Stochastic Optimization for Regularized Wasserstein Estimators

Marin Ballu Quentin Berthet Francis Bach

This supplementary material contains the proofs of the technical results found in the main text.

Proof of proposition 2.1. This proof follows the reasoning in (Rigollet \& Weed, 2018). Let $\mu=\frac{1}{I} \sum_{i} \delta_{X_{i}}$ be the empirical measure of the sample $\left(X_{i}\right)$. We first remark that the log-likelihood of X_{i} defined by

$$
\ell_{\nu}\left(X_{i}\right):=\log \int \kappa\left(X_{i}, y\right) d \nu(y)
$$

verifies

$$
\ell_{\nu}\left(X_{i}\right)=\log \mathbb{E}_{Y \sim \nu}\left[\kappa\left(X_{i}, Y\right)\right]
$$

With the Legendre transform of the relative entropy, we obtain

$$
\ell_{\nu}\left(X_{i}\right)=\sup _{\gamma_{i}} \mathbb{E}_{Y \sim \gamma_{i}}\left[\log \kappa\left(X_{i}, Y\right)\right]-\operatorname{KL}\left(\gamma_{i}, \nu\right)
$$

with the minimum being over every probability measures γ_{i} on \mathcal{Y}. The MLE maximizes

$$
\frac{1}{I} \sum_{i} \ell_{\nu}\left(X_{i}\right)=\mathbb{E}_{X \sim \mu}\left[\ell_{\nu}(X)\right]
$$

over $\nu \in \mathcal{M}$, it can be written as
$\max _{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{(X, Y) \sim \pi}[\log \kappa(X, Y)]-\mathbb{E}_{X \sim \mu}[K L(\pi(X, \cdot), \nu)]$,
with $\pi(X, \cdot)$ being the conditional probability of π, defined by $\pi\left(X_{i}, \cdot\right):=\gamma_{i}$. We have

$$
\begin{aligned}
& \mathbb{E}_{X \sim \mu}[K L(\pi(X, \cdot), \nu)] \\
& =\frac{1}{I} \sum_{i} \mathbb{E}_{Y \sim \nu}\left[\log \frac{d \pi\left(X_{i}, \cdot\right)}{d \nu}(Y)\right], \\
& =\frac{1}{I} \sum_{i} \mathbb{E}_{Y \sim \nu}\left[\log \frac{d \pi}{d \mu \otimes \nu}\left(X_{i}, Y\right)\right]-\log I, \\
& =K L(\pi, \mu \otimes \nu)-\log I
\end{aligned}
$$

Thus the MLE minimizes

$$
\min _{\pi \in \Pi(\mu, \nu)} \mathbb{E}[c(X, Y)]+\varepsilon \operatorname{KL}(\pi, \mu \otimes \nu),
$$

which is the regularized optimal transport cost between μ and ν.

Proof of the formulas for the gaussian case. The estimator $\hat{\nu}$ is a gaussian variable that minimizes

$$
\begin{align*}
& \mathrm{OT}_{\varepsilon}(\mu, \nu)+\eta \mathrm{KL}(\nu, \beta)= \\
& \left|m_{\nu}-m_{\mu}\right|^{2}+\frac{\eta}{2}\left|m_{\nu}\right|^{2} \\
& +\sigma_{\mu}^{2}+\left(1+\frac{\eta}{2}\right) \sigma_{\nu}^{2} \\
& -\sqrt{4 \sigma_{\mu}^{2} \sigma_{\nu}^{2}+\frac{\varepsilon^{2}}{4}-\frac{\eta}{2} \log \sigma_{\nu}^{2}} \\
& +\frac{\varepsilon}{2} \log \left(\varepsilon+\sqrt{4 \sigma_{\mu}^{2} \sigma_{\nu}^{2}+\frac{\varepsilon^{2}}{4}}\right) . \tag{1}
\end{align*}
$$

