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Abstract
We propose to pre-train a unified language model
for both autoencoding and partially autoregressive
language modeling tasks using a novel training
procedure, referred to as a pseudo-masked lan-
guage model (PMLM). Given an input text with
masked tokens, we rely on conventional masks
to learn inter-relations between corrupted tokens
and context via autoencoding, and pseudo masks
to learn intra-relations between masked spans
via partially autoregressive modeling. With well-
designed position embeddings and self-attention
masks, the context encodings are reused to avoid
redundant computation. Moreover, conventional
masks used for autoencoding provide global mask-
ing information, so that all the position embed-
dings are accessible in partially autoregressive
language modeling. In addition, the two tasks
pre-train a unified language model as a bidi-
rectional encoder and a sequence-to-sequence
decoder, respectively. Our experiments show
that the unified language models pre-trained
using PMLM achieve new state-of-the-art re-
sults on a wide range of language understand-
ing and generation tasks across several widely
used benchmarks. The code and pre-trained mod-
els are available at https://github.com/
microsoft/unilm.

1. Introduction
Language model (LM) pre-training on large-scale text cor-
pora has substantially advanced the state of the art across a
variety of natural language processing tasks (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2018; Dong et al.,
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Figure 1. Given input x1 · · ·x6, the tokens x2, x4, x5 are masked
by the special tokens [M] and [P]. For each example, we jointly
train two types of LMs, namely, autoencoding (AE), and partially
autoregressive (PAR) masked LMs.

2019; Liu et al., 2019; Yang et al., 2019; Lewis et al., 2019;
Lan et al., 2019; Raffel et al., 2019; Chi et al., 2020). After
LM pre-training, the obtained model can be fine-tuned to
various downstream tasks.

Two types of language model pre-training objectives are
commonly employed to learn contextualized text represen-
tations by predicting words conditioned on their context.
The first strand of work relies on autoencoding LMs (Devlin
et al., 2018; Liu et al., 2019). For example, the masked
language modeling task used by BERT (Devlin et al., 2018)
randomly masks some tokens in a text sequence, and then
independently recovers the masked tokens by condition-
ing on the encoding vectors obtained by a bidirectional
Transformer (Vaswani et al., 2017). The second type of pre-
training uses autoregressive modeling (Radford et al., 2018;
Lewis et al., 2019; Yang et al., 2019; Raffel et al., 2019).

https://github.com/microsoft/unilm
https://github.com/microsoft/unilm
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Rather than independently predicting words, the probability
of a word is dependent on previous predictions.

Inspired by (Dong et al., 2019), we propose a pseudo-
masked language model (PMLM) to jointly pre-train a bidi-
rectional LM for language understanding (e.g., text classifi-
cation, and question answering) and a sequence-to-sequence
LM for language generation (e.g., document summarization,
and response generation). Specifically, the bidirectional
model is pre-trained by autoencoding (AE) LMs, and the
sequence-to-sequence model is pre-trained by partially au-
toregressive (PAR) LMs. As shown in Figure 1, the model
parameters are shared in two language modeling tasks, and
the encoding results of the given context tokens are reused.
We use the conventional mask [MASK] (or [M] for short)
to represent the corrupted tokens for AE pre-training. In
order to handle factorization steps of PAR language mod-
eling, we append pseudo masks [Pseudo] (or [P] for
short) to the input sequence without discarding the origi-
nal tokens. With well-designed self-attention masks and
position embeddings, the PMLM can perform the two lan-
guage modeling tasks in one forward pass without redundant
computation of context.

The proposed method has the following advantages. First,
the PMLM pre-trains different LMs in a unified manner,
which learns both inter-relations between masked tokens
and given context (via AE), and intra-relations between
masked spans (via PAR). Moreover, conventional masks
used for AE provide global masking information, so that
every factorization step of PAR pre-training can access all
the position embeddings as in fine-tuning. Second, the uni-
fied pre-training framework learns models for both natural
language understanding and generation (Dong et al., 2019).
Specifically, the AE-based modeling learns a bidirectional
Transformer encoder, and the PAR objective pre-trains a
sequence-to-sequence decoder. Third, the proposed model
is computationally efficient in that the AE and PAR model-
ing can be computed in one forward pass. Because the en-
coding results of given context are reused for two language
modeling tasks, redundant computation is avoided. Fourth,
PAR language modeling learns token-to-token, token-to-
span, and span-to-span relations during pre-training. By
taking spans (i.e., continuous tokens) into consideration,
PMLM is encouraged to learn long-distance dependencies
by preventing local shortcuts.

