
Deep k-NN for Noisy Labels

A. Experiment Details
Robust Generative Classifier (RoG): Lee et al. (2019) induces a generative classifier on top of the hidden feature spaces
of a model pre-trained on noisy data. They assume the hidden features are Gaussian-distributed and estimate its parameters
using the minimum covariance determinant estimator. We always use Imax = 2, and train the ensemble over 40 epochs
over the filtered validation data using Adam with learning rate 0.001. 50% of the validation data was always kept and 2%
of the dataset was used for validation except for smaller UCI datasets, where 10% was used. For ResNet-20 we use the
convolutional and identity blocks within the final resnet block as hidden layers for RoG and use all intermediate dense layers
for all other architectures.

B. Proofs
B.1. Supporting theoretical results

The following bounds rk(x) uniformly in x ∈ X .

Lemma 1 (Lemma 2 of Jiang (2019)). The following holds with probability at least 1− δ/2. If

28 ·D log2(4/δ) · log n ≤ k ≤ 1

2
· ω · pX,0 · vD · rD0 · n,

then supx∈X rk(x) ≤
(

2k
ω·vD·n·pX,0

)1/D

, where vD is the volume of the unit ball in RD.

The next result bounds the number of distinct k-NN sets over X .

Lemma 2 (Lemma 3 of Jiang (2019)). LetM be the number of distinct k-NN sets over X , that is, M := |{Nk(x) : x ∈ X}|.
Then M ≤ D · nD.

B.2. Minimum k-NN spread

We propose a more general notion of how spread out a set of points is than S2 which will be used in the theoretical analysis.
This will allow us to more precisely characterize how difficult a configuration of incorrectly labeled examples will be to
work with in the k-NN context. For example, if such examples are spread out far apart, then there will be many correctly
labeled examples nearby for the k-NN approach to identify the incorrectly labeled examples. On the other hand, if the
corrupted examples are all close together, then it will be more difficult to identify them without many uncorrupted examples
in that region. To this end, we define the minimum k-NN spread:

Definition 4 (minimum k-NN spread).

Sk(C) := min
x∈C

rk(x,C),

where rk(x,C) denotes the distance from x to the k-th closest neighbor in C.

Note that this definition is consistent with the earlier definition of S2.

B.3. Proof of Theorem 1

Proof of Theorem 1. Let τ, γ, ε > 0 be quantities that will be determined later. Suppose that for some x ∈ X∆, we have
rk(x) ≤ τ and Sb( 1

2−γ)·kc(C) ≥ τ . Then, at least 1
2 + γ fraction of the points within x’s k-nearest neighbors are not in

the corrupted set C. Let Ax := Nk(x)\C, that is, the k-nearest neighbors of x that are not in C. Then it is clear that
Ax is a k0-nearest neighbor set of x relative to X\C for some k0 ≥ d( 1

2 + γ) · ke. We have that Ax ⊆ X∆ ⊕ τ where
A⊕ r := {x ∈ X : infa∈A |x− a| ≤ r}. Let us consider without loss of generality that η(x) ≥ 1

2 + ∆ (call this set X∆,+).
The case X∆,− := {x ∈ X∆ : η(x) ≤ 1

2 − ∆} follows by symmetry. Thus, we have η(x′) ≥ 1
2 + ∆ − Cατα for all

x′ ∈ Ax. By Hoeffding’s inequality, we have

P

(
1

|Ax|
∑
x′∈Ax

y(x′) <
1

2
+ ∆− Cατα − ε

)
≤ exp(−2ε2 · k0),
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where y(x) is the label corresponding to sample x. By Lemma 2, we have that there are at most D · nD such k0-nearest
neighbor sets across all k0 in X\C. That is, this is also a bound on the number of distinct Ax for x ∈ X . Therefore, if we set

ε =

√
D log n+ log(4D/δ)

(1 + 2γ) · k
,

then by union bound, we have that

P

(
inf

x∈X∆,+

1

|Ax|
∑
x′∈Ax

y(x′) <
1

2
+ ∆− Cατα − ε

)
≤ δ

4
.

and thus, with probability at least 1− δ/4, we have that 1
|Ax|

∑
x′∈Ax y(x′) ≥ 1

2 + ∆−Cατα− ε uniformly over x ∈ X∆,+.
Similarly, with probability at least 1− δ/4 we have that 1

|Ax|
∑
x′∈Ax y(x′) ≤ 1

2 −∆+Cατ
α+ ε uniformly over x ∈ X∆,−.

