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(Supplementary Material)

A. Proofs: Gaussian with Unknown Mean and Fixed Covariance
A.1. Upper Bound

In this section, we prove the upper bound in Theorem 2 by showing that Algorithm 1 can be used as a (n, n + n√
d
)

amplification procedure.

First, note that it is sufficient to prove the theorem for the case when input samples come from an identity covariance
Gaussian. This is because, for the purpose of analysis we can transform our samples to those coming from indentity
covariance Gaussian, as our amplification procedure is invariant to linear transformations to samples. In particular, let
fΣ denote our amplification procedure for samples coming from N(µ,Σ), and, Yn = (y1, y2, . . . , yn) denote the random
variable corresponding to n samples from N(µ,Σ). Let Xn = (x1, x2, . . . , xn) denote n samples from N(µ, I), such that
Yn = Σ

1
2 (Xn−µ)+µ = (Σ

1
2 (x1−µ)+µ,Σ

1
2 (x2−µ)+µ, . . . ,Σ

1
2 (xn−µ)+µ). Due to invariance of our amplification

procedure to linear transformations, we get that Σ
1
2 (fI(Xn)− µ) + µ is equal in distribution to fΣ(Σ

1
2 (Xn − µ) + µ) =

fΣ(Yn). This gives us

DTV (fΣ(Yn), Ym) = DTV (fΣ(Σ
1
2 (Xn − µ) + µ),Σ

1
2 (Xm − µ) + µ)

= DTV (Σ
1
2 (fI(Xn)− µ) + µ,Σ

1
2 (Xm − µ) + µ)

≤ DTV (fI(Xn), Xm),

where the last inequality is true because the total variation distance between two distributions can’t increase if we apply the
same transformation to both the distributions. Hence, we can conclude that it is sufficient to prove our results for identity
covariance case. This is true for both the amplification procedures for Gaussians that we have discussed. So in this whole
section, we will work with identity covariance Gaussian distributions.

Proposition 1. Let C denote the class of d−dimensional Gaussian distributions N (µ, I) with unknown mean µ. For all

d, n > 0 and m = n+O
(
n√
d

)
, C admits an (n,m) amplification procedure.

Proof. The amplification procedure consists of two parts. The first uses the provided samples to learn the empirical mean
µ̂ and generate m − n new samples from N (µ̂, I). The second part adjusts the first n samples to “hide” the correlations
that would otherwise arise from using the empirical mean to generate additional samples.

Let εn+1, εn+2, . . . , εm bem−n i.i.d. samples generated fromN (0, I), and let µ̂ =
∑n
i=1 xi
n . The amplification procedure

will return x′1, . . . , x
′
m with:

x′i =

{
xi −

∑m
j=n+1 εj

n , for i ∈ {1, 2, . . . , n}
µ̂+ εi, for i ∈ {n+ 1, n+ 2, . . . ,m}.

(1)

We will show later in this proof that subtracting
∑m
j=n+1 εj

n will serve to decorrelate the first n samples from the remaining
samples.

Let fC,n,m : Sn → Sm be the random function denoting the map from Xn to Zm as described above, where S = Rd. We
need to show

DTV (Zm = fC,n,m (Xn) , Xm) ≤ 1/3,

where Xn and Xm denote n and m independent samples from N (µ, I) respectively.
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For ease of understanding, we first prove this result for the univariate case, and then extend it to the general setting.

So consider the setting where d = 1. In this case, Xm corresponds to m i.i.d. samples from a Gaussian with mean µ, and
variance 1. Xm can also be thought of as a single sample from an m−dimensional Gaussian N

(
(µ, µ, . . . , µ)︸ ︷︷ ︸

m times

, Im×m

)
.

Now, fC,n,m is a map that takes n i.i.d samples fromN (µ, 1),m−n i.i.d samples (εi) fromN (0, 1), and outputsm samples
that are a linear combination of the m input samples. So, fC,n,m (Xn) can be thought of as a m−dimensional random

variable obtained by applying a linear transformation to a sample drawn from N
((

µ, µ, . . . , µ︸ ︷︷ ︸
n times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−n times

)
, Im×m

)
.

As a linear transformation applied to Gaussian random variable outputs a Gaussian random variable, we get that Zm =
(x′1, x

′
2, . . . , x

′
m) is distributed according to N (µ̃,Σm×m), where µ̃ and Σm×m denote the mean and covariance. Note

that µ̃ = (µ, µ, . . . , µ)︸ ︷︷ ︸
m times

as

E[x′i] =

{
E[xi]− E

[∑m
j=n+1 εj

n

]
= µ− 0 = µ, for i ∈ {1, 2, . . . , n}

E[µ̂] + E[εi] = µ+ 0 = µ, for i ∈ {n+ 1, n+ 2, . . . ,m}.
(2)

Next, we compute the covariance matrix Σm×m.

For i = j, and i ∈ {1, 2, . . . , n}, we get

Σii = E[(x′i − µ)
2
]

= E
[
(xi − µ)

2
]

+ E

[(∑m
j=n+1 εj

n

)2 ]
= 1 +

m− n
n2

.

For i = j, and i ∈ {n+ 1, n+ 2, . . . , n+m}, we get

Σii = E
[
(x′i − µ)

2
]

= E
[
(µ̂− µ)

2
]

+ E
[
ε2i
]

=
1

n
+ 1.

For i ∈ {1, 2, . . . , n}, j ∈ {n+ 1, n+ 2, . . . , n+m}, we get

Σij = E
[
(x′i − µ)

(
x′j − µ

)]
= E

[(
xi −

∑m
k=n+1 εk

n
− µ

)
(µ̂+ εj − µ)

]
= E[(xi − µ) (µ̂− µ)]− E

[(∑m
k=n+1 εk

n

)
(εj)

]
=

1

n
− 1

n
= 0.
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For i, j ∈ {1, 2, . . . , n}, i 6= j, we get

Σij = E
[

(x′i − µ)
(
x′j − µ

) ]
= E

[(
xi −

∑m
k=n+1 εk

n
− µ

)(
xj −

∑m
k=n+1 εk

n
− µ

)]

= E [(xi − µ)(xj − µ)] + E

[(∑m
k=n+1 εk

n

)2
]

=
m− n
n2

.

For i, j ∈ {n+ 1, n+ 2, . . . ,m}, i 6= j, we get

Σij = E[(x′i − µ)
(
x′j − µ

)
]

= E[(µ̂+ εi − µ) (µ̂+ εj − µ)]

= E
[
(µ̂− µ)

2
]

=
1

n
.

This gives us

Σm×m =



1 + m−n
n2

m−n
n2 · · · m−n

n2 0 0 · · · 0
m−n
n2 1 + m−n

n2 · · · m−n
n2 0 0 · · · 0

... · · · · · ·
...

... · · · · · ·
...

... · · · · · · m−n
n2

... · · · · · ·
...

m−n
n2 · · · m−n

n2 1 + m−n
n2 0 0 · · · 0

0 · · · · · · 0 1 + 1
n

1
n · · · 1

n
0 · · · · · · 0 1

n 1 + 1
n · · · 1

n
... · · · · · ·

...
... · · · · · ·

...
... · · · · · ·

...
... · · · · · · 1

n
0 · · · · · · 0 1

n · · · 1
n 1 + 1

n



.

Now, finding DTV (Zm, Xm) reduces to computing DTV (N (µ̃, Im×m) , N (µ̃,Σm×m)). From (?)Theorem 1.1]de-
vroye2018total, we know that DTV (N (µ̃, Im×m) , N (µ̃,Σm×m)) ≤ min

(
1, 3

2 ||Σ− I||F
)
. This gives us

DTV (N (µ̃, Im×m) , N (µ̃,Σm×m)) ≤ min

(
1,

3

2
||Σ− I||F

)

≤

√√√√3

2

((
m− n
n2

)2

n2 +
1

n2
(m− n)

2

)

=

√
3 (m− n)

n
.

(3)

Now, for d > 1, by a similar argument as above, Xm can be thought of as d independent samples from the following d
distributions: N

(
(µ1, µ1, . . . , µ1)︸ ︷︷ ︸

m times

, Im×m

)
, . . . , N

(
(µd, µd, . . . , µd)︸ ︷︷ ︸

m times

, Im×m

)
. Or equivalently, as a single sample from

N
((

µ1, µ1, . . . , µ1︸ ︷︷ ︸
m times

, . . . , µd, µd, . . . , µd︸ ︷︷ ︸
m times

)
, Imd×md

)
. Similarly, Zm can be thought of as d independent samples from
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N
(

(µi, µi, . . . , µi)︸ ︷︷ ︸
m times

,Σm×m

)
, or equivalently, a single sample from N

((
µ1, µ1, . . . , µ1︸ ︷︷ ︸

m times

, . . . , µd, µd, . . . , µd︸ ︷︷ ︸
m times

)
, Σ̃md×md

)
where Σ̃md×md is a block diagonal matrix with block diagonal entries equal to Σm×m (denoted as Σ in the figure).

Σ̃md×md =



Σ 0 · · · · · · 0

0 Σ 0 · · ·
...

... 0
. . . 0

...
... · · · 0

. . . 0
0 · · · · · · 0 Σ


.

Similar to (3), we get

DTV

(
N
((

µ1, µ1, . . . , µ1︸ ︷︷ ︸
m times

, . . . , µd, µd, . . . , µd︸ ︷︷ ︸
m times

)
, Imd×md

)
, N
((

µ1, µ1, . . . , µ1︸ ︷︷ ︸
m times

, . . . , µd, µd, . . . , µd︸ ︷︷ ︸
m times

)
, Σ̃md×md

))
≤ min

(
1,

3

2
||Σ̃− I||F

)

≤

√√√√d

(
3

2

((
m− n
n2

)2

n2 +
1

n2
(m− n)

2

))

=

√
3d (m− n)

n
.

If we want the total variation distance to be less than δ, we getm−n = O
(
nδ√
d

)
. Setting δ = 1

3 , we getm = n+O
(
n√
d

)
,

which completes the proof.