2. Preliminary
2.1. Backbone Network: Transformer

First, we pack the embeddings of input tokens {xi}|x|i=1

together into H0 = [x1, · · · ,x|x|] ∈ R|x|×dh . Then L
stacked Transformer (Vaswani et al., 2017) blocks compute

the encoding vectors via:

Hl = Transformerl(H
l−1), l ∈ [1, L] (1)

where L is the number of layers. The hidden vectors of
the final layer HL = [hL

1 , · · · ,hL
|x|] are the contextualized

representations of input. Within each Transformer block,
multiple self-attention heads aggregate the output vectors
of the previous layer, followed by a fully-connected feed-
forward network.

Self-Attention Masks The output Al of a self-attention
head in the l-th Transformer layer is:

Q = Hl−1WQ
l , K = Hl−1WK

l

Mij =

{
0, allow to attend
−∞, prevent from attending

(2)

Al = softmax(
QKᵀ

√
dk

+M)(Hl−1WV
l )

where parameters WQ
l ,W

K
l ,W

V
l ∈ Rdh×dk project the

previous layer’s output Hl−1 to queries, keys, and values,
respectively. It is worth noting that the mask matrix M ∈
R|x|×|x| controls whether two tokens can attend each other.

2.2. Input Representation

The inputs of language model pre-training are sequences
sampled from large-scale text corpora. We follow the format
used by BERT (Devlin et al., 2018). We add a special
start-of-sequence token [SOS] at the beginning to get the
representation of the whole input. Besides, each text is
split into two segments appended with a special end-of-
sequence token [EOS]. The final input format is “[SOS]
S1 [EOS] S2 [EOS]”, where the segments S1 and S2 are
contiguous texts. The vector of an input token is represented
by the summation of its token embedding, absolute position
embedding, and segment embedding. All the embedding
vectors are obtained by lookup in learnable matrices.

3. Unified Language Model Pre-Training
We propose a pseudo-masked language model (PMLM)
to jointly pre-train both autoencoding (Section 3.1.1) and
partially autoregressive (Section 3.1.2) LMs. As shown in
Figure 2, PMLM reuses the encoding results of the same ex-
ample to jointly pre-train both modeling methods by pseudo
masking (Section 3.2).

3.1. Pre-Training Tasks

We use the masked language modeling (MLM; Devlin et al.
2018) task to pre-train a Transformer network, which is also
known as the cloze task (Taylor, 1953). For a given input,
we randomly substitute tokens with a special token [MASK]
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Figure 2. Overview of PMLM pre-training. The model parameters are shared across the LM objectives. The bidirectional LM is trained
by autoencoding MLM, and the sequence-to-sequence (Seq-to-Seq) LM is trained by partially autoregressive MLM. We use different
self-attention masks to control the access to context for each word token.

Factorization Order Probability of Masked Tokens

Autoencoding (e.g., BERT, and our work) − p(x2|x\{2,4,5})p(x3|x\{2,4,5})p(x5|x\{2,4,5})

Autoregressive (e.g., GPT, and XLNet) 2→ 4→ 5
5→ 4→ 2

p(x2|x\{2,4,5})p(x4|x\{4,5})p(x5|x\{5})
p(x5|x\{2,4,5})p(x4|x\{2,4})p(x2|x\{2})

Partially Autoregressive (our work) 2→ 4, 5
4, 5→ 2

p(x2|x\{2,4,5})p(x4|x\{4,5})p(x5|x\{4,5})
p(x4|x\{2,4,5})p(x5|x\{2,4,5})p(x2|x\{2})

Table 1. Given input x = x1 · · ·x6, the tokens x2, x4, x5 are masked. We compare how to compute p(x2, x4, x5|x\{2,4,5}) with different
factorization orders for autoencoding, autoregressive, and partially autoregressive masked language models.

(or [M] for short). The training objective is to recover them
by conditioning on the output hidden states of Transformer.

As shown in Table 1, we categorize MLMs into autoencod-
ing, autoregressive, and partially autoregressive. Their main
difference is how the probability of masked tokens is fac-
torized. In our work, we leverage autoencoding (AE) and
partially autoregressive (PAR) modeling for pre-training,
which is formally described as follows. It is worth noting
that the masked positions are the same for both AE and PAR
modeling, but the probability factorization is different.