We write $\hat{\nu} \sim \mathcal{N}\left(m_{\hat{\nu}}, \sigma_{\hat{\nu}}\right)$ The expression of $m_{\hat{\nu}}$ comes from the minimization of the first two terms of (1), where we take the derivative:

$$
2\left(m_{\hat{\nu}}-m_{\mu}\right)-\eta m_{\hat{\nu}}=0
$$

so

$$
m_{\hat{\nu}}=\frac{m_{\mu}}{1+\frac{\eta}{2}}
$$

For $\sigma_{\hat{\nu}}$, we note

$$
\phi(x)=\sqrt{4 \sigma_{\mu}^{2} x^{2}+\frac{\varepsilon^{2}}{4}}
$$

Noting that we consider the values of $x=\sigma_{\nu}$ to be between 1 and σ_{μ}, then for $\varepsilon \rightarrow 0$ we have the Taylor expansions

$$
\begin{aligned}
\phi(x) & =2 \sigma_{\mu} x+O\left(\varepsilon^{2}\right) \\
\phi^{\prime}(x) & =2 \sigma_{\mu}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

The derivative of (1) over σ_{ν} gives

$$
2\left(1+\frac{\eta}{2}\right) \sigma_{\hat{\nu}}^{2}-\phi\left(\sigma_{\hat{\nu}}\right)-\frac{\eta}{\sigma_{\hat{\nu}}}+\frac{\varepsilon \phi^{\prime}\left(\sigma_{\hat{\nu}}\right)}{2\left(\varepsilon+\phi\left(\sigma_{\hat{\nu}}\right)\right)}=0
$$

We multiply by $\sigma_{\hat{\nu}}$ and use the Taylor expansions for $\varepsilon \rightarrow 0$,

$$
2\left(1+\frac{\eta}{2}\right) \sigma_{\hat{\nu}}^{2}-2 \sigma_{\mu} \sigma_{\hat{\nu}}-\eta+\frac{\varepsilon}{2}=O\left(\varepsilon^{2}\right)
$$

This second order polynomial in $\sigma_{\hat{\nu}}$ has two real roots, of the form

$$
x=\frac{\sigma_{\mu} \pm \sqrt{\sigma_{\mu}^{2}+\left(1+\frac{\eta}{2}\right)(2 \eta-\varepsilon)}}{2+\eta}
$$

one of which is negative, so $\sigma_{\hat{\nu}}$ is converging to the positive one when $\varepsilon \rightarrow 0$. Thus we have

$$
\sigma_{\hat{\nu}}=\frac{\sigma_{\mu}+\sqrt{\sigma_{\mu}^{2}+\left(1+\frac{\eta}{2}\right)(2 \eta-\varepsilon)}}{2+\eta}+O\left(\varepsilon^{2}\right)
$$

The second expression comes from a Taylor expansion of the square root for $\eta \rightarrow 0$.

Proof of Proposition 3.3. 1. The function $H_{\beta, \mathcal{M}}^{*}$ is a Legendre transform, so it is convex, and thus $-F$ is convex as a sum of convex functions. Moreover F is bounded from above:

$$
\begin{aligned}
F(a, b) & \leq C_{1} \mathbb{E}\left[a_{i}+b_{j}\right]-C_{2} \mathbb{E}\left[e^{\frac{a_{i}+b_{j}}{\varepsilon}}\right] \\
& \leq C_{3}
\end{aligned}
$$

where C_{3} does not depend on a or b. Thus the set of solutions is nonempty. F is invariant by the translation $(a, b) \mapsto\left(a_{1}+c, \ldots, a_{I}+c, b_{1}-c, \ldots, b_{J}-c\right)$, so each solution generates an affine set of solutions spanned by the vector $((1, \ldots, 1),(-1, \ldots,-1))$. We can conclude using the strong convexity on the slice $\left\{\sum_{i} \mu_{i} a_{i}=\sum_{j} \beta_{j} b_{j}\right\}$, which implies that there exists only one solution on this slice.
2. The solution $\left(a^{*}, b^{*}\right)$ solves the following system

$$
\left\{\begin{array}{l}
\nabla_{a} F\left(a^{*}, b^{*}\right)=0 \\
\nabla_{b} F\left(a^{*}, b^{*}\right)=0
\end{array}\right.
$$

