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Abstract
Options have been shown to be an effective tool
in reinforcement learning, facilitating improved
exploration and learning. In this paper, we present
an approach based on spectral graph theory and
derive an algorithm that systematically discovers
options without access to a specific reward or task
assignment. As opposed to the common practice
used in previous methods, our algorithm makes
full use of the spectrum of the graph Laplacian.
Incorporating modes associated with higher graph
frequencies unravels domain subtleties, which are
shown to be useful for option discovery. Using ge-
ometric and manifold-based analysis, we present
a theoretical justification for the algorithm. In
addition, we showcase its performance in several
domains, demonstrating clear improvements com-
pared to competing methods.

1. Introduction
Reinforcement learning (RL) has attracted much attention
in recent years thanks to its success in solving a broad
range of challenging tasks. Options (a.k.a. skills) play an
important role in RL (Sutton et al., 1999) and have opened
the door to a series of studies demonstrating improvement
in both learning and exploration (Vezhnevets et al., 2017;
Nachum et al., 2018; Eysenbach et al., 2019; Tang et al.,
2017; Mannor et al., 2004; Menache et al., 2002). One
important class of options consists of options that are not
associated with any specific task and are acquired without
receiving any reward. Such generic options often lead to
efficient learning in various tasks that are not known a-priori,
(e.g., (Eysenbach et al., 2019)).

An effective approach to build such options is based on
spectral graph theory, assuming a finite state domain in
which each state is regarded as a node of a graph, and
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the graph edges represent the states connectivity. Such an
approach led to the introduction of proto-value functions
(PVFs)(Mahadevan & Maggioni, 2007), which are the eigen-
vectors of the graph Laplacian (Chung & Graham, 1997).
It was shown that the PVFs establish an efficient represen-
tation of the domain. Recently, these PVFs were used for
options representation (Machado et al., 2017; 2018). There,
eigenoptions were introduced by considering only the domi-
nant eigenvectors (PVFs), where each eigenoption is formed
based on a single eigenvector. In a related work, Jinnai et al.
(2019) presented cover options using only the Fiedler vector
multiple times. On the one hand, option discovery with a
graph-based representation is a powerful combination, since
it facilitates options that are not task or reward-specific, yet
it naturally incorporates the geometry of the domain. On
the other hand, existing methods are based only on a sin-
gle eigenvector or consider only the dominant eigenvectors
while omitting the rest, leaving room for improvement and
further investigation.

In this paper, we present a new scheme for defining options,
relying on all the eigenvectors of the graph Laplacian. More
concretely, we form a score function built from the eigen-
vectors, from which options can be systematically derived.
Since the agent acts without receiving reward, it is only
natural to discover and analyze the options considering the
geometry of the domain. For analysis purposes, we model
the domain as a manifold and consequently the graph as a
discrete approximation of the manifold, allowing us to in-
corporate concepts and results from manifold learning, such
as the diffusion distance (Coifman & Lafon, 2006). We
show that our options lead to improved performance both in
learning and exploration compared to the eigenoptions as
well as other option discovery schemes.

Our main contributions are as follows. First, we present a
new approach to principled option discovery with a theoret-
ical foundation based on geometric and manifold analysis.
Second, this analysis includes novel results in manifold
learning involving two key components: the stationary dis-
tribution of a random walk on a graph and the diffusion
distance. To obtain these results, we employ a new con-
cept in manifold learning, in which the entire spectrum
of the underlying graph is considered rather than only its
leading components. Third, we propose an algorithm for
option discovery, applicable in high-dimensional determin-
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istic domains. We empirically demonstrate that the learning
performance obtained by our options outperforms compet-
ing options on three small-scale domains. In addition, we
show extensions to stochastic domains and to large scale
domains.

2. Background
2.1. RL and Options

We use the Markov decision process (MDP) framework to
formulate the RL problem (Puterman, 2014). An MDP is a
5-tuple 〈S,A, p, r, γ〉, where S is the set of states, A is the set
of actions, p is the transition probability such that p (s′|s, a)
is the probability of moving from state s to state s′ by taking
an action a, r(s, a, s′) is the reward function and γ ∈ [0, 1)
is a discount factor. Consider an agent operating sequentially
so that at time step n it moves from state sn to state sn+1, re-
ceiving a rewardRn+1 = r(sn, a, sn+1). Its goal is to learn
a policy π : S× A→ [0, 1] which maximizes the expected
discounted return Gn , Eπ,p[

∑∞
k=0 γ

kRn+k+1|sn].

An option is a generalization of an action (also known as a
skill or a sub-goal) (Sutton et al., 1999). Formally, an option
o is the 3-tuple 〈I, πo, β〉 where I is an initiation set I ⊆ S
(the states at which the option can be invoked), πo : S ×
A→ [0, 1] is the policy of the option to be followed by the
agent, and β : S → [0, 1] is the termination condition. By
following an option o the agent chooses actions according
to the policy of the option πo until the option is terminated
according to the termination condition β.

