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Abstract

In this paper, we provide an explicit theoret-
ical connection between Sparse subspace clus-
tering (SSC) and spectral clustering (SC) from
the perspective of learning a data similarity ma-
trix. We show that spectral clustering with Gaus-
sian kernel can be viewed as sparse subspace
clustering with entropy-norm (SSC+E). Com-
pared to SSC, SSC+E can obtain an analyti-
cal, symmetrical, nonnegative and nonlinearly-
representational similarity matrix. Besides, SS-
C+E makes use of Gaussian kernel to compute
the sparse similarity matrix of objects, which can
avoid the complex computation of the sparse op-
timization program of SSC. Finally, we provide
the experimental analysis to compare the efficien-
cy and effectiveness of sparse subspace cluster-
ing and spectral clustering on ten benchmark da-
ta sets. The theoretical and experimental analy-
sis can well help users for the selection of high-
dimensional data clustering algorithms.

1. Introduction
Clustering is an important problem in statistical mul-
tivariate analysis, data mining and machine learning
(Han & Kamber, 2001). The goal of clustering is to group
a set of objects into clusters so that the objects in the same
cluster are highly similar but remarkably dissimilar with
objects in other clusters (Jain, 2008). To tackle this prob-
lem, various types of clustering algorithms have been de-
veloped in the literature (e.g., (Aggarwal & Reddy, 2014)
and references therein), including partitional, hierarchical,
density-based, grid-based clustering, etc.

Recently, increasing attention has been paid to clustering
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high-dimensional data which is ubiquitous in real-world
data mining applications, such as image processing, text
analysis, and bioinformatics et al. Sparsity is an accompa-
nying phenomenon of high-dimensional data, which leads
to “curse of dimensionality”, i.e., all pairs of points tend
to be almost equidistant from one another. It is a spe-
cial challenge for clustering high-dimensional data. In
order to solve this problem, lots of clustering algorithms
have been developed in the literature (e.g., (Parsons et al.,
2004; Elhamifar & Vidal, 2013) and references therein). A-
mong them, spectral clustering and sparse subspace clus-
tering are two state-of-the-art methods to effectively sepa-
rate the high-dimensional data in accordance with the un-
derlying subspace. Spectral clustering (Shi & Malik, 2000;
Ng et al., 2001) is a representative of graph-based cluster-
ing, which first converts a data set into a graph or a da-
ta similarity matrix and then uses a graph cutting method
to identify clusters. However, the clustering results of the
spectral clustering are sensitive to the converted graph. In
the classical spectral clustering algorithm, the graph is of-
ten constructed by kernel functions (Dhillon et al., 2007)
or k-nearest neighbors (KNN) (Zhu et al., 2014). Besides,
some scholars developed graph-learning methods to obtain
a high-quality graph from the data set. For example, Nie et
al. proposed a clustering algorithm with adaptive neighbors
(Nie et al., 2014), which learns the data similarity matrix by
assigning the adaptive and optimal neighbors for each data
point based on the local connectivity.

Sparse subspace clustering can also be seen as a special
spectral clustering. It makes use of self representation of
the data to construct the sparse similarity graph and apply
spectral clustering on such graph to obtain the final clus-
tering result. In (Elhamifar & Vidal, 2009), Elhamifar and
Vidal presented the SSC algorithm with L1-norm in detail.
Furthermore, several variants of SSC have been proposed
to find out the sparse representation of the data under dif-
ferent assumptions. Wang and Xu proposed noisy SSC to
handle noisy data that lie close to disjoint or overlapping
subspaces (Wang & Xu, 2016). Yang et al. proposed SSC
with L0-norm (Yang et al., 2016). Liu et al. proposed a low
rank representation of all data jointly by using the struc-
tured sparsity loss (Liu et al., 2013). Hu et al. investigat-
ed theoretically the grouping effect for self-representation
based approaches and presented a smooth representation
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model (H. Hu & Zhou, 2014). Although the existing SSC
methods already have good theoretical and practical contri-
butions, they still need to improve some deficiencies. For
example, since their optimization program needs many it-
erations, their the computational cost is very expensive,
which is more than O(n3) even though the fast solver is
used, where n is the number of objects on a data set. Be-
sides, they can not guarantee the symmetry and nonnega-
tivity of the obtained sparse similarity matrix which is re-
quired when implementing spectral clustering.To enhance
the efficiency of SSC, several scalable sparse subspace clus-
tering algorithms have been proposed in (Peng et al., 2013;
You et al., 2016; Matsushima & Brbic, 2019; Zhang et al.,
2019).