With notations $A_{i}=e^{a_{i}^{*} / \varepsilon}, B_{j}=e^{b_{j}^{*} / \varepsilon}, \Gamma_{i, j}=$ $e^{-C_{i, j} / \varepsilon}$, the two equations can be written as

$$
\left\{\begin{array}{l}
\forall 1 \leq i \leq I, \quad 1-A_{i} \sum_{j} \beta_{j} B_{j} \Gamma_{i, j}=0 \tag{2}\\
\forall 1 \leq j \leq J, \quad f_{j}-B_{j} \sum_{i} \mu_{i} A_{i} \Gamma_{i, j}=0
\end{array}\right.
$$

Thus

$$
\begin{cases}\forall 1 \leq i \leq I, & A_{i}=\frac{1}{\sum_{j} \beta_{j} B_{j} \Gamma_{i, j}} \tag{3}\\ \forall 1 \leq j \leq J, & B_{j}=\frac{f_{j}}{\sum_{i} \mu_{i} A_{i} \Gamma_{i, j}}\end{cases}
$$

We also remark that by multiplying the second term of (2) by β_{j} and summing over j we get

$$
\begin{equation*}
\sum_{i, j} \mu_{i} A_{i} \beta_{j} B_{j} \Gamma_{i, j}=1 \tag{4}
\end{equation*}
$$

By multiplying the equations in (3) we have for all i, j :

$$
A_{i} B_{j} \Gamma_{i, j}=\frac{f_{j} \Gamma_{i, j}}{\sum_{k, l} \mu_{k} A_{k} \Gamma_{k, j} \beta_{l} B_{l} \Gamma_{i, l}}
$$

thus using (4):

$$
f_{j} \min _{k, l} \frac{\Gamma_{i, j} \Gamma_{k, l}}{\Gamma_{k, j} \Gamma_{i, l}} \leq A_{i} B_{j} \Gamma_{i, j} \leq f_{j} \max _{k, l} \frac{\Gamma_{i, j} \Gamma_{k, l}}{\Gamma_{k, j} \Gamma_{i, l}}
$$

finally

$$
e^{-m-2 R_{C} / \varepsilon} \leq A_{i} B_{j} \Gamma_{i, j} \leq e^{m+2 R_{C} / \varepsilon}
$$

3. We now prove that $-F$ is strongly convex. We compute

$$
\begin{gathered}
-\nabla_{a}^{2} F=\mathbb{E}\left[\frac{1}{\varepsilon} D_{i, j} E_{i, i}\right] \\
-\nabla_{b}^{2} F=-\nabla_{b} \nu^{*}+\mathbb{E}\left[\frac{1}{\varepsilon} D_{i, j} E_{j, j}\right] \\
-\nabla_{a} \nabla_{b} F=\mathbb{E}\left[\frac{1}{\varepsilon} D_{i, j} E_{i, j}\right] .
\end{gathered}
$$

We remark that

$$
\nu^{*}=\operatorname{softmax}\left(-b_{j} / \eta+\log \beta_{j}\right)
$$

so

$$
-\nabla_{b} \nu^{*}=\frac{1}{\eta} S
$$

with

$$
\begin{gathered}
S:=(\nabla \operatorname{softmax})\left(-b_{j} / \eta+\log \beta_{j}\right) \\
S=\left(\nu_{i}\left(\delta_{i, j}-\nu_{j}\right)\right)_{i, j}
\end{gathered}
$$

We remark that $S \succcurlyeq 0$ since

$$
\begin{aligned}
u^{T} S u & =\sum_{i} \nu_{i} u_{i}^{2}-\left(\sum_{i} \nu_{i} u_{i}\right)^{2} \\
& =\mathbb{E}_{\nu}\left[U^{2}\right]-\left(\mathbb{E}_{\nu}[U]\right)^{2} \geq 0
\end{aligned}
$$

by Jensen, with $U=u_{j}$ with probability ν_{j}. It implies $-\nabla_{b} \nu_{j}^{*} \succcurlyeq 0$. So

$$
-\nabla_{a, b}^{2} F \succcurlyeq \frac{1}{\varepsilon} M
$$

with

$$
M:=\mathbb{E}\left[D_{i, j}\left(\begin{array}{ll}
E_{i, i} & E_{i, j} \\
E_{j, i} & E_{j, j}
\end{array}\right)\right]
$$