3.1.1. AUTOENCODING MODELING

The autoencoding method independently predicts the to-
kens by conditioning on context, which is the same as
BERT. Given original input x = x1 · · ·x|x| and the po-
sitions of masks M = {m1, · · · ,m|M |}, the probability of

masked tokens is computed by
∏

m∈M p(xm|x\M ), where
xM = {xm}m∈M , \ is set minus, x\M means all input
tokens except the ones that are in M . The autoencoding
pre-training loss is defined as:

LAE = −
∑
x∈D

log
∏

m∈M
p(xm|x\M ) (3)

where D is the training corpus.

3.1.2. PARTIALLY AUTOREGRESSIVE MODELING

We propose to pre-train partially autoregressive MLMs. In
each factorization step, the model can predict one or multi-
ple tokens. LetM =

〈
M1, · · · ,M|M |

〉
denote factorization

order, where Mi = {mi
1, · · · ,mi

|Mi|} is the set of mask po-
sitions in the i-th factorization step. If all factorization steps
only contain one masked token (i.e., |Mi| = 1), the mod-
eling becomes autoregressive. In our work, we enable a
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Algorithm 1 Blockwise Masking
Input x = x1 · · ·x|x|: Input sequence
Output M =

〈
M1, · · · ,M|M|

〉
: Masked positions

M ← 〈〉
repeat
p← rand int(1, |x|) . Randomly sample an index
l← rand int(2, 6) if rand() < 0.4 else 1
if xp, · · · , xp+l−1 has not been masked then
M .append({m}p+l−1

m=p )
until

∑|M|
j=1 |Mj | ≥ 0.15|x| . Masking ratio is 15%

return M

factorization step to be a span, which makes the LM par-
tially autoregressive. The probability of masked tokens is
decomposed as:

p(xM |x\M ) =

|M |∏
i=1

p(xMi
|x\M≥i

) (4)

=

|M |∏
i=1

∏
m∈Mi

p(xm|x\M≥i) (5)

where xMi = {xm}m∈Mi , and M≥i =
⋃

j≥iMj . The
partially autoregressive pre-training loss is defined as:

LPAR = −
∑
x∈D

EM log p
(
xM |x\M

)
(6)

where EM is the expectation over the factorization distri-
bution. During pre-training, we randomly sample one fac-
torization order M for each input text (Yang et al., 2019),
rather than computing the exact expectation.

Blockwise Masking and Factorization Given input se-
quence x, the masking policy uniformly produces a factor-
ization order M =

〈
M1, · · · ,M|M |

〉
for Equation (6). For

the i-th factorization step, the masked position set Mi con-
tains one token, or a continuous text span (Joshi et al., 2019).
As described in Algorithm 1, we randomly sample 15% of
the original tokens as masked tokens. Among them, 40% of
the time we mask a n-gram block, and 60% of the time we
mask a token. We then construct a factorization step with the
set of masked positions. We repeat the above process until
enough masked tokens are sampled. The randomly sam-
pled factorization orders are similar to permutation-based
language modeling used by XLNet (Yang et al., 2019). How-
ever, XLNet only emits predictions one by one (i.e., autore-
gressive). In contrast, we can generate one token, or a text
span at each factorization step (i.e., partially autoregressive).

3.2. Pseudo-Masked LM

Equation (5) indicates that factorization steps of partially au-
toregressive language modeling are conditioned on different
context. So if masked language models (Devlin et al., 2018)
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Figure 3. Comparisons between autoencoding (AE), autoregres-
sive (AR), and partially autoregressive (PAR) masked language
models. In the example x = x1 · · ·x6, the tokens x2, x4, x5 are
masked by the special tokens [M] and [P].

are directly used, we have to construct a new cloze instance
(as shown in Figure 3) for each factorization step, which
renders partially autoregressive pre-training infeasible. We
propose a new training procedure, named as pseudo-masked
language model (PMLM), to overcome the issue.