Although scholars have provided lots of studies on spec-
tral clustering and sparse subspace clustering, the relation
between them is rarely discussed. Therefore, in this pa-
per, we provide an explicit theoretical connection between
them. We propose a sparse subspace clustering model with
entropy-norm. In this optimization model, we transform
a sparse subspace clustering problem into an optimization
problem of learning a sparse similarity matrix and uses
the Entropy-norm as the regularization term. We derive
its optimal solution which is equivalent to Gaussian ker-
nel as the sparse representation. Thus, we can conclude
that spectral clustering with Gaussian kernel can be viewed
as sparse subspace clustering with entropy-norm (SSC+E).
Compared to SSC, SSC+E can avoid the complex computa-
tion of the sparse optimization program to obtain a sparse,
analytical, symmetrical and nonnegative solution. Finally,
we analyze the efficiency and effectiveness of sparse sub-
space clustering and spectral clustering on ten benchmark
data sets. The theoretical and experimental analysis pro-
vided by this paper can well guide users to the selection of
high-dimensional data clustering algorithms.

The outline of the rest of this paper is as follows. Section 2
introduces spectral clustering and sparse subspace cluster-
ing. Section 3 presents the theoretical connection between
them. Section 4 shows the experimental analysis of the
comparisons with them. Section 5 concludes the paper with
some remarks.

2. Spectral Clustering and Sparse Subspace
Clustering

Let X be a m × n data matrix with n objects and m at-
tributes, xi be the ith column of X which is used to repre-
sent the ith object. The optimization problem of the spec-
tral clustering is described as follows.

min
H

Θ = Tr(HTLH), s.t.,HTH = I, (1)

where L = D−W is a Laplacian matrix, W is a n×n data
similarity matrix, D is a diagonal matrix whose entries are

column (or row, since W is symmetric) sums of W , and H
is a n×k membership matrix. W is often defined based on
Gaussian kernel as follows.

wij = exp

(
−||xi − xj ||2

γ

)
, (2)

where γ is a kernel parameter. Besides, we know that Ŵ =
D−1/2WD−1/2 is the normalized similarity matrix of W .
In this case, the spectral clustering becomes the normalized
spectral clustering. The spectral clustering problem is the
standard trace minimization problem which is solved by the
matrix H which contains the first k eigenvectors of L as
rows.

The formulation of sparse subspace clustering is

min
Z

F = L(X,XZ) + λΩ(Z), (3)

where λ > 0 is the tradeoff factor, L(X,XZ) is a loss
function which wishes X = XZ and Ω(.) is a regulariza-
tion term which is used to sparsify Z. If X = XZ is re-
quired and Ω(Z) = ||Z||1, the optimization problem is the
classical SSC problem, i.e.,

min
Z

||Z||1, s.t.,X = XZ, diag(Z) = 0. (4)

In the noisy SSC algorithm which allows some tolerance
for inexact representation, the optimization problem is de-
fined as

min
Z

||X −XZ||2F + λ||Z||1, s.t., diag(Z) = 0. (5)

Besides, in order to make the data lie in a union of sub-
spaces, the constraint 1TZ = 1T is added to the sparse
subspace problem (Elhamifar & Vidal, 2013).

The optimization problem of SSC and noisy SSC can be
solved efficiently using convex programming tools. With
the reconstruction coefficient matrix Z, the sparse similari-
ty matrix of objects is computed by

W = |Z|+ |ZT |. (6)

Finally, with the converted similarity matrix W as the in-
put, the final clustering result is obtained by conducting s-
tandard spectral clustering.

