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This supplementary material contains the proofs of the
technical results found in the main text.

Proof of proposition 2.1. This proof follows the reasoning
in (Rigollet & Weed, 2018). Let µ = 1

I

∑
i δXi be the

empirical measure of the sample (Xi). We first remark that
the log-likelihood of Xi defined by

`ν(Xi) := log

∫
κ(Xi, y)dν(y)

verifies
`ν(Xi) = logEY∼ν [κ(Xi, Y )] .

With the Legendre transform of the relative entropy, we
obtain

`ν(Xi) = sup
γi

EY∼γi [log κ(Xi, Y )]− KL(γi, ν)

with the minimum being over every probability measures γi
on Y . The MLE maximizes

1

I

∑
i

`ν(Xi) = EX∼µ [`ν(X)]

over ν ∈M, it can be written as

max
π∈Π(µ,ν)

E(X,Y )∼π [log κ(X,Y )]−EX∼µ [KL(π(X, ·), ν)] ,

with π(X, ·) being the conditional probability of π, defined
by π(Xi, ·) := γi. We have

EX∼µ [KL(π(X, ·), ν)]

=
1

I

∑
i

EY∼ν
[
log

dπ(Xi, ·)
dν

(Y )

]
,

=
1

I

∑
i

EY∼ν
[
log

dπ

dµ⊗ ν
(Xi, Y )

]
− log I,

= KL(π, µ⊗ ν)− log I.

Thus the MLE minimizes

min
π∈Π(µ,ν)

E [c(X,Y )] + εKL(π, µ⊗ ν),

which is the regularized optimal transport cost between µ
and ν.

Proof of the formulas for the gaussian case. The estimator
ν̂ is a gaussian variable that minimizes

OTε(µ, ν) + ηKL(ν, β) =

|mν −mµ|2 +
η

2
|mν |2

+ σ2
µ +

(
1 +

η

2

)
σ2
ν

−
√

4σ2
µσ

2
ν +

ε2

4
− η

2
log σ2

ν

+
ε

2
log

(
ε+

√
4σ2

µσ
2
ν +

ε2

4

)
. (1)

We write ν̂ ∼ N (mν̂ , σν̂) The expression of mν̂ comes
from the minimization of the first two terms of (1), where
we take the derivative:

2(mν̂ −mµ)− ηmν̂ = 0,

so
mν̂ =

mµ

1 + η
2

.

For σν̂ , we note

φ(x) =

√
4σ2

µx
2 +

ε2

4
,

Noting that we consider the values of x = σν to be between
1 and σµ, then for ε→ 0 we have the Taylor expansions

φ(x) = 2σµx+O(ε2),

φ′(x) = 2σµ +O(ε2).

The derivative of (1) over σν gives

2
(

1 +
η

2

)
σ2
ν̂ − φ(σν̂)− η

σν̂
+

εφ′(σν̂)

2(ε+ φ(σν̂))
= 0.

We multiply by σν̂ and use the Taylor expansions for ε→ 0,

2
(

1 +
η

2

)
σ2
ν̂ − 2σµσν̂ − η +

ε

2
= O(ε2).

This second order polynomial in σν̂ has two real roots, of
the form

x =
σµ ±

√
σ2
µ +

(
1 + η

2

)
(2η − ε)

2 + η
,
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one of which is negative, so σν̂ is converging to the positive
one when ε→ 0. Thus we have

σν̂ =
σµ +

√
σ2
µ +

(
1 + η

2

)
(2η − ε)

2 + η
+O(ε2).

The second expression comes from a Taylor expansion of
the square root for η → 0.

Proof of Proposition 3.3. 1. The functionH∗β,M is a Leg-
endre transform, so it is convex, and thus−F is convex
as a sum of convex functions. Moreover F is bounded
from above:

F (a, b) ≤C1E[ai + bj ]− C2E
[
e

ai+bj
ε

]
,

≤C3,

where C3 does not depend on a or b. Thus the set of
solutions is nonempty. F is invariant by the transla-
tion (a, b) 7→ (a1 + c, . . . , aI + c, b1 − c, . . . , bJ − c),
so each solution generates an affine set of solutions
spanned by the vector ((1, . . . , 1), (−1, . . . ,−1)). We
can conclude using the strong convexity on the slice
{
∑
i µiai =

∑
j βjbj}, which implies that there exists

only one solution on this slice.

2. The solution (a∗, b∗) solves the following system{
∇aF (a∗, b∗) = 0,

∇bF (a∗, b∗) = 0.

With notations Ai = ea
∗
i /ε, Bj = eb

∗
j /ε, Γi,j =

e−Ci,j/ε, the two equations can be written as{
∀ 1 ≤ i ≤ I, 1−Ai

∑
j βjBjΓi,j = 0,

∀ 1 ≤ j ≤ J, fj −Bj
∑
i µiAiΓi,j = 0.

(2)

Thus {
∀ 1 ≤ i ≤ I, Ai = 1∑

j βjBjΓi,j
,

∀ 1 ≤ j ≤ J, Bj =
fj∑

i µiAiΓi,j
.

(3)

We also remark that by multiplying the second term of
(2) by βj and summing over j we get∑

i,j

µiAiβjBjΓi,j = 1. (4)

By multiplying the equations in (3) we have for all i, j:

AiBjΓi,j =
fjΓi,j∑

k,l µkAkΓk,jβlBlΓi,l

thus using (4):

fj min
k,l

Γi,jΓk,l
Γk,jΓi,l

≤ AiBjΓi,j ≤ fj max
k,l

Γi,jΓk,l
Γk,jΓi,l

,

finally

e−m−2RC/ε ≤ AiBjΓi,j ≤ em+2RC/ε.