For the last example in Table 1, Figure 4 shows how
the PMLM conducts partially autoregressive predictions.
Rather than replacing the tokens with masks as in vanilla
MLMs, we keep all original input tokens unchanged and ap-
pend pseudo masks to the input sequence. For each masked
token, we insert a [Pseudo] (or [P] for short) token
with the same position embedding of the corresponding
token. The top-layer hidden states of [P] tokens are fed
into a softmax classifier for MLM predictions. Notice that
positional information in Transformer is encoded by (abso-
lute) position embeddings, while the model components are
order-agnostic. In other words, no matter where a token ap-
pears in the input sequence, the position of the token is only
determined by its position embedding. So we can assign the
same position embedding to two tokens, and Transformer
treats both of the tokens as if they have the same position.

Vanilla MLMs allow all tokens to attend to each other, while
PMLM controls accessible context for each token accord-
ing to the factorization order. As shown in Figure 4, the
example’s factorization order is 4, 5 → 2. When we com-
pute p(x4, x5|x\{2,4,5}), only x1, x3, x6 and the pseudo
masks of x4, x5 are conditioned on. The original tokens
of x4, x5 are masked to avoid information leakage, while
their pseudo tokens [P] are used as placeholders for MLM
predictions. In the second step, the tokens x1, x3, x4, x5, x6
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Figure 4. Example of the factorization steps 4, 5→ 2. The masks
[P] and [M] are assigned with the same position embeddings as
the corresponding tokens. Different context is used to compute the
hidden states for the pseudo masks of x4, x5 and x2.

and the pseudo mask of x2 are conditioned on to compute
p(x2|x\{2}). Unlike in the first step, the original tokens of
x4, x5 are used for the prediction.

Self-attention masks (as described in Section 2.1) are used to
control what context a token can attend to when computing
its contextualized representation. Figure 5 shows the self-
attention mask matrix used for the example of Figure 4.
The self-attention mask matrix is designed in order to avoid
two kinds of information leakage. The first type is explicit
leakage, i.e., the masked token can be directly accessed by
its pseudo token, which renders the LM prediction trivial. So
pseudo tokens [P] are not allowed to attend to the content
of “themselves” in a PMLM. The second type is implicit
leakage, which implicitly leaks prediction information by
multi-step attention propagation. For example, as shown
in Figure 5, if the context token x6 has access to x4, there
is a connected attention flow “x4’s pseudo mask token→
x6 → x4”, which eases the prediction of x4. As a result,
for each token, we mask the attentions to the tokens that are
predicted in the future factorization steps.

The most relevant work for the proposed model is XL-
Net (Yang et al., 2019). In comparison, XLNet uses an
AR-based objective. Our model jointly pre-trains two types
of LMs, where AE and PAR modelings are complementary
for pre-training. The two objectives pre-train a unified LM
as a bidirectional encoder and a sequence-to-sequence de-
coder, respectively. Moreover, XLNet does not explicitly
uses the mask [M] in two-stream attention. In contrast, we
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Figure 5. Self-attention mask of the factorization steps 4, 5→ 2.
Both conventional masks [M] and given context (x1, x3, x6) can
be attended by all the tokens.

use the original token, the conventional mask [M], and the
pseudo mask [P] to represent a word’s different roles in
terms of context modeling.

3.3. Unified Pre-Training

As shown in Figure 2, we jointly pre-train bidirectional and
sequence-to-sequence LMs with the same input text and
masked positions. Both the special tokens [M] and [P]
emit predicted tokens. The training objective is to maximize
the likelihood of correct tokens, which considers two types
of LMs (i.e., autoencoding, and partially autoregressive) in
one example. The loss is computed via:

L = LAE + LPAR (7)

where LAE,LPAR are defined as in Equation (3), and Equa-
tion (6) respectively. The proposed method sufficiently
reuses the computed hidden states for both LM objectives.
In addition, experiments in Section 4.6 show that the pre-
training tasks are complementary to each other, as they
capture both inter- (i.e., between given context and masked
tokens) and intra- (i.e., among masked tokens) relations of
the input tokens.