According to the above introductions of spectral clustering
and sparse subspace clustering, we can observe that their
main difference is the definition of the similarity matrix
W . In the spectral clustering, W is directly computed by
Gaussian kernel function, where the computational com-
plexity is O(n2). In the sparse subspace clustering, W is
computed by learning a sparse similarity matrix, where the
computational complexity is more than O(n3). Compared
to spectral clustering, the computational cost of the sparse
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subspace clustering is very expensive, which is not suitable
for large-scale data. Furthermore, we can see from Eq.(6)
that the SSC algorithm explicitly converts the similarity ma-
trix Z into a symmetrical and nonnegative matrix W . This
conversation may bring some misleading information. For
example, we should think that the lower the value of zij is,
the more the dissimilarity between xi and xj is. However,
if zij is negative, the lower zij is, the higher |zij | is. In this
case, the similarity between xi and xj are thought to be
high. Thus, the similarity matrix W obtained based on the
conversation is not necessarily effective. Besides, Z or W
obtained by the SSC algorithm is not an analytical solution.
This indicates that we can not observe the explicit similari-
ty relation between objects from Z and W , which prevents
users from understanding the similarity. Compared to SSC,
the similarity matrix by using Gaussian kernel function in
the spectral clustering is analytical, symmetrical and non-
negative. Although we can see the difference between the
two algorithms, there is the lack of their theoretical connec-
tion. This is the motivation of our work.

3. Sparse Subspace Clustering with
Entropy-Norm

In this section, we analyze the theoretical connection be-
tween spectral clustering and sparse subspace clustering
from the perspective of learning the data similarity matrix
W . In the analysis, we first transform a sparse subspace
clustering problem into an optimization problem of learn-
ing a sparse similarity matrix. Furthermore, we uses the
Entropy-norm as the regularization term and derives its op-
timal solution to show the relation between spectral cluster-
ing and sparse subspace clustering. In the following, we
provide the theoretical analysis in detail.

According to the definition of W in the sparse subspace
clustering, we can conclude that if Z is a symmetrical and
nonnegative matrix, W is equivalent to Z. In this case, the
minimization problem F can be converted as follows

min
Z

F, s.t., Z = ZT , Z ≥ 0, diag(Z) = 0. (7)

According to Eq.(7), we can see that the sparse subspace
clustering problem can be viewed as learning a similarity
matrix. However, we know that the SSC algorithm can
not guarantee the optimization solution Z is symmetric and
nonnegative. Some scholars enforce the symmetric positive
semi-definite (PSD) constraint on Z to explicitly obtain a
symmetric PSD matrix, such as (Ni et al., 2010). However,
it is very complex for the optimization program of SSC to
obtain a symmetric and nonnegative Z.

Therefore, we select information entropy as the regulariza-
tion term of the objective function F and propose a sparse
subspace clustering with entropy-norm to solve this prob-

lem. The objective function F is re-defined as

F = L(X,XZ) + λ
n∑

i=1

n∑
j=1

zij ln zij . (8)

While using the Lagrangian multiplier to directly minimize
F , we can obtain

∂F

∂zij
=

∂L
∂zij

+ λ (ln zij + 1) = 0

⇒zij = β exp

(
−fij

λ

) (9)

where β = exp(−1) and fij = ∂L
∂zij

. According to Eq.(9),
we can see that Z is nonnegative, and if fij = fji for 1 ≤
i, j ≤ n, then Z is symmetric, i.e., zij = zji.

Furthermore, we add the constraint 1TZ = 1T to the opti-
mization problem. While using the Lagrangian multiplier
to minimize F with the constraint, we can obtain

min
Z

F = L(X,XZ) + λ
n∑

i=1

n∑
j=1

zij ln zij

+ α
n∑

i=1

 n∑
h̸=i

zih − 1


⇒ ∂F

∂zij
=

∂L
∂zij

+ λ (ln zij + 1) + α = 0

⇒ exp

(
−λ+ α

λ

)
=

1

2

n∑
h̸=i

exp

(
−fih

λ

)

⇒zij =
exp

(
− fij

λ

)
∑n

h ̸=i exp
(
− fih

λ

) .

(10)

However, in Eq.(10), if fij = fji, we can not guarantee
zij is equal to zji. In order to improve this problem, we
relax the constraint 1TZ = 1T and replace it with a new
constraint

∑n
h ̸=i zih +

∑n
h ̸=j zhj = 2, for 1 ≤ i ̸= j ≤

n. It notes that the sum of any row and column of Z is 2.
While using the Lagrangian multiplier to minimize F with
the new constraint, we can obtain

min
Z

F = L(X,XZ) + λ

n∑
i=1

n∑
j=1

zij ln zij

+ α
n∑

i=1

n∑
j=1

 n∑
h ̸=i

zih +
n∑

h̸=j

zhj − 2


⇒zij =

2 exp
(
− fij

λ

)
n∑

h ̸=i

exp
(
− fih

λ

)
+

n∑
h̸=j

exp
(
− fhj

λ

) .
(11)
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We can conclude that if fij = fji in Eq.(11), zij = zji for
1 ≤ i, j ≤ n. We can also observe that the representations
of zij in Eqs.(9) and (11) are similar to Gaussian kernel.