A.2. Lower Bound

In this section we prove the lower bound from Theorem 2 and show that it is impossible to amplify beyond O
(
n√
d

)
more

samples. The intuition behind the lower bound is that any such amplification procedure could be used to find the true mean
µ with much smaller error than what is possible with n samples.

To show this formally, we define a verifier such that for µ← N(0,
√
dI) and m > n+ cn√

d
, m true samples from N(µ, I)

are accepted by the verifier with high probability over the randomness in the samples, but m samples generated by any
(n,m) amplification scheme are rejected by the verifier with high probability over the randomness in the samples and µ.
In this case, the verifier only needs to evaluate the squared distance ‖µ − µ̂m‖2 of the empirical mean µ̂m of the returned
samples from the true mean µ, and accept the samples if and only if this squared distance is less than d

m + c1
√
d

m for some
fixed constant c1. It is not difficult to see why this test is sufficient. Note that for m true samples drawn from N(µ, I),
‖µ− µ̂m‖2 = d

m ±O
(√

d
m

)
. Also, the squared distance ‖µ− µ̂2‖ of the mean µ̂ of the original set Xn from the true mean

µ is concentrated around d
n ±O

(√
d
n

)
. Using this, for m > n+ cn√

d
, we can show that no algorithm can find a µ̂m which

satisfies ‖µ − µ̂m‖2 ≤ d
m ± O

(√
d
m

)
with decent probability over µ ← N(0,

√
dI). This is because the algorithm only

knows µ up to squared error d
n ±O

(√
d
n

)
based on the original set Xn.

Proposition 2. Let C denote the class of d−dimensional Gaussian distributions N (µ, I) with unknown mean µ. There
is a fixed constant c such that for all sufficiently large d, n > 0, C does not admit an (n,m) amplification procedure for
m ≥ n+ cn√

d
.

Proof. Note that it is sufficient to prove the theorem for m = n + cn/
√
d for a fixed constant c, as an amplification

procedure for m > n + cn/
√
d implies an amplification procedure for m = n + cn/

√
d by discarding the residual
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samples. To prove the theorem for m = n + cn/
√
d, we will define a distribution Dµ over µ and a verifier v(Zm)

for the distribution N(µ, I) which takes as input a set Zm of m samples, such that: (i) for all µ, the verifier v(Zm)
will accept with probability 1 − 1/e2 when given as input a set Zm of m i.i.d. samples from N(µ, I), (ii) but will
reject any (n,m) amplification procedure for m = n + cn/

√
d with probability 1 − 1/e2, where the probability is

with respect to the randomness in µ ← Dµ, the set Xn and in any internal randomness of the amplifier. Note that by
Definition 2 of an amplification procedure, this implies that there is no (n,m) amplification procedure form = n+cn/

√
d.

We now define the distribution Dµ and the verifier v(Zm). We choose Dµ to be N(0,
√
dI). Let µ̂m be the mean of the

samples Zm returned by the amplification procedure. The verifier v(Zm) performs the following test, accepts if µ̂m passes
the test, and rejects otherwise— ∣∣∣‖µ̂m − µ‖2 − d/m∣∣∣ ≤ 10

√
d/m. (4)

We first show that m i.i.d. samples from N(µ, I) pass the above test with probability 1− 1/e2. We will use the following
concentration bounds for a χ2 random variable Z with d degrees of freedom (??),

Pr
[
Z − d ≥ 2

√
dt+ 2t

]
≤ e−t, ∀ t > 0, (5)

Pr
[
|Z − d| ≥ dt] ≤ 2e−dt

2/8, ∀ t ∈ (0, 1). (6)

Note that µ̂m ← N(µ, Im ) for m i.i.d. samples from N(µ, I). Hence by using (6) and setting t = 10/
√
d,

Pr
[∣∣∣‖µ̂m − µ‖2 − d/m∣∣∣ > 10

√
d/m

]
≤ 1/e3.

Hence m i.i.d. samples from N(µ, I) pass the test with probability at least 1− 1/e2.

We now show that for µ sampled from Dµ = N(0,
√
dI), the verifier rejects any (n,m) amplification procedure for

m = n+ cn/
√
d with high probability over the randomness in µ. Let Dµ|Xn be the posterior distribution of µ conditioned

on the set Xn. We will show that for any set Xn received by the amplifier, the amplified set Zm is accepted by the verifier
with probability at most 1/e2 over µ ← Dµ|Xn . This implies that with probability 1 − 1/e2 over the randomness in
µ← Dµ, the set Xn and any internal randomness in the amplifier, the amplifier cannot output a set Zm which is accepted
by the verifier, completing the proof of Proposition 2.

To show the above claim, we first find the posterior distribution Dµ|Xn of µ conditioned on the amplifier’s set Xn. Let
µ0 be the mean of the set Xn. By standard Bayesian analysis (see, for instance, (?)), the posterior distribution Dµ|Xn =
N(µ̄, σ̄2I), where,

µ̄ =
n

n+ 1/
√
d
µ0, σ̄2 =

1

n+ 1/
√
d
.

We show that any set Zm returned by the amplifier for m = n+ 100n/
√
d fails the test (4) with probability 1− 1/e2 over

the randomness in µ | Xn. We expand ‖µ̂m − µ‖2 in the test as follows,

‖µ̂m − µ‖2 = ‖µ̂m − µ− (µ− µ)‖2

= ‖µ̂m − µ̄‖2 − 2〈µ̂m − µ̄, µ− µ̄〉+ ‖µ− µ̄‖2.

By using (6) and setting t = 10/
√
d, with probability 1− 1/e3,

‖µ− µ̄‖2 ≥ d

n+ 1/
√
d
− 10

√
d

n+ 1/
√
d

≥
( d
n

)(
1− 1

n
√
d

)
− 10

√
d

n

= d/n−
√
d/n2 − 10

√
d/n

≥ d/n− 12
√
d/n.
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As µ | Xn ← N(µ̄, σ̄2), 〈µ̂m − µ̄, µ− µ̄〉 is distributed as N(0, σ̄2‖µ̂m − µ̄‖2). Hence with probability 1 − 1/e3,

〈µ̂m − µ̄, µ− µ̄〉 ≤ 10‖µ̂m − µ̄‖/
√
n+ 1/

√
d ≤ 10‖µ̂m − µ̄‖/

√
n. Therefore, with probability 1− 2/e3,

‖µ̂m − µ‖2 ≥ ‖µ̂m − µ̄‖2 − (20/
√
n)‖µ̂m − µ̄‖+ d/n− 12

√
d/n.

We claim that ‖µ̂m − µ̄‖2 − 20‖µ̂m − µ̄‖/
√
n ≥ −100/n. To verify, note that ‖µ̂m − µ̄‖2 − 20‖µ̂m − µ̄‖/

√
n+ 100/n

is a non-negative quadratic function in ‖µ̂m − µ̄‖. Therefore, with probability at least 1− 2/e3,

‖µ̂m − µ‖2 ≥ −100/n+ d/n−
√
d/n2 − 10

√
d/n ≥ d/n− 20

√
d/n.

To pass (4), ‖µ̂m−µ‖2 ≤ d/m+10
√
d/m. Therefore, if an amplifier passes the test with probability greater than 1−2/e3

over the randomness in µ | Xn for m = n+ 100n/
√
d, then,

d/n− 20
√
d/n ≤ ‖µ̂m − µ‖2 ≤ d/m+ 10

√
d/m,

=⇒ d/n− 20
√
d/n ≤ d/m+ 10

√
d/m,

=⇒ d/n− 20
√
d/n ≤ d/(n+ 100n/

√
d) + 10

√
d/(n+ 100n/

√
d),

=⇒ d/n− 20
√
d/n ≤ d/n(1 + 100/

√
d)−1 + 10

√
d/n(1 + 100/

√
d)−1,

=⇒ d/n− 20
√
d/n ≤ d/n(1− 50/

√
d) + 10

√
d/n(1− 50/

√
d),

=⇒ − 20
√
d/n ≤ −40

√
d/n− 1000/n,

=⇒ − 20
√
d/n ≤ −30

√
d/n,

which is a contradiction. Hence for m = n+ 100n/
√
d, every (n,m) amplifier is rejected by the verifier with probability

greater than 1− 1/e2 over the randomness in µ, the set Xn, and any internal randomness of the amplifier.

A.3. Upper Bound for Procedures which Returns a Superset of the Input Samples

In this section we prove the upper bound in Proposition 1. The algorithm itself is presented in Algorithm 1. Before we
proceed with the proof we prove a brief lemma that will be useful for bounding the total variation distance.

Lemma 1. Let X,Y1, Y2 be random variables such that with probability at least 1 − ε over X, DTV (Y1|X,Y2|X) ≤ ε′,
then DTV ((X,Y1), (X,Y2)) ≤ ε+ ε′.

Proof. From the definition of total variation distance, we know

DTV ((X,Y1), (X,Y2)) =
1

2

∑
x,y

|Pr((X,Y1) = (x, y))− Pr((X,Y2) = (x, y)))|

=
1

2

∑
x,y

Pr(X = x) |Pr (Y1 = y | X = x)− Pr(Y2 = y | X = x)|

=
∑
x

Pr(X = x)
1

2

∑
y

|Pr(Y1 = y | X = x)− Pr(Y2 = y | X = x)|

=
∑
x

Pr(X = x) dTV (Y1 | X = x, Y2 | X = x).

Since with probability (1 − ε) over X , dTV (Y1 | X,Y2 | X) is at most ε′, and total variation distance is always bounded
by 1, we get

∑
x Pr(X = x) dTV (Y1 | X = x, Y2 | X = x) ≤ (1− ε)ε′ + ε ≤ ε′ + ε.

This same proof with summations appropriately replaced with integrals will go through when the random variables in
consideration are defined over continuous domains.

Now we prove the upper bound from Proposition 1. As in Proposition 1, it is sufficient to prove this bound only for the
case of identity covariance gaussians as our algorithm in this case is also invariant to linear transformation.
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Proposition 3. Let C denote the class of d−dimensional Gaussian distributions N(µ, I) with unknown mean µ. There is

a constant c′ such that for any ε, and n = d
ε log d , and for sufficiently large d, there is an

(
n, n+ c′n

1
2−9ε

)
amplification

protocol for C that returns a superset of the original n samples.