Hence, in order for k-nearest neighbor prediction to predict the Bayes-optimal label on X∆, it suffices that

k0

(
1

2
+ ∆− Cατα − ε

)
≥ k

2
.

Since k0 ≥ ( 1
2 + γ) · k, we have that the above holds if

∆ ≥ Cατα + ε+
1− 2γ

2(1 + 2γ)
.

We now choose the values of τ, γ, ε to upper bound each of the terms on the R.H.S. by ∆/3 so that the above holds.

We can bound the last term by ∆/3 by setting:

γ =
1

2
· 3− 2∆

3 + 2∆
.

Next, taking

k ≥ 3(3 + 2∆)

2∆2
(D log n+ log(4D/δ)) ,

we have that ε ≤ ∆/3. Now, by Lemma 1, we have that setting

τ =

(
2k

ω · vD · n · pX,0

)1/D

gives us that rk(x) ≤ τ for all x ∈ X with probability at least 1− δ/2. It thus suffices to take

k ≤ 1

2

(
∆

3 · Cα

)D/α
· ω · vD · pX,0 · n

so that Cατα ≤ ∆/3. Now in order for Sb( 1
2−γ)·kc(C) ≥ τ , it suffices to have S2(C) ≥ τ . This can be accomplished by

having the following hold:

k ≤ 1

2
· S2(C)D · ω · vD · pX,0 · n.

Thus, there exists positive constants Kl and Ku depending only on F such that if

Kl ·
1

∆2
· (log2(1/δ) · log n) ≤ k ≤ Ku ·min{S2(C)D,∆D/α} · n,

then the desired conditions hold.
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B.4. Proof of Theorem 2

Proof of Theorem 2. The proof begins in the same way as the proof of Theorem 1. As before, let τ, γ, ε > 0 be quantities
that will be determined later. Like before, we are reduced to showing

∆ ≥ Cατα + ε+
1− 2γ

2(1 + 2γ)
,

as long as the conditions for Lemma 1 and 2 hold and S2(x) ≥ τ and rk(x) ≤ τ where we choose

ε =

√
D log n+ log(4D/δ)

(1 + 2γ) · k
,

γ =
1

2
· 3− 2∆

3 + 2∆
,

τ =

(
2k

ω · vD · n · pX,0

)1/D

.

These conditions hold for some Ku and Kl depending on F . Then we are reduced to having

2

3
∆ ≥

√
D log n+ log(4D/δ)

(1 + 2γ) · k
+ Cα

(
2k

ω · vD · n · pX,0

)α/D
.

Since γ ≥ 0, it suffices to have

2

3
∆ ≥

√
D log n+ log(4D/δ)

k
+ Cα

(
2k

ω · vD · n · pX,0

)α/D
.

The desired form for ∆ clearly follows for some choice of K depending only on D,ω, pX,0, Cα, all of which depend only
on F .

Finally, we must ensure that b( 1
2 − γ) · kc ≥ 2 so that Sb( 1

2−γ)·kc(C) ≥ S2(x). Given the expression for γ, it is equivalent

to have b
(

2∆
3+2∆

)
· kc ≥ 2. It suffices to show that k ≥ 3(3+2∆)

2∆ . Given the form of ∆ in terms of n and k, we see that it
suffices to have that

k ≥ 9

2
·K ·

(√
log n+ log(1/δ)

k
+

(
k

n

)α/D)−1

+ 3,

which holds when k ≥ K0 · n2α/(2α+D) for some K0 depending only on F , as desired.

B.5. Proof of Theorem 3

Proof of Theorem 3. The first part follows from Theorem 2. For the second part, we have by Theorem 2 that if x ∈ X∆,
then the k-NN classifier and the Bayes-optimal classifier match with probability 1− δ uniformly. Thus, we have

RX −R∗ ≤ P(x 6∈ X∆)(EF [gk(x) 6= y|x 6∈ X∆]− EF [g∗(x) 6= y|x 6∈ X∆])

≤ Cβ ·∆β · (EF [gk(x) 6= y|x 6∈ X∆]− EF [g∗(x) 6= y|x 6∈ X∆])

≤ Cβ ·∆β · 2∆.