As we want to prove strong convexity on the slice $\sum_{i} \mu_{i} a_{i}=\sum_{j} \beta_{j} b_{j}$, we compute

$$
\begin{aligned}
(a, b)^{T} M(a, b) & =\mathbb{E}\left[D_{i, j}\left(a_{i}+b_{j}\right)^{2}\right] \\
& \geq e^{-B / \varepsilon} \mathbb{E}\left[\left(a_{i}+b_{j}\right)^{2}\right]
\end{aligned}
$$

We add that

$$
\begin{aligned}
& \mathbb{E}\left[\left(a_{i}+b_{j}\right)^{2}\right]= \\
& \sum_{i} \mu_{i} a_{i}^{2}+\sum_{j} \beta_{j} b_{j}^{2}+2\left(\sum_{i} \mu_{i} a_{i}\right)\left(\sum_{j} \beta_{j} b_{j}\right)
\end{aligned}
$$

thus

$$
\mathbb{E}\left[\left(a_{i}+b_{j}\right)^{2}\right]=\sum_{i}\left(\mu_{i}+\mu_{i}^{2}\right) a_{i}^{2}+\sum_{j}\left(\beta_{j}+\beta_{j}^{2}\right) b_{j}^{2}
$$

since we are on the slice. So $M \succcurlyeq \lambda \mathrm{Id}$ and finally $-F$ is λ-strongly convex with

$$
\lambda=\frac{\min _{i, j}\left\{\mu_{i}, \beta_{j}\right\}}{\varepsilon} e^{-B / \varepsilon}
$$

4. We compute the gradients of F :

$$
\begin{aligned}
\frac{\partial F}{\partial a_{i}}(a, b) & =\mu_{i}-\mu_{i} \sum_{j=1}^{J} \beta_{j} D_{i, j}(a, b) \\
\frac{\partial F}{\partial b_{j}}(a, b) & =\nu_{j}^{*}(-b / \eta)-\beta_{j} \sum_{i=1}^{I} \mu_{i} D_{i, j}(a, b),
\end{aligned}
$$

with $D_{i, j}(a, b)=e^{\frac{a_{i}+b_{j}-C_{i, j}}{\varepsilon}}$. If we take i and j to be independent random variables following the laws $\left(\mu_{i}\right)$ and $\left(\beta_{j}\right)$ respectively, we have the desired expression for the gradients.

Proof of Lemma 1. With the initial conditions, we guarantee that $0 \leq G_{a}^{0} \leq 1$ and $0 \leq G_{b}^{0} \leq f_{j} \leq e^{m}$. At each timestep t, we have

$$
\left\|\nabla F_{i, j}^{t}\right\|^{2} \leq \max \left\{2 e^{2 m}, 2\left(D_{i, j}^{t}\right)^{2}\right\}
$$

with i, j being two independent random variables following the laws μ and β respectively. If $D_{i, j}^{t} \geq e^{m}$, then $G_{a}+$ $G_{b} \leq 0$ and

$$
D_{i, j}^{t+1}=D_{i, j}^{t} e^{\frac{G_{a}+G_{b}}{\varepsilon}} \leq D_{i, j}^{t}
$$

Moreover if $D_{i, j}^{t} \leq e^{m}$ then $\left\|\nabla F_{i, j}^{t}\right\|^{2} \leq 1+e^{2 m}$ thus $\mathbb{E}\left[\max \left\{2 e^{2 m},\left(D_{i, j}^{t}\right)^{2}\right\}\right]$ is a decreasing function of t. Thus we have the bound

$$
\mathbb{E}\left[\left\|\nabla_{a} F_{i, j}\left(a^{t}, b^{t}\right)\right\|^{2}+\left\|\nabla_{b} F_{i, j}\left(a^{t}, b^{t}\right)\right\|^{2}\right] \leq 2 e^{2 m}
$$