Algorithm 1 Sample Amplification for Gaussian with Unknown Mean and Fixed Covariance Without Modifying Input
Samples
Input: Xn = (x1, x2, . . . , xn), where xi ← N(µ,Σd×d).
Output: Zm = (x′1, x

′
2, . . . , x

′
m), such that DTV (Dm, Zm) ≤ 1

3 , where D is N(µ,Σd×d)

1: procedure AMPLIFYGAUSSIAN2(Xn)
2: r := m− n
3: µ̂ :=

∑n
2
i=1

xi
n/2

4: x′i := xi, for i ∈ {1, 2, . . . , n2 }
5: Xremaining := (xn

2 +1, xn2 +2, . . . , xn)
6: for i = n

2 + 1 to m do
7: T ← Bernoulli( 2r

r+n/2 ) . Set T = 1 with probability 2r
r+n/2 , and 0 otherwise

8: if T equals 1 then
9: x′i ← N(µ̂,Σd×d)

10: else
11: if Xremaining is not empty then
12: x′i := Random Element Drawn without Replacement from Xremaining
13: else
14: x′i := x1 . Happens with small probability
15: Zm := (x′1, x

′
2, . . . , x

′
m)

16: return Zm

Proof. Let m = n + r ,where r = O
(
n

1
2−9ε

)
. We begin by describing the procedure to generate m samples Zm =

(x′1, x
′
2, . . . , x

′
m), given n i.i.d. samplesXn = (x1, x2, . . . , xn) drawn fromN (µ, I). Let µ̃ =

∑n/2
i=1

xi
n/2 denote the mean

of first n2 samples in Xn. For distributions P and Q, let (1−α)P +αQ denote the mixture distribution where (1−α) and
α are the respective mixture weights.

We first describe how to generate Z ′m = (x′′1 , x
′′
2 , . . . , x

′′
m), given n i.i.d samples Xn. For i ∈ {1, 2, . . . , n2 }, we set

x′′i = xi. For i ∈ {n2 + 1, n2 + 2, . . . ,m}, we set x′′i to a random independent draw from the mixture distribution(
1− 10r

r+n
2

)
N(µ, Id×d) + 10r

r+n
2
N(µ̃, Id×d).

Now, the construction of Zm is very similar to Z ′m except that we don’t have access to N(µ, Id×d) to sample points
from the mixture distribution. So, for Zm, set x′i = xi for i ∈ {1, 2, . . . , n2 }. For i ∈ {n2 + 1, n2 + 2, . . . ,m}, we use

samples from (xn
2 +1, xn2 +2, . . . , xn) instead of producing new samples from N(µ, Id×d). With probability

(
1− 10r

r+n
2

)
,

we generate a random sample without replacement from
(
xn

2 +1, xn2 +2, . . . , xn
)
, and with probability 10r

r+n
2

we generate a
sample fromN(µ̃, I), and set x′i equal to that sample. As we sample from (xn

2 +1, xn2 +2, . . . , xn) without replacement, we
can generate only n

2 samples this way. The expected number of samples needed is (n2 + r)(1− 10r
r+n

2
) = n

2 − 9r, and with

high probability, we won’t need more than n
2 samples. If the total number of required samples from

(
xn

2 +1, xn2 +2, . . . , xn
)

turns out to be more than n
2 , we set xi to an arbitrary d−dimensional vector (say x1) but this happens with low probability,

leading to insignificant loss in total variation distance.

LetXm denote the random variable corresponding tom i.i.d. samples fromN(µ, I). We want to show thatDTV (Xm, Zm)
is small. By triangle inequality, DTV (Xm, Zm) ≤ DTV (Xm, Z

′
m) +DTV (Z ′m, Zm).

We first bound DTV (Zm, Z
′
m). Let Y, Y ′ ← Binomial

(
r + n

2 , 1−
10r
r+n

2

)
be random variables that denotes the number of
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samples from (1− 10r
r+n

2
) mixture component in Zm and Z ′m respectively. Let Ω denote the sample space of Zm and Z ′m.

DTV (Zm, Z
′
m) = max

E⊆Ω
|Pr(Zm ∈ E)− Pr(Z ′m ∈ E)|

= max
E⊆Ω

|Pr
(
Zm ∈ E | Y ≤

n

2

)
Pr
(
Y ≤ n

2

)
+ Pr

(
Zm ∈ E | Y >

n

2

)
Pr
(
Y >

n

2

)
− Pr

(
Z ′m ∈ E | Y ′ ≤

n

2

)
Pr
(
Y ′ ≤ n

2

)
− Pr

(
Z ′m ∈ E | Y ′ >

n

2

)
Pr
(
Y ′ >

n

2

)
|

Since Y and Y ′ have the same distribution, we have Pr
(
Y ′ ≤ n

2

)
= Pr

(
Y ≤ n

2

)
, and Pr

(
Y ′ > n

2

)
= Pr

(
Y > n

2

)
. This

gives us

DTV (Zm, Z
′
m) = max

E⊆Ω
|Pr
(
Zm ∈ E | Y ≤

n

2

)
Pr
(
Y ≤ n

2

)
+ Pr

(
Zm ∈ E | Y >

n

2

)
Pr
(
Y >

n

2

)
− Pr

(
Z ′m ∈ E | Y ′ ≤

n

2

)
Pr
(
Y ≤ n

2

)
− Pr

(
Z ′m ∈ E | Y ′ >

n

2

)
Pr
(
Y >

n

2

)
|

≤ max
E⊆Ω

Pr
(
Y ≤ n

2

)
| Pr

(
Zm ∈ E|Y ≤

n

2

)
− Pr

(
Z ′m ∈ E|Y ′ ≤

n

2

)
|

+ Pr
(
Y >

n

2

)
| Pr

(
Zm ∈ E|Y >

n

2

)
− Pr

(
Z ′m ∈ E|Y ′ >

n

2

)
| .

where the last inequality holds because of the triangle inequality. Now, note that Pr(Zm ∈ E|Y ≤ n
2 ) = Pr(Z ′m ∈

E|Y ′ ≤ n
2 ) for all E, and |Pr(Zm ∈ E|Y > n

2 )− Pr(Z ′m ∈ E|Y ′ > n
2 )| ≤ 1. This gives us

DTV (Zm, Z
′
m) ≤ Pr

(
Y >

n

2

)
.

We know E[Y ] = n
2 − 9r, and Var[Y ] =

(
n
2 + r

) (
1− 10r

n
2 +r

)(
10r
n
2 +r

)
≤ 10r. Using Bernstein’s inequality, we get

Pr
[
Y >

n

2

]
= Pr(Y − E[Y ] > 9r)

≤ exp

(
−(9r)2

2(10r + 9r/3)

)
≤ exp

(
−81r

26

)
.

So we get DTV (Zm, Z
′
m) ≤ exp

(−81r
26

)
.

Next, we calculate DTV (Xm, Z
′
m). We write Xm = (X1

m, X
2
m) and Z ′m = (Z1′

m, Z
2′

m) where X1
m and Z1′

m denote the first
n
2 samples of Xm and Z ′m , and X2

m and Z2′

m denote rest of their samples. Since X1
m and Z1′

m are drawn from the same

distribution, Π
n
2
i=1N(µ, I), and Z1′

m, X
1
m, X

2
m are independent, we get (Z1′

m, X
2
m) and (X1

m, X
2
m) are equal in distribution.

This gives us

DTV (Xm, Z
′
m) = DTV ((X1

m, X
2
m), (Z1′

m, Z
2′

m)) = DTV ((Z1′

m, X
2
m), (Z1′

m, Z
2′

m)).

From Lemma 1, we know that, if with probability at least 1 − ε1 over Z1′

m , DTV (X2
m|Z1′

m, Z
2′

m|Z1′

m) ≤ ε2, then
DTV ((Z1′

m, X
2
m), (Z1′

m, Z
2′

m)) ≤ ε1 + ε2. Here, Z1′

m and X2
m are independent, and the only dependency between Z1′

m and
Z2′

m is via the mean µ̃ of the elements of Z1′

m . So DTV (X2
m|Z1′

m, Z
2′

m|Z1′

m) = DTV (X2
m, Z

2′

m|µ̃). We will show that with
high probability over µ̃, this total variation distance is small.

We first estimate ‖µ̃ − µ‖. Note that EZ1′
m

[‖µ̃ − µ‖2] = 2d
n , and n

2 ‖µ̃ − µ‖
2 is a χ2 random variable with d degrees of

freedom. To bound the deviation of ‖µ̃ − µ‖2 around it’s mean, we will use the following concentration bound for a χ2

random variable R with d degrees of freedom (?, Example 2.5).

Pr[|R− d| ≥ dt] ≤ 2e−dt
2/8, for all t ∈ (0, 1).
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This gives us Pr(|n2 ‖µ̃ − µ‖
2 − d| ≥ 0.5d) ≤ 2e−d/32, that is, ‖µ̃ − µ‖ ≤

√
3d
n ≤

√
3ε log d with probability at least

1− 2e−d/32.

X2
m is distributed as the product of n

2 + r gaussiaus Π
n
2 +r
i=1 N(µ, Id×d) and Z2′

m|µ̃ is distributed as the product of n
2 + r

mixture distributions Π
n
2 +r
i=1 (1 − 10r

n
2 +r )N(µ, Id×d) + 10r

n
2 +rN(µ̃, Id×d). We evaluate the total variation distance between

these two distributions by bounding their squared Hellinger distance, since squared Hellinger distance is easy to bound for
product distributions and is within a quadratic factor of the total variation distance for any distribution. By the subadditivity
of the squared Hellinger distance, we get

H

(
Π
n
2 +r
i=1 N(µ, Id×d),Π

n
2 +r
i=1

(
1− 10r

n
2 + r

)
N (µ, Id×d) +

10r
n
2 + r

N (µ̃, Id×d)

)2

≤
(n

2
+ r
)
H

(
N (µ, Id×d) ,

(
1− 10r

n
2 + r

)
N (µ, Id×d) +

10r
n
2 + r

N (µ̃, Id×d)

)2

.