The result follows immediately from Theorem 2.

C. Hard Flip Permutations
For Fashion MNIST we hard flip by swapping the following classes: TSHIRT ↔ SHIRT, TROUSER ↔ DRESS,
PULLOVER↔ COAT, SANDAL↔ BAG, SNEAKER↔ ANKLEBOOT. For CIFAR10 we swap the pairs: TRUCK↔
AUTOMOBILE, BIRD↔ AIRPLANE, DEER↔ HORSE, CAT↔ DOG, FROG↔ SHIP. For CIFAR100, we hard flip
circularly (i.e. π(i) = (i+ 1) mod K) within each of the 20 superclasses. For all other datasets, we hard flip circularly.
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D. Area-Under-Curve Table
We provide the Area-Under-the-Curve tables for the case when clean auxiliary data is available. These were omitted from
the main text due to space constraints.

Flip
Dataset % Clean Forward Clean Distill GLC k-NN k-NN Classify Full

5 4.83 3.16 2.96 2.35 2.1 2.52 2.92
Letters 10 4.45 2.52 2.12 1.92 1.8 2.06 2.49

20 3.85 2.07 1.78 1.56 1.58 1.42 1.93
5 7.91 1.93 3.21 2.16 1.34 3.97 4.31

Phonemes 10 7.95 1.54 2.75 1.69 1.22 3.64 3.96
20 7.89 1.34 1.97 1.35 1.16 2.87 3.28
5 5.27 0.56 3.89 0.53 0.52 5.15 4.95

Wilt 10 5.63 0.44 3.14 0.43 0.41 4.86 4.84
20 5.18 0.34 2.67 0.35 0.34 4.23 4.32
5 5.13 4.33 5.56 4.39 3.64 5.11 4.88

Seeds 10 5.02 3.38 4.58 3.19 2.65 4.9 4.73
20 4.41 2.56 3.57 2.65 2.09 4.23 3.86
5 5.25 3.38 5.15 4.03 3.02 4.32 4.43

Iris 10 5.06 2.53 4.58 2.24 2.17 3.98 4.08
20 4.46 1.51 3.45 1.38 1.46 3.36 3.53
5 5.17 3.55 4.49 4.1 3.36 5.34 5.35

Parkinsons 10 5.43 3.38 4.25 3.44 3.32 5.27 5.13
20 5.19 3.02 3.94 3.05 2.95 4.99 5.06
5 3.6 0.69 1.91 0.5 0.44 3.46 3.49

MNIST 10 3.22 0.5 1.5 0.42 0.35 3.1 3.14
20 2.48 0.35 0.86 0.34 0.27 2.36 2.41
5 3.55 1.87 2.55 1.59 1.6 3.3 3.31

Fashion MNIST 10 3.14 1.71 2.13 1.53 1.54 2.92 2.99
20 2.38 1.56 1.54 1.46 1.46 2.17 2.27
5 7.14 7.2 7.12 5.52 5.35 6.71 7.12

CIFAR10 10 6.82 6.56 6.72 5.62 5.32 6.48 6.83
20 6.62 5.59 5.9 5.16 4.85 6.1 6.56
5 10.79 10.24 10.03 9.64 9.66 9.2 9.29

CIFAR100 10 10.81 9.89 9.68 9.46 9.63 9.1 9.25
20 10.8 9.44 9.13 8.97 9.17 8.92 9.09
5 5.6 3.65 4.09 2.17 2.05 5.23 5.52

SVHN 10 5.5 2.28 3.72 2.29 1.48 4.96 5.29
20 4.85 1.83 3.09 1.9 1.19 4.34 4.82

Table 2. AUC for Flip corruption type.
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Hard Flip
Dataset % Clean Forward Clean Distill GLC k-NN k-NN Classify Full

5 3.77 3.17 2.1 1.83 1.82 1.82 2.52
Letters 10 3.63 2.52 1.85 1.6 1.6 1.64 2.36

20 3.35 2.05 1.62 1.38 1.41 1.42 2.04
5 6.6 1.92 1.77 1.96 1.2 1.78 2.7

Phonemes 10 6.73 1.55 1.61 1.6 1.15 1.62 2.58
20 6.36 1.33 1.45 1.3 1.14 1.38 2.28
5 4.6 0.55 0.73 0.58 0.39 0.98 1.9