There have been two main strands of research for unified
pre-training. The first one jointly pretrains a shared Trans-
former network for language understanding and generation,
such as UniLM (Dong et al., 2019). In comparison, UniLM
uses multiple training instances (i.e., forward passes) for
different types of LMs. In contrast, the proposed model is
more sample efficient in that bidirectional LM (via AE) and
sequence-to-sequence LM (via PAR) can be computed in
one forward pass. Because the encoding results of given
context are reused for two LM tasks, redundant computa-
tion is avoided. Moreover, the sequence-to-sequence LM
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Model SQuAD v1.1 SQuAD v2.0
F1 EM F1 EM

BERT 88.5 80.8 76.3 73.7
XLNet - - - 80.2
RoBERTa 91.5 84.6 83.7 80.5
UNILMv2 93.1 87.1 86.1 83.3
– rel pos 93.0 86.7 85.2 82.4

Table 2. Results of BASE-size pre-trained models
on the SQuAD v1.1/v2.0 development sets. We
report F1 and exact match (EM) scores. Results of
UNILMv2 are averaged over five runs. “– rel pos”
is the model without relative position bias.

Model MNLI SST-2 MRPC RTE QNLI QQP STS CoLA
Acc Acc Acc Acc Acc Acc PCC MCC

BERT 84.5 93.2 87.3 68.6 91.7 91.3 89.5 58.9
XLNet 86.8 94.7 88.2 74.0 91.7 91.4 89.5 60.2
RoBERTa 87.6 94.8 90.2 78.7 92.8 91.9 91.2 63.6
UNILMv2 88.5 95.1 91.8 81.3 93.5 91.7 91.0 65.2
– rel pos 88.4 95.0 91.2 78.1 93.4 91.8 91.2 63.8

Table 3. Results of BASE-size models on the development set of the GLUE benchmark.
We report Matthews correlation coefficient (MCC) for CoLA, Pearson correlation
coefficient (PCC) for STS, and accuracy (Acc) for the rest. Metrics of UNILMv2 are
averaged over five runs for the tasks. “– rel pos” is the ablation model without relative
position bias.

in our work learns to recover the masked tokens, while
UniLM’s sequence-to-sequence LM predicts the next sen-
tences. Another strand of unified pre-training is using the
encoder-decoder architecture as backbone networks, such
as BART (Lewis et al., 2019). First, BART contains two
parts of Transformers, i.e., encoder, and decoder. We in-
stead share one network for different LMs, which has less
parameters and more unified modeling. Second, BART uses
an autoregressive-based objective, while we jointly pre-train
AE- and PAR-based objectives. Third, to use BART for
classification, the input text is fed into the encoder and de-
coder twice. In contrast, we directly use the model as a
bidirectional encoder, which is easier to use in practice.

3.4. Fine-tuning on NLU and NLG Tasks

Following (Dong et al., 2019), we fine-tune the pre-trained
PMLM (with additional task-specific layers if necessary)
to both natural language understanding (NLU) and natural
language generation (NLG) tasks.

For NLU tasks, we fine-tune PMLM as a bidirectional
Transformer encoder, like BERT. Let us take text classifica-
tion as an example. Similar to the text format described in
Section 2.2, the input is “[SOS] TEXT [EOS]”. We use
the encoding vector of [SOS] as the representation of input,
and then feed it to a randomly initialized softmax classifier
(i.e., the task-specific output layer). We maximize the likeli-
hood of the labeled training data by updating the parameters
of the pre-trained PMLM and the added softmax classifier.

For sequence-to-sequence generation tasks, the example is
concatenated as “[SOS] SRC [EOS] TGT [EOS]”, where
SRC and TGT are source and target sequences, respectively.
The fine-tuning procedure is similar to pre-training as in
Section 3.2. For a source sequence, the dependencies be-
tween the tokens are bidirectional, i.e., all the source tokens
can attend to each other. In contrast, the target sequence
is produced in an autoregressive manner. So we append
a pseudo mask [P] for each target token, and use self-

attention masks to perform autoregressive generation. The
fine-tuning objective is to maximize the likelihood of the
target sequence given source input. It is worth noting that
[EOS] is used to mark the end of the target sequence. Once
[EOS] is emitted, we terminate the generation process of
the target sequence. During decoding, we use beam search
to generate the target tokens one by one (Dong et al., 2019).

4. Experimental Results
We employ pseudo-masked language model to conduct uni-
fied language model pre-training (UNILMv2), and fine-
tuned the model on both natural language understanding
(i.e., question answering, the GLUE benchmark) and gen-
eration (i.e., abstractive summarization, and question gen-
eration) tasks. Details about hyperparameters and datasets
can be found in the supplementary material. In addition, we
conducted ablation studies to compare different choices of
pre-training objectives.