2.2. Diffusion Distance

The diffusion distance is a notion of distance between two
points in a high-dimensional data set (Coifman & Lafon,
2006), where the points are assumed to lie on a manifold.
It is widely used in many data science applications, e.g., in
Mahmoudi & Sapiro (2009); Bronstein et al. (2011); Lafon
et al. (2006); Liu et al. (2009); Lederman & Talmon (2018);
Van Dijk et al. (2018), since it captures well the geometric
structure of the data. While the formulation of diffusion
distance is typically general, here we describe it directly in
the MDP setting.

Consider a graph G = (S,E), where the finite set of states
S is the node set and the edge set E ⊂ S× S consists of all
possible transitions between states. Define a random walk
on the graph with transition probability matrixW , defined
byWij = p(st+1 = i|st = j). Let p(l)t denote the vector of
transition probabilities from state l to all states in t random
walk steps defined by the lth column of W t. Throughout
the paper the convention is a column-vector representation.
With the above preparation, the diffusion distance is defined

by

Dt (s, s
′) , ‖p(s)t − p

(s′)
t ‖,

where ‖ · ‖ is the L2 norm. In contrast to the standard
Euclidean distance, the diffusion distance does not depend
solely on two individual points, namely, s and s′, but takes
into account the structure of the entire data sets. See a
prototypical demonstration in the supplementary material
(SM). Broadly, in short distances it is closely related to
the geodesic distance (shortest path) (Portegies, 2016) and
in long distances it demonstrates high robustness to noise
and outliers (Coifman & Lafon, 2006). For more details
on the advantages of the diffusion distance and its efficient
computation using the eigenvectors of the graph Laplacian
see the SM.

3. Diffusion Options
In standard, mostly goal-oriented RL, one learns to map
states to actions in order to achieve a desired task. In sit-
uations with uncertainty (e.g., model uncertainty, reward
uncertainty, etc.) exploration is essential in order to reduce
uncertainty, thereby improving future actions. Exploration
often consists of aspects that are specific to a given task, and
aspects that are generic to the domain. For example, in an
environment with multiple rooms, one may wish to learn
how to reach the door of each room, thereby facilitating
learning in later situations where a specific task is given, say,
reaching a specific room (or set of rooms). This may also
be useful if additional rooms are later added. In both cases
(task-based or task-free), options can greatly facilitate the
speed of exploration by forming shortcuts (Eysenbach et al.,
2019). In this work we present a manifold-based approach
to developing generic options that can be later used across
multiple task domains.

To encourage exploration, a useful set of options will lead
the agent to distant regions, visiting states that the unin-
formed random walk will seldom lead to. To this end, we
exploit the diffusion distance and show that the strength
of diffusion distance in the realm of high dimensional data
analysis enables us to devise structure-aware options that
improve both learning and exploration.

3.1. Algorithm

The derivation of the algorithm for option discovery is car-
ried out in a setting consisting of discrete and deterministic
domains with a finite number of states, where the transitions
between states are known. This allows us to focus on the
development of the representation of the domain with mul-
tiple spectral components and on the analysis based on the
interface of spectral graph theory and the diffusion distance.
Nevertheless, the primary interest is large scale domains,
which are only partially known a-priori. In Section 3.2, by
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relying on previous work, we show how to accommodate
such domains.

The proposed algorithm for systematic option discovery
consists of two stages. The first stage involves graph con-
struction. Let G be a graph whose node set is the finite set
of states S. LetM ∈ R|S|×|S| be the symmetric adjacency
matrix of the graph, prescribing the possible transitions be-
tween states, namely Ms,s′ = 1 if a transition from state
s to state s′ is possible, and Ms,s′ = 0 otherwise. Based
on M , define a non-symmetric lazy random walk matrix
W , 1

2 (I +MD−1), where the degree matrix D is a
diagonal matrix whose diagonal elements equal the sum
of rows ofM . Applying eigenvalue decomposition toW
yields two sets of left and right eigenvectors, denoted by
{φi} and {φ̃i}, respectively, and a set of real eigenvalues
{ωi}. The sth component of φi is denoted by φi(s).

The second stage of the algorithm relies on the following
score function, ft : S → R, defined on the set of states S,
and assigns a score to each state s ∈ S

ft(s) , ‖
∑
i≥2

ωtiφi (s) φ̃i‖2, (1)

where t > 0 is a scale parameter representing the diffusion
time. By construction, ft(s) consists of the full spectrum
ofW , including both low and high frequencies, in contrast
to common practice. As we show in Proposition 1, ft(s) is
directly related to the average diffusion distance between
state s and all other states, making it a promising candidate
for an option discovery criterion, as discussed below.