Wilt 10 4.78 0.43 0.66 0.43 0.31 0.78 1.81
20 5.63 0.34 0.61 0.36 0.3 0.57 1.49
5 2.94 4.06 3.63 3.91 2.99 2.84 3.01

Seeds 10 2.75 3.42 2.96 3.14 2.25 2.69 2.86
20 2.85 2.53 2.25 2.57 1.62 2.43 2.49
5 2.9 3.29 3.13 4.1 2.32 1.14 1.35

Iris 10 2.6 2.34 2.02 1.86 1.15 0.91 1.16
20 2.51 1.84 1.48 1.34 0.58 0.65 1
5 4.98 3.71 3.56 4.59 3.68 3.28 3.63

Parkinsons 10 5.24 3.26 3.1 3.37 3.11 3.12 3.82
20 5.1 2.98 3.01 2.98 2.96 2.91 3.47
5 2.03 0.69 0.78 0.22 0.29 0.65 2.14

MNIST 10 1.86 0.5 0.67 0.21 0.26 0.48 1.98
20 1.54 0.35 0.53 0.2 0.22 0.36 1.67
5 2.3 1.87 1.62 1.44 1.48 2.31 2.4

Fashion MNIST 10 2.14 1.71 1.52 1.41 1.46 2.19 2.22
20 1.92 1.56 1.43 1.38 1.41 2.04 1.97
5 5.08 7.13 5.85 3.76 4.27 4.33 4.96

CIFAR10 10 4.89 6.53 5.3 3.91 4.4 4.21 4.89
20 4.77 5.45 4.68 3.51 3.82 4.03 4.75
5 10.64 10.23 9.88 8.58 8.98 7.48 8.04

CIFAR100 10 10.65 9.89 9.38 8.56 9.19 7.44 7.99
20 10.66 9.41 8.65 8.07 8.81 7.33 7.9
5 3.04 4.17 2.16 0.89 1.35 2.32 3.04

SVHN 10 2.98 2.41 2.01 0.88 1.04 2.16 2.98
20 2.7 1.85 1.54 0.98 0.98 1.83 2.74

Table 3. AUC for Hard Flip corruption type.
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E. Additional Plots
We provide the plots that were omitted from the main text due to space constraints.

E.1. Plots for Experiments with Clean Auxiliary Data

Figure 6. Plots for UCI Phonemes dataset at 10, 20% clean data and all corruption types.

Figure 7. Plots for UCI Letters dataset at 5, 10, 20% clean data and all corruption types.
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Figure 8. Plots for UCI Wilt dataset at 5, 10, 20% clean data and all corruption types.
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Figure 9. Plots for UCI Parkinsons dataset at 5, 10, 20% clean data and all corruption types.
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Figure 10. Plots for UCI Seeds dataset at 5, 10, 20% clean data and all corruption types.
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Figure 11. Plots for UCI Iris dataset at 5, 10, 20% clean data and all corruption types.
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Figure 12. Plots for MNIST at 5, 10, 20% clean data and all corruption types.

Figure 13. Plots for Fashion MNIST at 10, 20% clean data and all corruption types.
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Figure 14. Plots for CIFAR10 at 10, 20% clean data and all corruption types.

Figure 15. Plots for CIFAR100 at 5, 10, 20% clean data and all corruption types.
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Figure 16. Plots for SVHN at 10, 20% clean data and all corruption types.
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E.2. Additional Plot For Robustness to k

Figure 17. Performance across different values of k under Flip corruption type.
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E.3. Additional Plots For Experiments Without Clean Auxiliary Data

Figure 18. Plots for UCI Letters for all corruption types.

Figure 19. Plots for UCI Iris for all corruption types.

Figure 20. Plots for UCI Parkinsons for all corruption types.

Figure 21. Plots for UCI Phonemes for all corruption types.
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Figure 22. Plots for UCI Seeds for all corruption types.

Figure 23. Plots for UCI Wilt for all corruption types.

Figure 24. Plots for SVHN for all corruption types.

Figure 25. Plots for CIFAR10 for all corruption types.

Figure 26. Plots for CIFAR100 for all corruption types.