4.1. Pre-Training Setup

We followed the same model size as BERTBASE (Devlin
et al., 2018) for comparison purposes. Specifically, we used
a 12-layer Transformer with 12 attention heads. The hidden
size was 768, and inner hidden size of feed-forward network
was 3072. The weight matrix of the softmax classifier was
tied with the token embedding matrix. We also add relative
position bias (Raffel et al., 2019) to attention scores. The
whole model contains about 110M parameters.

For fair comparisons, we report the major results using sim-
ilar pre-training datasets and optimization hyperparameters
as in RoBERTaBASE (Liu et al., 2019). We use 160GB text
corpora from English Wikipedia1, BookCorpus (Zhu et al.,
2015), OpenWebText2, CC-News (Liu et al., 2019), and
Stories (Trinh & Le, 2018). We follow the preprocess and

1Wikipedia version: enwiki-20181101.
2skylion007.github.io/OpenWebTextCorpus

skylion007.github.io/OpenWebTextCorpus
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Model #Param CNN/DailyMail XSum
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

Without pre-training
LEAD-3 40.42 17.62 36.67 16.30 1.60 11.95
PTRNET (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72

Fine-tuning LARGE-size pre-trained models
UNILMLARGE (Dong et al., 2019) 340M 43.08 20.43 40.34 - - -
BARTLARGE (Lewis et al., 2019) 400M 44.16 21.28 40.90 45.14 22.27 37.25
T511B (Raffel et al., 2019) 11B 43.52 21.55 40.69 - - -

Fine-tuning BASE-size pre-trained models
MASSBASE (Song et al., 2019) 123M 42.12 19.50 39.01 39.75 17.24 31.95
BERTSUMABS (Liu & Lapata, 2019) 156M 41.72 19.39 38.76 38.76 16.33 31.15
T5BASE (Raffel et al., 2019) 220M 42.05 20.34 39.40 - - -
UNILMv2BASE 110M 43.16 20.42 40.14 44.00 21.11 36.08
– relative position bias 110M 43.45 20.71 40.49 43.69 20.71 35.73

Table 4. Abstractive summarization results on CNN/DailyMail and XSum. The evaluation metric is the F1 version of ROUGE (RG)
scores. We also present the number of parameters (#Param) for the methods using pre-trained models.

#Param BLEU-4 MTR RG-L

(Du & Cardie, 2018) 15.16 19.12 -
(Zhang & Bansal, 2019) 18.37 22.65 46.68
UNILMLARGE 340M 22.78 25.49 51.57
UNILMv2BASE 110M 24.43 26.34 51.97
– rel pos 110M 24.70 26.33 52.13

(Zhao et al., 2018) 16.38 20.25 44.48
(Zhang & Bansal, 2019) 20.76 24.20 48.91
UNILMLARGE 340M 24.32 26.10 52.69
UNILMv2BASE 110M 26.29 27.16 53.22
– rel pos 110M 26.30 27.09 53.19

Table 5. Results on question generation. The first block follows
the data split in (Du & Cardie, 2018), while the second block is
the same as in (Zhao et al., 2018). MTR is short for METEOR,
and RG for ROUGE. “#Param” indicates the size of pre-trained
models. “– rel pos” is the model without relative position bias.

the uncased WordPiece (Wu et al., 2016) tokenization used
in (Devlin et al., 2018). The vocabulary size was 30, 522.
The maximum length of input sequence was 512. The token
masking probability was 15%. Among masked positions,
80% of the time we replaced the token with masks, 10% of
the time with a random token, and keeping the original token
for the rest. The block masking (see Algorithm 1) can mask
up to 6-gram for one factorization step in partially autore-
gressive modeling. The batch size was set to 7680. We used
Adam (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.98, and
ε = 1e-6 for optimization. The peak learning rate was set
to 6e-4, with linear warmup over the first 24, 000 steps and
linear decay. The weight decay was 0.01. The dropout rate

was set to 0.1. We ran the pre-training procedure for 0.5
million steps, which took about 20 days using 64 Nvidia
V100-32GB GPU cards.

4.2. Question Answering

Question answering aims at returning answers for the given
question and documents. We conduct experiments on the
benchmarks SQuAD v1.1 (Rajpurkar et al., 2016) and
v2.0 (Rajpurkar et al., 2018). The model learns to extract
answer spans within a passage. We formulate the task as
a natural language understanding problem. The input is
concatenated as “[SOS] Question [EOS] Passage
[EOS]”. We add a classification layer on the pre-trained
PMLM, which predicts whether each token is the start or
end position of an answer span by conditioning on the fi-
nal outputs of Transformer. For SQuAD v2.0, we use the
output vector of [SOS] to predict whether the instance is
unanswerable or not.