(7)

For sufficiently large d, r and n satisfy r ≤ n
18 , so we can use Lemma 2 to get

H

(
N(µ, Id×d),

(
1− 10r

n
2 + r

)
N (µ, Id×d) +

10r
n
2 + r

N (µ̃, Id×d)

)2

≤ 576r2

n2
e3‖µ̃−µ‖2

≤ 576r2d9ε

n2
,

(8)

with probability at least 1− 2e−d/32 over µ̃. From (7) and (8), we get that with probability at least 1− 2e−d/32 over µ̃,

H

(
Π
n
2 +r
i=1 N(µ, Id×d),Π

n
2 +r
i=1

(
1− 10r

n
2 + r

)
N(µ, Id×d) +

10r
n
2 + r

N(µ̃, Id×d)

)2

≤ (
n

2
+ r)

576r2d9ε

n2
≤ 576r2d9ε

n
,

where the last inequality holds because r < n
2 . As the total variation distance between two distributions is upper bounded

by
√

2 times their Hellinger distance, we get that with probability at least 1− 2e−d/32 over µ̃,

DTV

(
Π
n
2 +r
i=1 N(µ, Id×d),Π

n
2 +r
i=1

(
1− 10r

n
2 + r

)
N(µ, Id×d) +

10r
n
2 + r

N(µ̃, Id×d)

)
≤ 24

√
2rd9ε/2

√
n

≤ 24
√

2rn9ε

√
n

,

where the last inequality is true because n >
√
d.

Now, from Lemma 1, we know that if with probability at least 1 − ε1 over Z1′

m , DTV (X2
m|Z1′

m, Z
2′

m|Z1′

m) ≤ ε2,
then DTV ((Z1′

m, X
2
m), (Z1′

m, Z
2′

m)) ≤ ε1 + ε2. In this case, ε1 = 2e−d/32 and ε2 = 24
√

2rn9ε
√
n

, so we get

DTV ((Z1′

m, X
2
m), (Z1′

m, Z
2′

m)) = DTV (Xm, Z
′
m) ≤ 2e−d/32 + 24

√
2rn9ε
√
n

. We also know that DTV (Zm, Z
′
m) ≤ e−81r/26.

Using triangle inequality, we get

DTV (Xm, Zm) ≤ 2e−d/32 +
24
√

2rn9ε

√
n

+ e−81r/26.

For δ > 2(2e−d/32 + e−81r/26), and for r ≤ n
1
2
−9εδ

48
√

2
, we get DTV (Xm, Zm) ≤ δ. For d large enough, setting δ = 1

3 and

r ≤ n
1
2
−9ε

144
√

2
, we get the desired result. Note that we haven’t tried to optimize the constants in this proof.

Lemma 2. Let P = N(0, Id×d) and Q = N(µ̂, Id×d) be d-dimensional gaussian distributions. For r ≤ n
18 ,

H
(
P,
(

1− 10r
r+n

2

)
P + 10r

r+n
2
Q
)
≤ 24r

n e
3‖µ̂‖2

2 .

Proof. We work in the rotated basis where Q = N((‖µ̂‖, 0, 0, . . . , 0︸ ︷︷ ︸
d−1 times

), Id×d) and P = N(0, Id×d). Let P1 = N(0, 1)

and Q1 = N(‖µ̂‖, 1) denote the projection of P and Q along the first coordinate axis respectively. Note that the
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mixture distribution in question is the product of
((

1− 10r
r+n

2

)
P1 + 10r

r+n
2
Q1

)
and N(0, Id−1×d−1), and P is the prod-

uct of P1 and N(0, Id−1×d−1). Since the squared Hellinger distance is subadditive for product distributions, we get,

H
(
P,
(

1− 10r
r+n

2

)
P + 10r

r+n
2
Q
)2

≤ H
(
P1,

(
1− 10r

r + n
2

)
P1 +

10r

r + n
2

Q1

)2

+H(N(0, Id−1×d−1), N(0, Id−1×d−1))2

= H

(
P1,

(
1− 10r

r + n
2

)
P1 +

10r

r + n
2

Q1

)2

.

Therefore, to bound the required Hellinger distance, we just need to bound
H
(
P1,
(

1− 10r
r+n

2

)
P1 + 10r

r+n
2
Q1

)
. Let p1 and q1 denote the probability densities of P1 and

((
1− 10r

r+n
2

)
P1 + 10r

r+n
2
Q1

)
respectively. We get H

(
P1,
(

1− 10r
r+n

2

)
P1 + 10r

r+n
2
Q1

)2

=
∫∞
−∞

(√
p1 −

√
q1

)2
dx

=

∫ ∞
−∞

(√
1√
2π
e−x2/2 −

√(
1− 10r

r + n
2

)
1√
2π
e−x2/2 +

10r

r + n
2

1√
2π
e−(x−‖µ̂‖)2/2

)2

dx

=

∫ ∞
−∞

1√
2π
e−x

2/2

(
1−

√
1− 10r

r + n
2

+
10r

r + n
2

e
−‖µ̂‖2+2‖µ̂‖x

2

)2

dx.

We will evaluate this integral as a sum of integral in two regions.

1. From −∞ to ‖µ̂‖/2:

∫ ‖µ̂‖/2
−∞

1√
2π
e−x

2/2

(
1−

√
1− 10r

r + n
2

+
10r

r + n
2

e
−‖µ̂‖2+2‖µ̂‖x

2

)2

dx ≤

∫ ‖µ̂‖/2
−∞

1√
2π
e−x

2/2

(
1−

√
1− 10r

r + n
2

)2

dx.

Since r ≤ n
18 , we get 10r

r+n
2
≤ 1. Using 1− y ≤

√
1− y for 0 ≤ y ≤ 1, we get

∫ ‖µ̂‖/2
−∞

1√
2π
e−x

2/2

(
1−

√
1− 10r

r + n
2

)2

dx ≤
∫ ‖µ̂‖/2
−∞

1√
2π
e−x

2/2

(
10r

r + n
2

)2

dx

≤ 400r2

n2
.

2. From ‖µ̂‖
2 to∞, we get

∫∞
‖µ̂‖/2

1√
2π
e−x

2/2

(
1−

√
1− 10r

r+n
2

+ 10r
r+n

2
e
−‖µ̂‖2+2‖µ̂‖x

2

)2

dx.

≤
∫ ∞
‖µ̂‖/2

1√
2π
e−x

2/2

(√
1 +

10r

r + n
2

e
−‖µ̂‖2+2‖µ̂‖x

2 − 1

)2

dx.

This is because x ≥ ‖µ̂‖/2, and therefore 10r
r+n

2
e
−‖µ̂‖2+2‖µ̂‖x

2 ≥ 10r
r+n

2
. Now, using

√
1 + y ≤ 1 + y

2 , we get
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∫ ∞
‖µ̂‖/2

1√
2π
e−x

2/2

(√
1 +

10r

r + n
2

e
−‖µ̂‖2+2‖µ̂‖x

2 − 1

)2

dx

≤
∫ ∞
‖µ̂‖/2

1√
2π
e−x

2/2

(
1 +

5r

r + n
2

e
−‖µ̂‖2+2‖µ̂‖x

2 − 1

)2

dx

≤ 100r2

n2

∫ ∞
‖µ̂‖/2

1√
2π
e−‖µ̂‖

2+2‖µ̂‖xe−x
2/2dx

=
100r2

n2
e−‖µ̂‖

2

∫ ∞
‖µ̂‖/2

1√
2π
e2‖µ̂‖x−x2/4e−x

2/4dx.

Since 2‖µ̂‖x− x2/4 ≤ 4‖µ̂‖2, we get

100r2

n2
e−‖µ̂‖

2

(∫ ∞
‖µ̂‖/2

e2‖µ̂‖x−x2/4 1√
2π
e−x

2/4

)
dx ≤ 100r2

n2
e3‖µ̂‖2

(∫ ∞
‖µ̂‖/2

1√
2π
e−x

2/4

)
dx

≤ 100
√

2r2

n2
e3‖µ̂‖2

(∫ ∞
−∞

1√
4π
e−x

2/4

)
dx

≤ 100
√

2r2

n2
e3‖µ̂‖2 .

Adding the two integrals, we get

H

(
P1,

(
1− 10r

r + n
2

)
P1 +

10r

r + n
2

Q1

)2

≤ 400r2

n2
+

100
√

2r2

n2
e3‖µ̂‖2

≤ 576r2

n2
e3‖µ̂‖2 .

This gives us H(P,
(

1− 10r
r+n

2

)
P + 10r

r+n
2
Q) ≤ 24r

n e3‖µ̂‖2/2 which completes the proof.

A.4. Lower Bound for Procedures which Return a Superset of the Input Samples

In this section we prove the lower bound from Proposition 1.

Proposition 4. Let C denote the class of d−dimensional Gaussian distributions N (µ, I) with unknown mean µ. There is
an absolute constant, c, such that for sufficiently large d, if n ≤ cd

log d , there is no (n, n + 1) amplification procedure that
always returns a superset of the original n points.

Proof. The outline of the proof is very similar to the proof of Proposition 2. As in the proof of Proposition 2, we define a
verifier v(Zn+1) for the distributionN(µ, I) which takes as input (n+1) samples {x′i ∈ Rd, i ∈ [n+1]}, and a distribution
Dµ over µ, such that if n < O(d/ log(d)); (i) for all µ, the verifier will accept with probability 1 − 1/e2 when given as
input a set Zn+1 of (n + 1) i.i.d. samples from N(µ, I), (ii) but will reject any (n, n + 1) amplification procedure which
does not modify the input samples with probability 1 − 1/e2, where the probability is with respect to the randomness
in µ ← Dµ, the set Xn and in any internal randomness of the amplifier. Note that by Definition 2 of an amplification
procedure, this implies that there is no (n, n + 1) amplification procedure which does not modify the input samples for
n < O(d/ log(d)). We choose Dµ to be N(0,

√
dI). Let µ̂−i be the mean of the all except the i-th sample returned by the

amplification procedure. The verifier performs the following tests, and accepts if all tests pass, and rejects otherwise—

1. ∀ i ∈ [n+ 1], ‖x′i − µ‖2 ≤ 15d.
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2. ∀ i ∈ [n+ 1], 〈x′i − µ̂−i, µ− µ̂−i〉 ≥ d/(4n).