Proof of Lemma 2. We first assume that (a, b) and $\left(a^{*}, b^{*}\right)$ are on the slice $\left\{\sum_{i} \mu_{i} a_{i}=\sum_{j} \beta_{j} b_{j}\right\}$. By strong convexity of $-F$ on this slice we have

$$
\begin{equation*}
\left|b-b^{*}\right|^{2} \leq \frac{2\left(F\left(a^{*}, b^{*}\right)-F(a, b)\right)}{\lambda} \tag{5}
\end{equation*}
$$

We remark that the function $g: b \mapsto K L\left(\nu\left(b^{*}\right), \nu(b)\right)$ verifies

$$
\begin{aligned}
\partial_{i} g(b) & =-\sum_{j} \nu_{j}\left(b^{*}\right) \partial_{i} \log \nu_{j}(b) \\
& =-\sum_{j} \nu_{j}\left(b^{*}\right) \nu_{j}(b)^{-1} \partial_{i} \nu_{j}(b) \\
& =\frac{1}{\eta} \sum_{j} \nu_{j}\left(b^{*}\right) \nu_{j}(b)^{-1} \nu_{i}\left(\delta_{i j}-\nu_{j}(b)\right) \\
& =\frac{\nu_{i}\left(b^{*}\right)-\nu_{i}(b)}{\eta-\varepsilon}
\end{aligned}
$$

thus

$$
\begin{aligned}
\partial_{i} \partial_{j} g(b) & =-\frac{\partial_{j} \nu_{i}(b)}{\eta-\varepsilon} \\
& =-\frac{\nu_{j}(b)\left(\delta_{i j}-\nu_{i}(b)\right)}{\eta-\varepsilon}
\end{aligned}
$$

so the Hessian matrix $\nabla^{2} g(b)$ of g is a sum of a diagonal matrix with the negative values $-\nu_{j}(b) /(\eta-\varepsilon)$ and the onerank matrix $\left(\nu_{j}(b) \nu_{i}(b) /(\eta-\varepsilon)\right)_{i, j}$. Hence the eigenvalues of $\nabla^{2} g(b)$ are contained in $[-1 /(\eta-\varepsilon), 1 /(\eta-\varepsilon)]$, thus Taylor's inequality gives

$$
\begin{aligned}
g(b) & \leq g\left(b^{*}\right)+\left|b-b^{*}\right|\left\|\nabla g\left(b^{*}\right)\right\|+\frac{\left|b-b^{*}\right|^{2}}{2(\eta-\varepsilon)} \\
& \leq \frac{\left|b-b^{*}\right|^{2}}{2(\eta-\varepsilon)}
\end{aligned}
$$

because $g\left(b^{*}\right)=0$ and $\nabla g\left(b^{*}\right)=0$. We complete the proof with (5). For the case where the vector (a, b) or $\left(a^{*}, b^{*}\right)$ is not on the slice $\left\{\sum_{i} \mu_{i} a_{i}=\sum_{j} \beta_{j} b_{j}\right\}$, we note that adding a constant vector $c=\left(c_{1}, \ldots, c_{1}\right)$ to b does not change the value of $\nu(b)$, and that F is invariant by translation in the direction $(-c,+c)$. With $c_{1}=\left(\sum_{i} \mu_{i} a_{i}-\sum_{j} \beta_{j} b_{j}\right) / 2$, the vectors $\left(a^{\prime}, b^{\prime}\right)=(a+c, b-c)$ are on the slice and verify $\nu\left(b^{\prime}\right)=\nu(b)$ and $F\left(a^{\prime}, b^{\prime}\right)=F(a, b)$. Hence the result for $\left(a^{\prime}, b^{\prime}\right)$ implies the result for (a, b).

References

Rigollet, P. and Weed, J. Entropic optimal transport is maximum-likelihood deconvolution. Comptes Rendus Mathematique, 356(11-12):1228-1235, 2018.