3. We now prove that −F is strongly convex. We com-
pute

−∇2
aF = E

[
1

ε
Di,jEi,i

]
,

−∇2
bF = −∇bν∗ + E

[
1

ε
Di,jEj,j

]
,

−∇a∇bF = E
[

1

ε
Di,jEi,j

]
.

We remark that

ν∗ = softmax(−bj/η + log βj),

so
−∇bν∗ =

1

η
S

with

S := (∇softmax)(−bj/η + log βj),

S = (νi(δi,j − νj))i,j .
We remark that S < 0 since

uTSu =
∑
i

νiu
2
i −

(∑
i

νiui

)2

= Eν [U2]− (Eν [U ])
2 ≥ 0

by Jensen, with U = uj with probability νj . It implies
−∇bν∗j < 0. So

−∇2
a,bF <

1

ε
M,

with

M := E
[
Di,j

(
Ei,i Ei,j
Ej,i Ej,j

)]
.

As we want to prove strong convexity on the slice∑
i µiai =

∑
j βjbj , we compute

(a, b)TM(a, b) = E
[
Di,j(ai + bj)

2
]

≥ e−B/εE
[
(ai + bj)

2
]
.

We add that

E
[
(ai + bj)

2
]

=∑
i

µia
2
i +

∑
j

βjb
2
j + 2(

∑
i

µiai)(
∑
j

βjbj)

thus

E
[
(ai + bj)

2
]

=
∑
i

(µi + µ2
i )a

2
i +

∑
j

(βj + β2
j )b2j

since we are on the slice. So M < λId and finally −F
is λ−strongly convex with

λ =
mini,j{µi, βj}

ε
e−B/ε.
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4. We compute the gradients of F :

∂F

∂ai
(a, b) = µi − µi

J∑
j=1

βjDi,j(a, b),

∂F

∂bj
(a, b) = ν∗j (−b/η)− βj

I∑
i=1

µiDi,j(a, b),

with Di,j(a, b) = e
ai+bj−Ci,j

ε . If we take i and j to be
independent random variables following the laws (µi)
and (βj) respectively, we have the desired expression
for the gradients.

Proof of Lemma 1. With the initial conditions, we guaran-
tee that 0 ≤ G0

a ≤ 1 and 0 ≤ G0
b ≤ fj ≤ em. At each

timestep t, we have

‖∇F ti,j‖2 ≤ max{2e2m, 2(Dt
i,j)

2},

with i, j being two independent random variables following
the laws µ and β respectively. If Dt

i,j ≥ em, then Ga +
Gb ≤ 0 and

Dt+1
i,j = Dt

i,je
Ga+Gb

ε ≤ Dt
i,j .

Moreover if Dt
i,j ≤ em then ‖∇F ti,j‖2 ≤ 1 + e2m thus

E
[
max{2e2m, (Dt

i,j)
2}
]

is a decreasing function of t. Thus
we have the bound

E
[
‖∇aFi,j(at, bt)‖2 + ‖∇bFi,j(at, bt)‖2

]
≤ 2e2m.

Proof of Lemma 2. We first assume that (a, b) and (a∗, b∗)
are on the slice {

∑
i µiai =

∑
j βjbj}. By strong convexity

of −F on this slice we have

|b− b∗|2 ≤ 2(F (a∗, b∗)− F (a, b))

λ
. (5)

We remark that the function g : b 7→ KL(ν(b∗), ν(b))
verifies

∂ig(b) = −
∑
j

νj(b
∗)∂i log νj(b),

= −
∑
j

νj(b
∗)νj(b)

−1∂iνj(b),

=
1

η

∑
j

νj(b
∗)νj(b)

−1νi(δij − νj(b)),

=
νi(b

∗)− νi(b)
η − ε

,

thus

∂i∂jg(b) = −∂jνi(b)
η − ε

,

= −νj(b)(δij − νi(b))
η − ε

,

so the Hessian matrix ∇2g(b) of g is a sum of a diagonal
matrix with the negative values−νj(b)/(η− ε) and the one-
rank matrix (νj(b)νi(b)/(η − ε))i,j . Hence the eigenvalues
of ∇2g(b) are contained in [−1/(η − ε), 1/(η − ε)], thus
Taylor’s inequality gives

g(b) ≤ g(b∗) + |b− b∗|‖∇g(b∗)‖+
|b− b∗|2

2(η − ε)
,

≤ |b− b
∗|2

2(η − ε)
,

because g(b∗) = 0 and∇g(b∗) = 0. We complete the proof
with (5). For the case where the vector (a, b) or (a∗, b∗) is
not on the slice {

∑
i µiai =

∑
j βjbj}, we note that adding

a constant vector c = (c1, . . . , c1) to b does not change the
value of ν(b), and that F is invariant by translation in the
direction (−c,+c). With c1 =

(∑
i µiai −

∑
j βjbj

)
/2,

the vectors (a′, b′) = (a + c, b − c) are on the slice and
verify ν(b′) = ν(b) and F (a′, b′) = F (a, b). Hence the
result for (a′, b′) implies the result for (a, b).
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