We first show that for a sufficiently large constant C and n < O(d/ log(d)), (n+ 1) i.i.d. samples from N(µ, I) pass the
above tests with probability at least 1 − 1/e2. As ‖x′i − µ‖2 is a χ2 random variable with d degrees of freedom, by the
concentration bound for a χ2 random variable (5), a true sample x′i passes the first test with failure probability e−3d. Hence
by a union bound, all samples {xi, i ∈ [n + 1]} pass the first test with probability at least 1 − de−3d ≥ 1 − 1/e3. Let E
denote the following event,

∀ i ∈ [n+ 1], ‖µ̂n − µ‖2 ≥ d/n−
√

20d log d/n ≥ d/(2n),

∀ i ∈ [n+ 1], ‖µ̂n − µ‖2 ≤ d/n+
√

20d log d/n ≤ 2d/n.

Note that µ̂−i ← N(µ, In ). Hence, by using (6) with t = 20
√

log d
d , and a union bound over all i ∈ [n+ 1],

Pr[E] ≥ 1− 1/e3.

Note that as x′i ← N(µ, I), for a fixed µ̂−i, 〈x′i − µ̂−i, µ− µ̂−i〉 ← N(‖µ̂−i − µ‖2, ‖µ̂−i − µ‖2). Hence conditioned on
E, by standard Gaussian tail bounds,

Pr
[
〈x′i − µ̂−i, µ− µ̂−i〉 ≤ d/(2n)−

√
20d log d/n

]
≤ 1/n2,

=⇒ Pr
[
〈x′i − µ̂−i, µ− µ̂−i〉 ≤ d/(4n)

]
≤ 1/n2,

where in the last step we use the fact that n < d
C log d for a large constant C. Therefore, conditioned on E, {xi, i ∈ [n+1]}

pass the third test with probability at least 1 − 1/e3. Hence by a union bound, (n + 1) samples drawn from N(µ, I) will
satisfy all 3 tests with failure probability at most 1/e2. Hence for any µ, the verifier accepts n + 1 i.i.d. samples from
N(µ, I) with probability at least 1− 1/e2.

We now show that for n < d
C log d and µ sampled from Dµ = N(0,

√
dI), the verifier rejects any (n, n+ 1) amplification

procedure which does not modify the input samples with high probability over the randomness in µ and the set Xn. Let
Dµ|Xn be the posterior distribution of µ conditioned on the set Xn. As in Proposition 2, Dµ|Xn = N(µ̄, σ̄2I), where,

µ̄ =
n

n+ 1/
√
d
µ0, σ̄2 =

1

n+ 1/
√
d
.

We will show that with probability 1−e−3d over the randomness in the setXn received by the amplifier and with probability
1 − 1/e2 over µ ← Dµ|Xn and any internal randomness of the amplifier, the amplifier cannot output a set Zn+1 which
contains the set Xn as a subset and which is accepted by the verifier. To show this, we first claim that ‖µ0‖ ≤ 30d3/4

with probability 1 − ed. Note that µ0 ← N(µ, In ), where µ ← N(0,
√
dI). By (5), with probability at least 1 − e−3d,

‖µ‖ ≤ 15d3/4 and ‖µ−µ0‖ ≤ 15
√
d. Hence by the triangle inequality, ‖µ0‖ ≤ 30d3/4 with probability at least 1− e−3d.

We now show that for sets Xn such that ‖µ0‖ ≤ 30d3/4, Zn+1 cannot pass the verifier with probability more than 1− e2

over the randomness in µ|Xn. The proof consists of two cases, and the analysis of the cases is similar to the proof of
Proposition 2. Without loss of generality, assume that Zn+1 = {x′1, Xn}, hence x′1 is the only sample not present in the
set. We will show that either x′1 or µ̂−1 fail one of the three tests performed by the verifier with high probability.

CASE 1: ‖x′1 − µ̄‖2 ≥ 100d.

We show that the first test is not satisfied with high probability in this case. As µ|Xn ← N(µ̄, σ̄2), hence by (5), ‖µ−µ̄‖2 ≤
15d/n with probability 1− e−3d. Therefore, if ‖x′1 − µ̄‖2 ≥ 100d, then with probability e−3d,

‖x′1 − µ‖2 ≥ (
√

100d−
√

15d/n)2 > 15d,

in which case the first test is not satisfied. Hence in the first case, the amplifier succeeds with probability at most e−3d.
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CASE 2: ‖x′1 − µ̄‖2 < 100d.

Note that for the sample x′1, µ−1 = µ0 as the last n samples are the same as the original set Xn. We now bound ‖µ̂−1− µ̄‖
as follows,

‖µ̂−1 − µ̄‖ =
∥∥∥µ0 −

n

n+ 1/
√
d
µ0

∥∥∥ ≤ ‖µ0‖
n
√
d
≤ 30d1/4

n
.

We now expand 〈x′1 − µ̂−1, µ− µ̂−1〉 in the third test as follows,

〈x′1 − µ̂−1, µ− µ̂−1〉 = 〈x′1 − µ̄, µ− µ̄〉 − 〈µ̂−1 − µ̄, µ− µ̄〉 − 〈x′1 − µ̄, µ̂−1 − µ̄〉+ ‖µ̂−1 − µ̄‖2,
≤ 〈x′1 − µ̄, µ− µ̄〉 − 〈µ̂−1 − µ̄, µ− µ̄〉+ ‖x′1 − µ̄‖‖µ̂−1 − µ̄‖+ ‖µ̂−1 − µ̄‖2.

Note that 〈µ̂−1 − µ̄, µ− µ̄〉 is distributed as N(0, σ̄2‖µ̂−1 − µ̄‖2) and hence with probability 1 − 1/e3 it is at most
10‖µ̂−1 − µ̄‖/

√
n. Similarly, with probability 1 − 1/e3, 〈x′1 − µ̄, µ− µ̄〉 is at most 10‖x′1 − µ̄‖/

√
n. Therefore, with

probability 1− 2/e3,

〈x′1 − µ̂−1, µ− µ̂−1〉 ≤ 10‖x′1 − µ̄‖/
√
n+ 10‖µ̂−1 − µ̄‖/

√
n+ ‖x′1 − µ̄‖‖µ̂−1 − µ̄‖+ ‖µ̂−1 − µ̄‖2,

≤ 100

√
d

n
+ 300

d3/4

n2
+ 300

d3/4

n
+ 900

√
d

n2

≤ 100

√
d

n
+ 1500

d3/4

n

= 100

√
n

d

( d
n

)
+

1500

d1/4

( d
n

)
.

Hence for a sufficiently large constant C, n < d
C log d and d sufficiently large, with probability 1− 2/e3,

〈x′1 − µ̂−1, µ− µ̂−1〉 ≤
d

5n
,

which implies that the second test is not satisfied. Hence the amplifier succeeds in this case with probability at most 2/e3.

The overall success probability of the amplifier is the maximum success probability across the two cases, hence for sets
Xn such that the ‖µ0‖ ≤ 30d3/4, the verifier accepts the amplified set Zn+1 with probability at most 2/e3. As Pr

[
‖µ0‖ ≤

30d3/4
]
≥ 1 − e−3d, the overall success probability of the amplifier over the randomness in µ, Xn and any internal

randomness of the amplifier is at most 1/e2.

B. Proofs: Discrete Distributions with Bounded Support
B.1. Upper Bound

In this section we prove the upper bound from Theorem 1. The algorithm itself is presented in Algorithm 2. For clarity of
writing, we assume that the number of input samples is 4n, instead of n.

Proposition 5. Let C denote the class of discrete distributions with support size at most k. For sufficiently large k, and
m = 4n+O

(
n√
k

)
, C admits an (4n,m) amplification procedure.

Proof. To avoid dependencies between the count of different elements, we first prove our results in a Poissonized setting,
and then in lemma 4, we describe how to use the amplifier for Poissonized setting to get an amplifier for the original
multinomial setting. Let D ∈ C be an unknown probability distribution over [k], and let pi denote the probability mass
associated with i ∈ [k]. Throughout the proof, we use random variable Xq to denote q independent samples from D,
where q can also be a random variable. Suppose we are given N = N1 + N2 independent samples from D, denoted by
XN1 and XN2 , where N1 and N2 are drawn from Poisson(n). We show how to amplify them to M̃ = N + R samples,
denoted by ZM̃ , such that DTV (ZM̃ , XM ) is small, where M ← Poisson(2n+ r).
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Algorithm 2 Sample Amplification for Discrete Distributions
Input: X4n = (x1, x2, . . . , x4n), where xi ← D, for any discrete distribution D over [k].
Output: Zm = (x′1, x

′
2, . . . , x

′
m), such that DTV (Dm, Zm) ≤ 1

3 .
1: procedure AMPLIFYDISCRETE(X4n)
2: N1, N2 ← Poisson(n) . Draw two i.i.d samples N1 and N2 from Poisson(n)
3: N := N1 +N2

4: if N ≤ 4n then
5: XN1

:= (x1, x2, . . . , xN1
)

6: XN2
:= (xN1+1, xN1+2, . . . , xN1+N2

)

7: else . Uninteresting case: happens with low probability
8: XN1

:= (x1, x1, . . . , x1)︸ ︷︷ ︸
N1 times

9: XN2 := (x1, x1, . . . , x1)︸ ︷︷ ︸
N2 times

10: r := 8(m− n)
11: (x′1, x

′
2, . . . , x

′
N+R) = AMPLIFYDISCRETEPOISSONIZED(XN1 , XN2 , r, n)

12: Amplify first N1 +N2 samples to N1 +N2 +R samples, for R roughly distributed as Poisson(r)

13: R1 := max(R, r/8)
14: if R < r/8 then . Uninteresting case: happens with low probability
15: (x′1, x

′
2, . . . , x

′
N+R1

) := (x′1, x
′
2, . . . , x

′
N+R, x1, x1, . . . , x1︸ ︷︷ ︸

r
8−R times

)