According to Eqs.(9) and (11), we can see that we need to
compute fij to obtain zij for 1 ≤ i, j ≤ n. In order to
easily compute fij , we wish it is irrelevant with zij . There-
fore, we first assume L(X,XZ) is a linear function with
zij , i.e.,

L(X,XZ) =
n∑

i=1

n∑
j=1

aijzij + bij . (12)

In this case, fij = ∂L
∂zij

= aij . We can see that this assump-
tion reduces the computational complexity of zij and fij .
According to Eq.(12), we also see that it is a key issue for
computing fij to define aij .

Based on the self-representation constraint X = XZ, we
have

xi =

n∑
j=1,j ̸=i

zijxj , (13)

for 1 ≤ i ≤ n. According to Eq.(13), we can see that zij
should reflect the similarity between xi and xj . The more
similar they are, the higher the value of zij should be. In
order to make zij reflect the similarity, we assume aij is
a distance metric between xi and xj , i.e., aij = d(xi, xj).
According to the symmetry of the distance metric, we have
aij = aji. Next, we discuss how to use the constraint X =
XZ to define d(xi, xj).

For object xi (1 ≤ i ≤ n), we have the following relation

xi =
∑

j=1,i̸=j

zijxj ⇒ xT
i xi =

∑
j=1,i̸=j

zijx
T
i xj . (14)

Based on the constraint 1TZ = 1T , we have n∑
j=1

zji +

n∑
j=1

zij

xT
i xi = 2

∑
j=1,i ̸=j

zijx
T
i xj . (15)

Therefore, the constraint xi−
∑n

j=1,i̸=j zijxj = 0 is trans-
formed into n∑

j=1

zji +

n∑
j=1

zij

xT
i xi − 2

∑
j=1,i̸=j

zijx
T
i xj = 0.

(16)
Furthermore, we have

n∑
i=1

 n∑
j=1

zji +
n∑

j=1

zij

xT
i xi − 2

∑
j=1,i̸=j

zijx
T
i xj


=

n∑
i=1

n∑
j=1

||xi − xj ||2zij .

(17)

Based on Eq.(17), the objective function F of the optimiza-
tion problem can be rewritten as

Q =
n∑

i=1

n∑
j=1

||xi − xj ||2zij + λ
n∑

i=1

n∑
j=1

zij ln zij . (18)

In this case, d(xi, xj) is defined as Euclidean distance. Ac-
cording to Eq.(9), if d(xi, xj) is Euclidean distance, Z in
Eq.(9) is equivalent to Gaussian kernel, i.e.,

zij = exp

(
−||xi − xj ||2

λ

)
. (19)

According to Eq.(19), the spectral clustering with Gaussian
kernel can be viewed as a sparse subspace clustering with
entropy-norm.

Furthermore, if we use d(xi, xj), instead of fij in Eq.(10),
Z is defined by

zij =
2 exp

(
− ||xi−xj ||2

λ

)
n∑

h̸=i

exp
(
− ||xi−xh||2

λ

)
+

n∑
h̸=j

exp
(
− ||xj−xh||2

λ

) .
(20)

In this case, we have the following relation

Z ≤ D−1/2WD−1/2. (21)

Eq.(21) illustrates that Z is a lower bound of the normal-
ized Gaussian kernel and used to approximate it. Accord-
ing to the above analysis, we can see the relation between
Gaussian kernel and sparse subspace clustering.

