generated least squares problems, consisting of 500 data samples with 10 features each. Stochastic gradients are
sampled by adding zero-mean Gaussian noise, with standard-deviation σ = 0.25, to the true gradient. The left plots in each
sub-figure depict theoretical predictions from Theorem 1, while the right plots in each sub-figure depict empirical results.
Each pixel corresponds to an independent run of the ASG method for a specific choice of constant step-size and momentum
parameters. In all figures, the area enclosed by the red contour depicts the theoretical stability region from Theorem 1 for
which ρ(α, β) < 1.

Figures G.1a/G.1c/G.1e showcase the coefficient multiplying the variance term, which is taken to be α2((1+β)2+1)
1−ρ(α,β)2 in theory.

Brighter regions correspond to smaller coefficients, while darker regions correspond to larger coefficients. All sets of figures
(theoretical and empirical) use the same color scale. We can see that the coefficient of the variance term in Theorem 1
provides a good characterization of the magnitude of the neighbourhood of convergence. The constant Cε is approximated
as 1 + (1− ρ(α, β)2)(%(α, β)2 − ρ(α, β)2), where %(α, β) is defined as the largest singular value of A in (15), and ρ(α, β)
is the largest eigenvalue of A.

Figures. G.1b/G.1d/G.1f showcase the linear convergence rate in theory and in practice. Brighter regions correspond to
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Figure G.2. Visualizing the convergence rate for the ASG method (momentum β > 0) and the SGD method (momentum β = 0), for
various randomly generated `2 regularized multinomial logistic-regression problems. Multi-class classification problems consist of 5
classes and 100 data samples with 10 features each, only 5 of which are are discriminative. We create one data-cluster per class, and vary
the cluster separation and regularization parameter to vary the condition number Q. For reporting purposes, we estimate the condition
number Q during training by evaluating the eigenvalues of the Hessian at each iteration. The smoothness constant L is taken to be the
maximum eigenvalue seen during training, and the modulus of strong-convexity µ is taken to be the minimum eigenvalue seen during
training. The faster convergence rates (brighter regions) correspond to β > 0, indicating that the ASG method provides acceleration over
SGD in this stochastic approximation setting. Moreover, for a given step-size, the contrast between the brighter regions (β > 0) and darker
regions (β = 0) increases as the condition number grows, supporting theoretical findings that the convergence rate of the ASG method
exhibits a better dependence on the condition number than SGD.

faster rates, and darker regions correspond to slower rates. Again, all figures (theoretical and empirical) use the same color
scale. We can see that the theoretical linear convergence rates in Theorem 1 provide a good characterization of the empirical
convergence rates. Moreover, the theoretical conditions for convergence in Theorem 1 depicted by the red-contour appear to
be tight.

G.2. Multinomial Logistic Regression

Next we conduct experiments on `2 regularized multinomial logistic regression problems with additive Gaussian noise, to
examine whether the ASG method still achieves acceleration over SGD for these problems in the stochastic approximation
setting, as is predicted by the theory in Section 3. These problems are smooth and strongly-convex, but non-quadratic. Tight
estimates of the smoothness constant L and the modulus of strong-convexity µ cannot be computed definitively since the
eigenvalues of the Hessian vary throughout the parameter space.

We randomly generate multi-class classification problems consisting of 5 classes and 100 data samples with 10 features each,
only five of which are discriminative. We create one data cluster per class, and vary the cluster separation and regularization
parameter to vary the condition number Q. For reporting purposes, we estimate the condition number Q during training
by evaluating the eigenvalues of the Hessian at each iteration. The smoothness constant L is taken to be the maximum
eigenvalue seen during training, and the modulus of strong-convexity µ is taken to be the minimum eigenvalue seen during
training. We use the make classification() function in scikit-learn (Pedregosa et al., 2011) to generate random
classification problem instances.

Visualizations are provided in Figure G.2. Each pixel corresponds to an independent run of the ASG method for a specific
choice of constant step-size and momentum parameters. Pixel intensities denote the linear convergence rates observed in
practice. Brighter regions correspond to faster rates, and darker regions correspond to slower rates.

The parameter setting β equals 0 corresponds to SGD, and the parameter setting β > 0 corresponds to the ASG method. The
faster convergence rates (brighter regions) correspond to β > 0, indicating that the ASG method provides acceleration over
SGD in this stochastic approximation setting. Moreover, for a given step-size, the contrast between the brighter regions
(β > 0) and darker regions (β = 0) increases as the condition number grows, supporting theoretical findings that the
convergence rate of the ASG method exhibits a better dependence on the condition number than SGD.