16: (x′N+R1+1, x
′
N+R1+2, . . . , x

′
m) := (xN+1, xN+2, . . . , x4n−(R1− r8 ))

17: Add the remaining samples to get 4n+ r/8 samples in total

18: Zm := (x′1, x
′
2, . . . , x

′
m)

19: return ZM

20: procedure AMPLIFYDISCRETEPOISSONIZED(XN1
, XN2

, r, n)
21: Generates approximately Poisson(r) more samples given N1 +N2 input samples
22: XN1 = (x1, x2, . . . , xN1), XN2 = (xN1+1, xN1+2, . . . , xN1+N2), and r = 8(m− n)

23: countj :=
∑N1

i=1 1(xi = j), for j ∈ [k] . Find the count of each element in first N1 samples

24: p̂j :=
countj
n , for j ∈ [k]

25: ẑj ← Poisson(p̂jr), for j ∈ [k]

26: R :=
∑k
j=1 ẑj

27: (x′1, x
′
2, . . . , x

′
N1

) := (x1, x2, . . . , xN1
)

28: (x′N1+1, . . . , x
′
N1+N2+R) := RandomPermute((xN1+1, xN1+2, . . . , xN1+N2 , 1, 1, . . . , 1︸ ︷︷ ︸

ẑ1 times

, . . . , k, k, . . . , k︸ ︷︷ ︸
ẑk times

))

29: return (x′1, x
′
2, . . . , x

′
N1+N2+R)
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Our amplifying procedure involves estimating the probability of each element using XN1
, generating R independent sam-

ples using these estimates, and randomly shuffling these samples with XN2 . Let ui be the count of element i in XN1 and yi
be the count of i in XN2 noting they are both distributed as Poisson(npi). The amplification procedure proceeds through
the following steps:

1. Estimate the frequency p̂i of each element using ui, that is, p̂i = ui
n .

2. Draw ẑi ← Poisson(rp̂i) additional samples of element i for all i ∈ [k].

3. Append these generated samples to XN2 to get ZN2+R.

4. Randomly permute the elements of ZN2+R, and append them to XN1
to get ZM̃ .

We first show that ZM̃ is close in total variation distance, to Poisson(2n + r) samples generated from D. We will prove
this by showing that with high probability over the choice of XN1 , the distribution of ZN2+R is close to Poisson(n + r)
samples generated from D. After this, we can use lemma 1 to show that appending ZN2+R to the samples in XN1 results
in a sequence with low total variation distance to XM . Since our amplification procedure randomly permutes the last
N2 + R elements, we can argue this using only the count of each element. Recall yi is the count of element i in XN2

,
and ẑi is the number of additional samples of element i added by our amplification procedure. Let zi ← Poisson(rpi),
and let vi = yi + zi and v̂i = yi + ẑi. Here, vi denotes the count of element i in Poisson(n + r) samples drawn from D,
and v̂i denotes the corresponding count in samples generated using our amplification procedure. We use Pv to denote the
distribution associated with random variable v.

Lemma 3. For r ≤ nε1.5/(4
√
k), with probability 1− ε over the randomness in {ui, i ∈ [k]},

dTV

(
k∏
i=1

vi,

k∏
i=1

v̂i

)
≤ ε/2.

where
∏

refers to the product distribution.

Proof. We partition the support [k] into two sets. Let S = {i : pi ≥ ε/(2nk)} and Sc = [k]\S. Let |S| = k′. Without
loss of generality, assume that S = {i : 1 ≤ i ≤ k′} and Sc = {i : k′ + 1 ≤ i ≤ k}. We will separately bound the
contribution of the variables in the set S and Sc to the total variation distance. For the first set S, we will upper bound∑k′

i=1DKL(vi ‖ v̂i), and use Pinsker’s inequality to then bound the total variation distance. For the second set Sc, we
will directly bound

∑k
i=k′+1 dTV (vi, v̂i). All our bounds will be with high probability over the randomness in the first set

{ui, i ∈ [k]}.

We first bound the total variation distance for the variables in the first set S. Note that because the sum of two Poisson
random variables is a Poisson random variable, vi is distributed as Poisson(npi+rpi) and v̂i is distributed as Poisson(npi+
rui/n). We will use the following expression for the KL divergence DKL(P ‖ Q) between two Poisson distributions P
and Q with means λ1 and λ2 respectively—

DKL(P ‖ Q) = λ1 log

(
λ1

λ2

)
+ λ2 − λ1. (9)

Using this expression, we can write the KL divergence between the distributions of vi and v̂i as follows,

DKL(vi ‖ v̂i) = pi(n+ r) log

(
pi(n+ r)

pin+ rui/n

)
+ (rui/n− rpi).

Let δi = ui − npi. We can rewrite the above expression as follows,

DKL(vi ‖ v̂i) = pi(n+ r) log

(
pi(n+ r)

pi(n+ r) + rδi/n

)
+ rδi/n,

= pi(n+ r) log

(
1

1 + rδi/(npi(n+ r))

)
+ rδi/n.
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Note that log(1 + x) ≥ x− 2x2 for x ≥ 0.8. As δi ≥ −npi, therefore rδi/(npi(n+ r)) ≥ −0.8 for r ≤ n. Therefore,

pi(n+ r) log

(
1

1 + rδi/(npi(n+ r))

)
≤ −rδi/n+

2r2δ2
i

n2pi(n+ r)
,

=⇒ DKL(vi ‖ v̂i) ≤
2r2δ2

i

n2pi(n+ r)
,

=⇒
k′∑
i=1

DKL(vi ‖ v̂i) ≤
2r2

n2

k′∑
i=1

δ2
i

npi
. (10)

We will now bound
∑k′

i=1
δ2i
npi

. As a Poisson(λ) random variable has variance λ and δi = ui − npi where ui ←
Poisson(npi), therefore,

E

 k′∑
i=1

δ2
i

npi

 = k′.

Also, the fourth central moment of a Poisson(λ) random variable is λ(1 + 3λ), hence

Var[δ2
i ] = E

[
δ4
i

]
− E

[
δ2
i

]2
,

= npi(1 + 3npi)− (npi)
2 = npi(1 + 2npi),

=⇒ Var

 k′∑
i=1

δ2
i

npi

 =

k′∑
i=1

1 + 2npi
npi

.

As pi ≥ ε/(2nk) for i ∈ S and k′ ≤ k, therefore,

Var

 k′∑
i=1

δ2
i

npi

 ≤ 2k2/ε+ 2k ≤ 4k2/ε.

Hence by Chebyshev’s inequality,

Pr

 k′∑
i=1

δ2
i

npi
− k′ ≥ 4k/ε

 ≤ ε/4,
=⇒ Pr

 k′∑
i=1

δ2
i

npi
≥ 4k/ε

 ≤ ε/4. (11)

Let E1 be the event that
∑k′

i=1
δ2i
npi
≤ 4k/ε. By (11), Pr(E1) ≥ 1− ε/4. Conditioned on the event E1 and using (10), we

can bound the KL divergence as follows,

DKL

(∏
i∈S

vi

∥∥∥ ∏
i∈S

v̂i

)
=

k′∑
i=1

DKL(vi ‖ v̂i) ≤
8r2k

n2ε
.

Hence for r ≤ nε1.5/(4
√
k) and conditioned on the event E1,

DKL

(∏
i∈S

vi

∥∥∥ ∏
i∈S

v̂i

)
≤ ε2/2.

Hence using Pinsker’s inequality, conditioned on the event E1,

dTV

(∏
i∈S

vi,
∏
i∈S

v̂i

)
≤ ε/2.
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We will now bound the total variation distance for the variables in the set Sc. Let E2 be the event that ui = 0, ∀ i ∈ Sc.
Note that as ui ∼ Poisson(npi) where pi < ε/(2nk), ui = 0 with probability at least e−ε/(2k), hence Pr(E2) ≥ e−ε/2 ≥
1 − ε/2. We now condition on the event E2. Recall that vi = yi + zi, where zi ∼ Poisson(rpi) and v̂i = yi + ẑi, where
ẑi = 0 conditioned on E2. By a coupling argument on yi, the total variation distance between the distributions of vi and v̂i
equals the total variation distance between the distributions of zi and ẑi. As ẑi = 0, conditioned on the event E2,

dTV (vi, v̂i) = Pr[zi 6= 0] = 1− e−rpi ≤ 1− e−rε/(2nk)

≤ rε

2nk
≤ ε

2k
, as r ≤ n.

Hence conditioned on E2,

dTV

(∏
i∈Sc

vi,
∏
i∈Sc

v̂i

)
≤

k∑
i=k′+1

dTV (vi, v̂i) ≤ ε/2.

Hence conditioned on the events E1 and E2,

dTV

(
k∏
i=1

vi,

k∏
i=1

v̂i

)
≤ dTV

(∏
i∈S

vi,
∏
i∈S

v̂i

)
+ dTV

(∏
i∈Sc

vi,
∏
i∈Sc

v̂i

)
≤ ε.

As Pr(E1) ≥ 1− ε/4 and Pr(E2) ≥ 1− ε/2, by a union bound Pr(E1 ∪E2) ≥ 1− ε. Hence with probability 1− ε over
the randomness in {ui, i ∈ [k]},

dTV

(
k∏
i=1

vi,

k∏
i=1

v̂i

)
≤ ε.

Lemma 3 says that with high probability over the first N1 samples, the N2 +R samples are close in total variation distance
to Poisson(n + r) samples drawn from D. Using lemma 3 and lemma 1, we can conclude that for r ≤ nε1.5/(4

√
k),

DTV (XM , ZM̃ ) ≤ ε+ ε/2 = 3ε/2.

Next, we show how to use the above amplification procedure to amplify samples in the non-Poissonized setting. Given
N = N1 +N2 samples from D, we have shown how to amplify them to get M̃ = N +R samples. Given such an amplifier
as a black box, and 4n samples from D, one can use the first N samples to generate M samples. Then append these M
samples with the remaining 4n−N samples to get an amplifier in our original non-Poissonized setting.