The fine-tuning results are presented in Table 2, where we
report F1 scores and exact match (EM) scores. We compare
previous BASE-size models with PMLM. Notice that the
publicly available BERTBASE checkpoint (Devlin et al., 2018)
is pre-trained on 13GB corpora with 256 batch size, while
XLNetBASE and RoBERTaBASE are more directly comparable.
The results show that UNILMv2BASE achieves better perfor-
mance than the other models on both SQuAD datasets.

4.3. GLUE Benchmark

The General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019) contains various tasks. There
are two single-sentence classification tasks, i.e., linguistic



UNILMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training

Model Objective SQuAD v1.1 SQuAD v2.0 MNLI SST-2
F1 EM F1 EM m mm Acc

BERTBASE AE 88.5 80.8 76.3 73.7 84.3 84.7 92.8
XLNetBASE AR - - 81.0 78.2 85.6 85.1 93.4
RoBERTaBASE AE 90.6 - 79.7 - 84.7 - 92.7
BARTBASE AR 90.8 - - - 83.8 - -

[1] UNILMv2BASE AE+PAR 92.0 85.6 83.6 80.9 86.1 86.1 93.2
[2] [1] – relative position bias AE+PAR 91.5 85.0 81.8 78.9 85.6 85.5 93.0
[3] [2] – blockwise factorization AE+AR 90.8 84.1 80.7 77.8 85.4 85.5 92.6
[4] [2] – PAR AE 91.0 84.2 81.3 78.4 84.9 85.0 92.4
[5] [2] – AE PAR 90.7 83.9 79.9 77.0 84.9 85.2 92.5
[6] [5] – blockwise factorization AR 89.9 82.9 79.3 76.1 84.8 85.0 92.3

Table 6. Comparisons between the pre-training objectives. All models are pre-trained over WIKIPEDIA and BOOKCORPUS for one
million steps with a batch size of 256. Results in the second block are average over five runs for each task. We report F1 and exact match
(EM) scores for SQuAD, and accuracy (Acc) for MNLI and SST-2.

acceptability (CoLA; Warstadt et al. 2018), and sentiment
analysis (SST-2; Socher et al. 2013). The text similarity
(STS; Cer et al. 2017) task is formulated as a regression
problem. The other tasks are pairwise classification tasks,
including natural language inference (RTE, MNLI; Dagan
et al. 2006; Bar-Haim et al. 2006; Giampiccolo et al. 2007;
Bentivogli et al. 2009; Williams et al. 2018), question an-
swering (QNLI; Rajpurkar et al. 2016), and paraphrase de-
tection (QQP, MRPC; Dolan & Brockett 2005).

Table 3 presents the results on GLUE. We compare PMLM
with three strong pre-trained models, i.e., BERT (Devlin
et al., 2018), XLNet (Yang et al., 2019), and RoBERTa (Liu
et al., 2019), in the single task fine-tuning setting. All
the models are in BASE-size for fair comparisons. We ob-
serve that the proposed UNILMv2BASE outperforms both
BERTBASE and XLNetBASE across 8 tasks. Comparing to
state-of-the-art pre-trained RoBERTaBASE, UNILMv2BASE

obtains the best performance on 6 out of 8 tasks, e.g., 88.4 vs
87.6 (RoBERTaBASE) in terms of MNLI accuracy, indicating
the effectiveness of our UNILMv2BASE.

4.4. Abstractive Summarization

We evaluate the pre-trained PMLM on two abstractive sum-
marization datasets, i.e., XSum (Narayan et al., 2018), and
the non-anonymized version of CNN/DailyMail (See et al.,
2017). This is a language generation task, where the texts
(such as news articles) are shortened to readable summaries
that preserve salient information of the original texts. The
pre-trained PMLM is fine-tuned as a sequence-to-sequence
model as described in Section 3.4.