Furthermore, we discuss the selection of the regularization
term on the objective function Q. If we define the regu-
larization term Ω(Z) = ||Z||2, the objective function Q
becomes

n∑
i=1

n∑
j=1

||xi − xj ||2zij + λ||Z||2. (22)

In this case, the optimization problem Q is equivalent
to that of Clustering with Adaptive Neighbors (Nie et al.,
2014) which is proposed by Nie et al.. The authors im-
proved the spectral clustering and used the optimization
model to learn the data similarity matrix. The optimal solu-
tion Z is computed by

zij = −||xi − xj ||2

2λ
+ ηi. (23)

where ηi =
∑n

h=1 ||xi−xh||2
2nλ + 1

n . Since each ηi may be d-
ifferent, the non-negativeness of Z depends on ηi. Besides,
we can see that the similarity zij reflects a linear relation
with the distance ||xi − xh||2 in the case that L2 norm is
used as the regularizer.
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If the regularization term Ω(Z) = ||Z||1, the optimal solu-
tion Z is computed by

zij =

{
1,j = argmin

t=1
||xi − xt||2,

0,otherwise.
(24)

In this case, the solution is trivial, since only its nearest
object can be used to represent it. According to Eqs.(23)
and (24), we can see the advantages of the entropy-norm,
compared to other norms.

According to the above theoretical analysis, we can get the
following conclusions:

• From the perspective of learning a data similarity
matrix, the spectral clustering with Gaussian kernel
can be viewed as a sparse subspace clustering with
entropy-norm (SSC+E);

• Compared to SSC, SSC+E can directly compute the
data similarity matrix by Gaussian kernel, which can
reduce the computational cost.

• SSC+E can be used to obtain an analytical, nonneg-
ative, symmetrical, and nonlinear representation of a
data set.

However, it is worth noting that the proposed theoretical
connection is not to prove and show that spectral clustering
with Gaussian kernel is better than sparse subspace cluster-
ing, but to help users to understand the solution of the SSC
algorithm by Gaussian kernel. Besides, although the the-
oretical connection is built based on some constraints, we
still think that it is very valuable to provide a guidance for
uses to select and understand different algorithms.

4. Experiment Analysis
In the experiments, we analyze and compare the effective-
ness and efficiency of the sparse subspace clustering algo-
rithm (SSC) (Elhamifar & Vidal, 2009), the spectral clus-
tering with adaptive neighbors (CAN) (Nie et al., 2014),
and the spectral clustering with Gaussian kernel (SSC+E)
(Ng et al., 2001). Differently from SSC and CAN which
compute a data similarity matrix by the optimization meth-
ods, SSC+E uses Gaussian kernel to compute the similarity
matrix. The codes of these algorithms have been publicly
shared by their authors.

The experiments are conducted on an Intel i9-7940X
CPU@3.10HZ and 128G RAM. We carry out these algo-
rithms on 10 benchmark data sets (Bache & Lichman; Cai)
which are described in Table 1. It is worth noting that we
did not select large-scale data sets to test these algorithms
in our experiments. The main reason is that the computa-
tional cost of the SSC algorithm is very high. For exam-
ple, it needs more than 60 hours on the data set Landsat

Satellite which includes 6,435 points. Furthermore, we em-
ploy two widely-used external indices (Aggarwal & Reddy,
2014), i.e., the normalized mutual information (NMI) and
the adjusted rand index (ARI), to measure the similarity be-
tween a clustering result and the true partition on a data set.
If the clustering result is close to the true partition, then its
NMI and ARI values are high.

Table 1. Description of data sets: Number of Data Objects (n),
Number of Dimensions (m), Number of Clusters (k).

Data set n m k
Iris 150 4 3

Wine 178 13 3
Heart Statlog 569 30 2

Yale 165 1024 15
ORL 400 1024 40

Banknote 1,372 4 2
COIL 1,440 1024 20
Isolet 1,560 617 26

Handwritten Digits 5,620 63 10
Landsat Satellite 6,435 36 6

Before the comparisons, we need to set some parameters
for these algorithms as follows. We set the number of clus-
ters k is equal to its true number of classes on each of the
given data sets. For the parameter λ, we test each algo-
rithm with different λ values which are selected in the set
{λ1 = δ

50 , λ2 = δ
40 , λ3 = δ

30 , λ4 = δ
20 , λ5 = δ

10 , λ6 = δ},
where δ is the covariance of a data set. Besides, the SSC
and CAN algorithms need to set the number of the nearest
neighbors K. We set K to 10 in our experiments.

We first compare the effectiveness of the three algorithms
with different λ values on these benchmark data sets. The
comparison results are shown in Fig.1. According to the
figures, we see that the performance of the SSC+E algorith-
m is superior to SSC and CAN on these tested data sets,
except Heart statlog.