Lemma 4. Let N = N1 + N2 where N1, N2 ← Poisson(n), and let M ← Poisson(2n + r). Suppose we are given an
(N,M) amplifier f (as described above) satisfyingDTV (f(XN ), XM ) ≤ 3ε

2 , for allD ∈ C. Then there exists an amplifier
f ′ : [k]4n → [k]4n+ r

8 , such that DTV (f ′(X4n), X4n+ r
8
) ≤ 5ε

2 , for ε ≥ 2e−
n
20 + e−

25r
88 , and for r ≤ nε1.5/(4

√
k).

Proof. We divide the proof into three steps:

• Step 1: f takes as input XN1 and XN2 , samples of size N1 and N2 drawn from D. To simulate these samples, we
use the 4n samples available to us from D. We draw N ′1, N

′
2 ← Poisson(n), and let N ′ = N ′1 + N ′2. If N ′ ≤ 4n,

we set XN ′1
= (x1, x2, . . . , xN ′1) and XN ′2

= (xN ′1+1, xN ′1+2, . . . , xN ′2). Otherwise, we set XN ′1
= (x1, x1, . . . , x1)︸ ︷︷ ︸

N ′1 times

,

and XN ′2
= (x1, x1, . . . , x1)︸ ︷︷ ︸

N ′2 times

, but this happens with very small probability leading to small total variation distance

between f(XN1 , XN2) and f(XN ′1
, XN ′2

), and by triangle inequality, small TV distance between f(XN ′1
, XN ′2

) and
XM . We denote (XN1 , XN2) by XN and (XN ′1

, XN ′2
) by XN ′ .

• Step 2: We would like to finally output r8 more samples. Let us denote the number of samples in f(XN ′) by M ′.
If M ′ < N ′ + r

8 , we append N ′ + r
8 −M

′ arbitrary samples to it (say x1) so that the total sample size is equal to
N ′+ r

8 . If M ′ ≥ N ′+ r
8 , we don’t do anything in this step. Let t1(f(XN ′)) denote the samples outputted in this step.
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Since the number of new samples added by f is roughly distributed as Poisson(r), the probability that the number of
new samples is less than r/8 is small, leading to small TV distance between t1(f(XN ′)) and f(XN ′), and by triangle
inequality, small TV distance between t1(f(XN ′)) and XM .

• Step 3: Let M ′1 denote the number of samples in t1(f(XN ′)), and let Q′1 = 4n+ r
8 −M

′
1 denote the number of extra

samples needed to output 4n+ r
8 samples in total. IfQ′1 ≥ 0, we appendQ′1 i.i.d. samples fromD to t1(f(XN ′)), and

if Q′1 < 0, we remove last |Q′1| samples from t1(f(XN ′)). We use t2(t1(f(XN ′))) to denote the output of this step.
Step 2 ensures M ′1 ≥ N ′ + r

8 , which implies Q′1 ≤ 4n − N ′. Let X4n−N ′ = (xN ′+1, xN ′+2, . . . , x4n) denote the
leftover samples inX4n after removing the firstN ′ samples. WhenQ′1 ≥ 0, we use the firstQ′1 samples fromX4n−N ′

to simulate i.i.d. samples from D, that is, t2(t1(f(XN ′))) = append(t1(f(XN ′)), (xN ′+1, xN ′+2, . . . , xN ′+Q′1)).
t2(t1(f(XN ′))) is the final output of our amplifier f ′.

Similarly, let Q1 = 4n + r
8 − M denote the number of extra samples needed to be appended to XM to output

4n + r
8 samples in total. If Q1 ≥ 0, t2(XM ) correspond to appending Q1 samples from D to XM , and otherwise,

it corresponds to removing last |Q1| samples from XM . Since applying the same transformation to two random
variables can’t increase their total variation distance, and from step 2, we know that DTV (t1(f(XN ′)), XM ) is small,
we get DTV (t2(t1(f(XN ′))), t2(XM )) is small.

As t2(XM ) corresponds to 4n+ r
8 i.i.d. samples from D, DTV (X4n+ r

8
, t2(XM )) = 0. Using triangle inequality, we

get DTV (t2(t1(f(XN ′))), X4n+ r
8
) is small which is the desired result.

Next, we prove that the total variation distances involved in each of these steps are small.

• Step 1: We first bound DTV (f(XN ), f(XN ′)).

DTV (f(XN ), f(XN ′)) ≤ DTV (XN , XN ′)

=
1

2

∑
x

|Pr(XN = x)− Pr(XN ′ = x)|

=
1

2

∑
x

|Pr(XN = x | N ≤ 4n) Pr(N ≤ 4n)− Pr(XN ′ = x | N ′ ≤ 4n) Pr(N ′ ≤ 4n)

+ Pr(XN = x | N > 4n) Pr(N > 4n)− Pr(XN ′ = x | N ′ > 4n) Pr(N ′ > 4n)|

where the first inequality holds as applying the same transformation to two random variables can’t increase their total
variation distance. Now, note that XN and XN ′ have the same distribution conditioned on N ≤ 4n and N ′ ≤ 4n.
Also, Pr(N ≤ 4n) = Pr(N ′ ≤ 4n) and Pr(N > 4n) = Pr(N ′ > 4n), as both N and N ′ are drawn from
Poisson(2n) distribution. This gives us

DTV (f(XN ), f(XN ′)) =
1

2

∑
x

Pr(N > 4n)|Pr(XN = x | N > 4n)− Pr(XN ′ = x | N ′ > 4n)|

≤ Pr(N > 4n)

Using the triangle inequality, we get DTV (XM , f(X ′N )) ≤ Pr(N > 4n) + 3ε/2. To bound Pr(N > 4n), we use the
following Poisson tail bound (?): for X ← Poisson(λ),

Pr[X ≥ λ+ x],Pr[X ≤ λ− x] ≤ e
−x2
λ+x . (12)

As N is distributed as Poisson(2n), we get Pr(N > 4n) ≤ e−n, which implies DTV (XM , f(X ′N )) ≤ e−n + 3ε
2 .

• Step 2: In this step, we need to show DTV (t1(f(XN ′)), XM ) is small. Note that t1(f(XN ′)) is equal to
f(XN ′) except when M ′ < N ′ + r

8 . From step 1, we know that DTV (f(XN ′), XM ) is small. If we show
DTV (f(XN ′), t1(f(XN ′))) is small, then by triangle inequality, we get DTV (XM , t1(f(XN ′))) is small. Let
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M ′ = N ′ +R′ where R′ denote the number of new samples added by the amplification procedure f to XN ′ .

DTV (t1 (f (XN ′)) , f (XN ′))

=
1

2

∑
x

|Pr (t1 (f (XN ′)) = x)− Pr (f (XN ′) = x)|

=
1

2

∑
x

|Pr
(
R′ <

r

8

)(
Pr
(
t1 (f (XN ′)) = x | R′ < r

8

)
− Pr

(
f (XN ′) = x | R′ < r

8

))
+ Pr

(
R′ ≥ r

8

)(
Pr
(
t1 (f (XN ′)) = x | R′ ≥ r

8

)
− Pr

(
f (XN ′) = x | R′ ≥ r

8

))
|

We know Pr
(
t1 (f (XN ′)) = x | R′ ≥ r

8

)
= Pr

(
f (XN ′) = x | R′ ≥ r

8

)
. This gives

DTV (t1 (f (XN ′)) , f (XN ′))

=
1

2

∑
x

|Pr
(
R′ <

r

8

)(
Pr
(
t1 (f (XN ′)) = x | R′ < r

8

)
− Pr

(
f (XN ′) = x | R′ < r

8

))
|

≤ Pr
(
R′ <

r

8

)
Now, we need to bound Pr

(
R′ < r

8

)
. From the description of f , we know that the number of new copies of element

i added by f is distributed as Poisson (rp̂i). Here, p̂i = ui
n where ui denotes the number of occurrences of element i

in XN ′1
. Since the total number of samples in XN ′1

is N ′1, we get
∑k
i=1 p̂i =

∑k
i=1 ui
n =

N ′1
n . Note that R′ is equal to

the sum of number of new copies of each element, and as the sum of Poisson random variables is Poisson, we get R′

is distributed as Poisson
(
r
N ′1
n

)
.

Pr
(
R′ <

r

8

)
= Pr

(
R′ <

r

8
| N ′1 ≥

3n

4

)
Pr

(
N ′1 ≥

3n

4

)
+ Pr

(
R′ <

r

8
| N ′1 <

3n

4

)
Pr

(
N ′1 <

3n

4

)
≤ Pr

(
R′ <

r

8
| N ′1 ≥

3n

4

)
+ Pr

(
N ′1 <

3n

4

)
Using Poisson tail bound (12), we get

Pr

(
R′ <

r

8
| N ′1 ≥

3n

4

)
≤ exp

(
− (5r/8)

2

3r/4 + 5r/8

)
= e−25r/88

Pr

(
N ′1 <

3n

4

)
≤ exp

(
− (n/4)

2

n+ n/4

)
= e−n/20

This gives us DTV (f(XN ′), t1(f(XN ′))) ≤ e−25r/88 + e−n/20. By triangle inequality, we get
DTV (XM , t1(f(XN ′))) ≤ 3ε

2 + e−n + e−25r/88 + e−n/20.

• Step 3: For this step, we need to show DTV (t2(t1(f(XN ′))), t2(XM )) is small. Since applying the same transfor-
mation to two random variables doesn’t increase their TV distance, we get

DTV (t2(t1(f(XN ′))), t2(XM )) ≤ DTV (t1(f(XN ′)), XM )

≤ 3ε

2
+ e−n + +e−25r/88 + e−n/20

As DTV (X4n+ r
8
, t2(XM )) = 0, using triangle inequality, we get

DTV (t2(t1(f(XN ′))), X4n+ r
2
) ≤ 3ε

2
+ e−n + e−25r/88 + e−n/20

For ε ≥ 2e−n/20 + e−25r/88, this gives us DTV (f ′(X4n), X4n+ r
8
) = DTV (t2(t1(f(XN ′))), X4n+ r

8
) ≤ 5ε

2 .