We report ROUGE scores (Lin, 2004) on the datasets. Ta-
ble 4 shows two baseline methods that do not rely on pre-
training. LEAD-3 uses the first three input sentences as
the summary. PTRNET (See et al., 2017) is a sequence-to-

sequence model with pointer networks. Results indicate
that pre-training achieves significant improvements over the
baselines. We also compare UNILMv2BASE with state-of-
the-art pre-trained models of both BASE-size and LARGE-
size. We focus on the comparisons in the third block because
the models contain similar numbers of parameters. BERT-
SUMABS (Liu & Lapata, 2019) fine-tunes a BERT encoder
that is pre-trained with an autoencoding objective, concate-
nating with a randomly initialized decoder. MASS (Song
et al., 2019) and T5 (Raffel et al., 2019) pre-train encoder-
decoder Transformers with masked LM, which relies on
the autoregressive pre-training. Although PMLM has the
smallest size, we find that UNILMv2BASE outperforms the
other BASE-size pre-trained models on both datasets.

4.5. Question Generation

We perform evaluations on question generation (Du &
Cardie, 2018), the task of automatically producing relevant
questions that ask for the given answer and context. The
input of the sequence-to-sequence problem is defined as the
concatenation of a paragraph and an answer. We fine-tune
the pre-trained PMLM to predict output questions.

As shown in Table 5, we report BLEU (Papineni et al., 2002),
METEOR(Banerjee & Lavie, 2005), and ROUGE (Lin,
2004) scores on two different data splits. Among the com-
pared results, UNILM (Dong et al., 2019) is based on pre-
trained models, while the other three methods are sequence-
to-sequence models enhanced with manual features (Du &
Cardie, 2018), gated self-attention (Zhao et al., 2018), and
reinforcement learning (Zhang & Bansal, 2019). Results
show that UNILMv2BASE achieves better evaluation met-
rics compared with UNILMLARGE and several baselines. It
is worth noting that UNILMv2BASE consists of three times
fewer parameters than UNILMLARGE.
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4.6. Effect of Pre-Training Objectives

We conduct ablation experiments on using PMLM to im-
plement different pre-training objectives, i.e., autoencoding
(AE), autoregressive (AR), partially autoregressive (PAR),
and jointly training (AE+AR, and AE+PAR). The variants
use the same masking strategy. The evaluations follow the
settings3 as in BERT (Devlin et al., 2018), so that the results
in Table 6 can be directly compared with each other. Notice
that XLNet (Yang et al., 2019) is an autoregressive MLM
augmented with more advanced relative position embed-
dings, and long-context memory.

As shown in Table 6, we compare the PMLM-based variants
against previous models on question answering (SQuAD;
Rajpurkar et al. 2016; 2018), natural language inference
(MNLI; Williams et al. 2018), and sentiment classification
(SST-2; Socher et al. 2013). First, we ablate relative position
bias to better compare with BERT, RoBERTa, and BART.
On text classification (MNLI and SST-2), the PAR-only ob-
jective compares favorably with both AE-only and AR-only
objectives, which indicates the effectiveness of the proposed
PAR modeling. In comparison, the SQuAD tasks require
more precise modeling of spans in order to extract correct
answer spans from the input passage, where both AE-only
and PAR-only objectives outperform the AR-only objective.
The results indicate that blockwise masking and factoriza-
tion are important for LM pre-training. Besides, the settings
of jointly training (AE+AR, and AE+PAR) tend to improve
the results over using single LM task. Among the five objec-
tives, AE+PAR performs the best with the help of PMLM,
which shows that autoencoding and partially autoregressive
modelings are complementary for pre-training.

5. Conclusion
We pre-train a unified language model for language un-
derstanding and generation by joint learning bidirectional
LM (via AE) and sequence-to-sequence LM (via PAR). We
introduce a pseudo-masked language model (PMLM) to ef-
ficiently realize the unified pre-training procedure. PMLM
is computationally efficient in that AE and PAR can be
computed in one forward pass without redundant computa-
tion. Besides, the two modeling tasks are complementary
to each other. Because conventional masks of AE provide
global masking information to PAR, and PAR can learn
intra-relations between masked spans. In addition, the pro-
posed PAR pre-training encourages to learn long-distance
dependencies by preventing local shortcuts. Experimental
results show that PMLM improves the end-task results on
several language understanding and generation benchmarks.

3Models were trained for 1M steps with batch size of 256
over English Wikipedia and BookCorpus (Zhu et al., 2015). The
learning rate of Adam (β1 = 0.9, β2 = 0.999) was set to 1e-4,
with linear schedule and warmup over the first 10K steps.
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