Furthermore, we compare the efficiency of the three algo-
rithms with different λ values on these benchmark data sets.
The comparison results are shown in Table 2. According to
the table, we see that the SSC algorithm need very expen-
sive computational costs, compared to SSC+E and CAN.
We also can observe that the clustering speed of the SS-
C+E algorithm is slightly faster than CAN on these tested
data sets. The main reason is that the SSC+E algorithm
does not need learn the sparse representation but directly
compute it by Gaussian kernel. According to the above
analysis, we can conclude that the SSC+E algorithm can
better balance the effectiveness and efficiency of obtaining
a high-quality clustering results, compared to the SSC and
CAN algorithms.
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Figure 1. Clustering accuracies of different algorithms.
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Table 2. Clustering speeds (seconds) of different algorithms
Data set Algorithm λ1 λ2 λ3 λ4 λ5 λ6

Iris
SSC 31.727 32.176 31.724 31.445 30.836 32.336
CAN 0.078 0.069 0.046 0.078 0.047 0.047

SSC+E 0.031 0.047 0.032 0.032 0.016 0.016

Wine
SSC 37.975 37.897 38.007 40.100 39.366 39.132
CAN 0.094 0.078 0.125 0.094 0.078 0.094

SSC+E 0.031 0.016 0.015 0.015 0.015 0.015

Heart Statlog
SSC 59.689 58.674 59.923 60.267 59.767 61.689
CAN 0.156 0.188 0.188 0.156 0.156 0.125

SSC+E 0.015 0.015 0.016 0.016 0.015 0.015

Yale
SSC 204.686 203.968 204.749 202.843 204.328 201.687
CAN 0.125 0.219 0.125 0.125 0.156 0.140

SSC+E 0.047 0.047 0.031 0.062 0.047 0.047

ORL
SSC 2245.200 2258.955 2258.564 2237.354 2266.546 2265.959
CAN 0.625 0.671 0.671 0.687 0.641 0.703

SSC+E 0.218 0.203 0.204 0.188 0.219 0.203

Banknote
SSC 387.909 390.128 392.174 386.707 391.206 393.673
CAN 5.343 4.702 4.624 4.452 4.264 4.749

SSC+E 0.187 0.187 0.218 0.187 0.188 0.187

COIL
SSC 70766.438 70601.720 69062.015 67736.005 63388.664 54684.533
CAN 4.434 6.264 5.905 3.546 3.359 2.952

SSC+E 0.534 0.547 0.563 0.563 0.578 0.594

Isolet
SSC 56079.227 55180.180 54446.940 64799.694 72375.284 76137.546
CAN 7.545 4.187 7.467 7.108 7.436 4.405

SSC+E 0.657 0.703 0.657 0.734 0.766 0.734

Handwritten Digits
SSC 13990.391 13495.460 13250.659 12951.093 12793.112 14684.592
CAN 216.325 154.261 148.512 148.73 140.842 196.876

SSC+E 3.702 3.577 3.702 3.625 3.843 3.999

Landsat Satellite
SSC 14387.362 14463.630 14510.508 15019.646 15736.703 14685.439
CAN 265.11 317.706 204.983 318.269 315.863 316.786

SSC+E 4.467 4.374 4.452 4.562 4.452 4.545

It should be noted that due to the fact that the number of the
tested data sets is very limited, we can not conclude that the
effectiveness of the data similarity matrices by Gaussian k-
ernel are better than SSC and CAN. However, our exper-
imental results only illustrate that spectral clustering with
Gaussian kernel is still a good choice to rapidly obtain a
good sparse representation for a data set, although it had
been easily proposed.

5. Conclusions
In this paper, we have analyzed the theoretical connec-
tion between spectral clustering and sparse subspace clus-
tering from the perspective of learning the data similarity
matrix. We have shown that the spectral clustering with
Gaussian kernel can be viewed as a sparse subspace clus-
tering with entropy-norm, which is called SSC+E. We have
analyzed the advantages and disadvantages of SSC+E and
SSC. Compared to SSC, the SSC+E algorithm can rapidly

obtain a sparse, analytical, symmetrical, nonnegative and
nonlinearly-representational similarity matrix. Finally, we
have compared the efficiency and effectiveness of sparse
subspace clustering and spectral clustering on ten bench-
mark data sets. The experimental results show that the spec-
tral clustering with Gaussian kernel is still a good choice to
rapidly obtain a high-quality clustering results.
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