From lemma 4, we get that for ε ≥ 2e−n/20 + e−25r/88, and for r ≤ nε1.5/(4
√
k), DTV (f ′(X4n), X4n+ r

8
) ≤ 5ε

2 . We can
assume n is at least

√
k, and r is at least 8, as otherwise the theorem is trivially true. So for k large enough (implying large

n), we can put ε = 2
15 , to get DTV (t2(t1(f(XN ′))), X4n+ r

8
) ≤ 1

3 , which finishes the proof!
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B.2. Lower Bound

In this section we show that the above procedure is optimal, up to constant factors for amplifying samples from discrete
distributions. We first describe the intuition for showing our lower bound that the class of discrete distributions with support
at most k does not admit an (n,m) amplification scheme form ≥ n+ cn√

k
, where c is a fixed constant. For n ≤ k

4 , we show
this lower bound for the class of uniform distributions D = Unif[k] on some unknown k elements. In this case, a verifier
can distinguish between true samples from D and a set of amplified samples by counting the number of unique samples in
the set. Note that as the support of D is unknown, the number of unique samples in the amplified set is at most the number
of unique samples in the original set Xn, unless the amplifier includes samples that are outside the support of D, in which
case the verifier will trivially reject this set. The expected number of unique samples in n and m draws from D differs by
c1n√
k

, for some fixed constant c1. We use a Doob martingale and martingale concentration bounds to show that the number
of unique samples in n samples from D concentrates within a c2n√

k
margin of its expectation with high probability, for some

fixed constant c2 � c1. This implies that there will be a large gap between the number of unique samples in n and m
draws from D. The verifier uses this to distinguish between true samples from D and an amplified set, which cannot have
sufficiently many unique samples.

Finally, we show that for n > k
4 , a

(
n, n + c′k√

k

)
amplification procedure for discrete distributions on k elements implies

a (k4 ,
k
4 + c′

√
k) amplification procedure for the uniform distribution on (k − 1) elements, and for sufficiently large c′ this

is a contradiction to the previous part. This reduction follows by considering the distribution which has 1 − k
4n mass on

one element and k
4n mass uniformly distributed on the remaining (k − 1) elements. With sufficiently large probability, the

number of samples in the uniform section will be ≈ k
4 , and hence we can apply the previous result.

Proposition 6. There is a constant c, such that for every sufficiently large k, C does not admit an
(
n, n+ cn√

k

)
amplification

procedure.

The proposition follows by constructing a verifier and class of discrete distributions over k elements, C with the following
property: for a universal constant c and p ← Uniform[C], the verifier can detect any (n, n + cn√

d
) amplifier from with

sufficiently high probability.

Before we prove Proposition 6, we introduce some additional notation and a basic martingale inequality. Let Ck be the set
of discrete uniform distributions over k integers in 0, . . . , 8k. Let Ckl be the set of discrete distributions with mass 1− l on
one element and uniform mass over k − 1 remaining integers in 0, . . . , 8k. We also rely on some martingale inequalities
which can be found in (?).
Fact 1. Let X be the martingale associated with a filter F satisfying:

1. Var[Xi | Fi−1] ≤ σ2
i for 1 ≤ i ≤ n

2. 0 ≤ Xi ≤ 1 almost surely.

Then, we have

Pr(X − E[x] ≥ λ) ≤ e
− λ2

2(
∑
σ2
i
+λ/3) .

Similarly the following holds (though not simultaneously):

Pr(X − E[x] ≤ −λ) ≤ e
− λ2

2(
∑
σ2
i
+λ/3) .

Finally we rely on slight generalization of the birthday paradox which can be found in (?).
Fact 2. Let n samples be drawn from a uniform distribution over k elements. Then the probability of the samples containing
a duplicate is less than n2

2k .

The proof proceeds in two parts. First we prove a lemma that shows the desired result for n ≤ k
2 . We then show show a

class of distributions that allows us to reduce the general case to the result shown in the lemma.
Lemma 5. For sufficiently large k, fixed c and m = n+ 30 n√

k
≤ k

4 the following holds:

There exists a verifier that for p ∼ Uniform[Ck] the following holds true:
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1. For all p, it accepts Xm with probability at least 3
4 over the randomness in Xm.

2. It rejects f(Xn) with probability at least 3
4 for any amplifier f over the randomness in Xn, p and the amplifier.

Proof. First we consider the case when n ≤
√
k

2 . Consider the verifier that takes
√
k

2 + 1 <
√

k
2 samples from the given

samples uniformly at random and accepts if there are no repeats by Fact 2 and the support is correct. The probability of a
duplicate with the real distribution is less than 1

4 by fact 2 so the verifier will accept samples from the true distribution with
at least probability 3

4 .

An amplified set, on the other hand, must have repeats outside of the original elements it saw. This is because if the
amplifier expanded the support of the set, the verifier would catch it with probability 7

8 . To show this, consider a sample
added by the amplifier outside of the seen support. Conditioned on the at most k

4 unique samples seen so far (which
implies that 3

4 of the support is still unseen), the probability, over the choice of p, of said sample being in the set is at
most (3/4)k

8k−n ≤
(3/4)k
7.5k ≤

1
8 . Hence if the amplified set has any element outside the original support then it is rejected with

probability 7
8 . Note that if the amplified set has at most

√
k

2 unique elements, then it can be immediately distinguished for
having too many repeats.

We now examine the case when n >
√
k

2 . Since the verifier can identify when the amplifier introduces unseen elements with
probabiltiy at least 7

8 , we condition on the event that the verifier identifies such elements for the remainder of this proof.
The proof proceeds by showing that a set the size of the amplified set must have significantly more unique elements than
the original set. Before we proceed with the details of the proof we define the martingale that is central to the argument.
Consider the scenario where the n samples are drawn in sequence, and let Fi denote the filtration corresponding to the
i-th draw (i.e., information in the first i draws). Let Ui be the indicator that is the ith sample was previously unseen. Let

Un =
n∑
i=1

Ui. Note that Bi = E

[
n∑
j=1

Uj | Fi

]
is a Doob martingale with respect to the filtration Fi and Bn = U . Also,

Bi has differences bounded by 1 as Ui is an indicator random variable. If j is the count of previously seen elements then
Var [Bi | Fi] ≤ Var[Ui | Fi] ≤ (k−j)j

k2 . Since n < k
2 , the variance is upper bounded by i

k ≤
n
k .

The verifier will accept only if all elements are within the support of the distribution and the number unique elements is
greater than E[Un] + 7 n√

k
under Xn.

The remainder of the proof will show the following:

1. Un concentrates around its expectation within a O
(
n√
k

)
margin for Xn (this shows the amplifier gets too few unique

samples to be accepted by the verifier).

2. The expectation E[Um−Un] increases by at least Ω
(
n√
k

)
fromXn toXm (which shows the number of unique items

is sufficiently different in expectation between Xn and Xm).

3. Um concentrates around its expectation within a O
(
n√
k

)
margin for Xm (this combined with the previous statement

shows the verifier accepts real samples with sufficiently high probability).
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The upper tail bound follows via Fact 1. Recall that n√
k
< 4n

2

k since n >
√
k

2 .

Pr

(
Un − E[Un] ≥ 7

n√
k

)
≤ exp

− 72 n2

k

2
(∑

σ2
i + 7n

3
√
k

)


≤ exp

− 72 n2

k

2
(
n2

k + 7n
3
√
k

)


≤ exp

(
−

72 n2

k

2
(
n2

k + 7 4n2

3k

))

= exp

(
−

72 n2

k

2
(
1 + 4

37
)
n2

k

)

≤ 1

8
.

Note that this suffices to show that the verifier can distinguish any amplifier with sufficiently many unique samples.

Let k be sufficiently large that the following conditions hold for both k and k − 1:

1. n+ 30 n√
k
< k

2

2. The samples increased by at most a factor of 2

Now we note that the E[Un] and E[Um] must differ by at least 15n√
k

, since m < k
2 implying that every new sample has at

least a 1
2 probability of being unique. Now all the remains to show that the verifier will acceptXm is to show concentration

of U within 8n√
k

of its mean.

Since the number of samples increased by at most a factor of two, the bound on the σ2
i increased by at most a factor of two.

This suffices for the lower tail bound on U for Xm—

Pr

(
Um − E[Um] ≤ −8

n√
k

)
≤ exp

− 82 n2

k

2
(∑

σ2
i + 8n

3
√
k

)


≤ exp

− 82 n2

k

2
(

4n
2

k + 8n
3
√
k

)


≤ exp

(
−

82 n2

k

2
(
4n

2

k + 8 4n2

3k

))

= exp

(
−

82 n2

k

2
(
4 + 4

38
)
n2

k

)

<
1

8
.

Thus Xm will have sufficiently many unique elements to be accepted by the verifier with probability at least 7
8 . A success

probability of 3
4 follows from subtracting the probabiltiy that the verifier did not properly identify unseen samples.

We are now ready to prove Proposition 6.
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Proof. If n ≤ k
4 , then Lemma 5 applies directly. If not, we use the set of distributions Ckk

4

with the intention of applying
Lemma 5 on samples that land in the uniform region.

The verifier will check that the samples are within the support of the distribution, more than n + 7 n√
k

samples are in the
uniform region and the verifier from Lemma 5 accepts on the uniform region.

First note that after n samples, at most k4 +
√
k

4 samples will be in the uniform region with at least probability 15
16 by a

Chebyshev bound. Conditioned on this event, Lemma 5 shows that the amplifier cannot output more than k
4 + O(

√
k)

samples in the uniform region and will be rejected by our verifier.

Now we show that the verifier will accept real samples with good probability. Note that the expected number of samples to
receive in the uniform region forXm is k

4 +c
√
k. The variance on this quantity is k

4 +c
√
k. An application of Chebyshev’s

inequality shows that with probability at least 15
16 sufficiently many samples will land in the uniform region.

k

4
+ c
√
k − 4

√
k

4
+ c
√
k ≥ k

4
+ c
√
k − 2

√
k − 4

√
c
√
k

≥ k

4
+ c
√
k − 2

√
k − 4

√
ck.

Since the expression above is increasing with c, we can choose a c sufficiently large so that the verifier will accept with
sufficiently high probability.