After computing ft(s), the states at which it attains a local
maximum are extracted. We term these states option goal
states, and denote them by {s(i)o }, where the index i ranges
between 1 and the number of local maxima. Each such state
is associated with an option, which leads the agent from its
current state to the option goal state. The options can start
at any state (I = S), and terminate deterministically once
reaching its option goal state, i.e. for option i, βi

(
s
(i)
o

)
= 1,

and βi (s) = 0∀s 6= s
(i)
o . In other words, once the agent

chooses to act according to an option, it moves to so via the
shortest path from its current position. We note that the scale
parameter t indirectly controls the number of options; since
0 < ωi ≤ 1 (Chung & Graham, 1997), the multiplication by
ωti in (1) makes ft(s) smoother as t increases, analogously
to a low pass filter effect. In addition, many eigenvalues
are often negligible, and therefore, accurate reconstruction
of ft(s) in (1) typically does not require all the spectral
components.

The proposed algorithm for option discovery appears in Al-
gorithm 1. We term the discovered options diffusion options
because they are built from the eigenvalue decomposition
of a discrete diffusion process, i.e., the lazy random walk

on the graph. In addition, in Section 3.3, we show a tight
relation to the diffusion distance. Algorithm 1 exhibits sev-
eral advantages. First, the algorithm prescribes a systematic
way to derive options which are not associated with any par-
ticular task or reward. Second, we empirically demonstrate
the acceleration of the learning process and more efficient
exploration in prototypical domains compared to competing
methods for option discovery. Third, the computationally
heavy part is performed only once and in advance. Fourth,
the scale parameter t enables to control the number of op-
tions and facilitates multiscale option discovery.

We remark that the eigenvalue decomposition of W used
for the construction of ft(s) is related to the eigenvalue
decomposition of the normalized graph LaplacianN , which
traditionally forms the spectral decomposition of a graph.
See the SM for details.

Algorithm 1 Diffusion Options
Input: Adjacency matrixM and scale parameter t > 0

Output: K options with policies {π(i)
o }Ki=1

1: Compute the degree matrixD fromM
2: Compute the random walk matrix
W = 1

2 (I −MD−1)

3: Apply EVD toW and obtain {φi}, {φ̃i} and {ωi}
4: Construct ft(s) = ‖

∑
i≥2 ω

t
iφi (s) φ̃i‖2

5: Find the states {s(i)o }Ki=1 of the local maxima of ft(·)
6: for i ∈ {1, . . . ,K} do
7: Build an option with policy π(i)

o s.t. it leads to s(i)o
8: end for

3.2. Extension to Large Scale Domains

The exposition thus far focused on domains, whose full
transition matrix is at hand when learning the representation
of the domain. Suppose now that the considered set of states
S is only a subset of the entire set of states. The extension of
diffusion options discovered by Algorithm 1 to unseen states
s /∈ S requires the extension of ft(s) and the extension of
the option policies. Since the option policies can be trained
off-policy as shown by Jinnai et al. (2020), here we focus
on extending ft(s).

In the SM, we show that the extension of ft(s) to unseen
states s /∈ S involves the extension of the eigenvectors φ
and φ̃ taking part in the construction of ft(s) in (1). Since
the eigenvectors admit a particular algebraic structure, their
extension is naturally regularized, and therefore, often more
accurate than a generic function extension. This fact was
recently exploited by Wu et al. (2019), who developed a
method that was later demonstrated by Jinnai et al. (2020),
to compute the eigenvectors of the graph Laplacian in large
scale domains. Another approach for extending the eigen-
vectors was proposed by Machado et al. (2018) using deep
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successor representation. We note that due to the low pass
filter effect in (1) not all the eigenvectors need to be ex-
tended. Additionally, only the locations of the local maxima
of ft(s) are used in Algorithm 1, rather than all its values,
thus we can extend a sufficient number of eigenvectors, so
that the same local maxima are attained as in the construc-
tion with all the spectral components.

After the score function ft(s) is approximated, extracting
its local maxima requires not only going over all its entries,
but also considering their connectivity. This additional com-
plexity is negligible when the underlying graph is sparsely
connected. Importantly, the more connected the graph is,
the less significant the options are (e.g., as demonstrated
by Jinnai et al. (2019)), and therefore, in the context of this
paper, only sparsely connected graphs are of interest.

3.3. Analysis

We start the analysis with our main result relating ft(s) to
the diffusion distance. The proof is provided in the SM.

Proposition 1. The function ft : S → R defined as
ft(s) , ‖

∑
i≥2 ω

t
iφi (s) φ̃i‖2 is equal to the mean squared

diffusion distance between state s and all other states, up to
a constant independent of s, namely

ft(s) =
〈
D2
t (s, s

′)
〉
s′∈S + const, (2)

where 〈g(x)〉x∈X represents the average on X:

〈g(x)〉x∈X ,
1

|X|
∑
s∈X

g(x).

An immediate consequence of Proposition 1 is that

maxsft (s) = maxs
〈
D2
t (s, s

′)
〉
s′∈S ,

implying that the option goal states, {s(i)o }, are the farthest
states from all other states in terms of average squared diffu-
sion distance. Broadly, moving to such far states encourages
exploration as the agent systematically travels through the
largest number of states without, for example, the repeti-
tions involved in the uninformed random walk. Additionally,
by reaching different option goal states, the agent reaches
different and distant regions of the domain, which also ben-
efits exploration. The particular notion of diffusion distance
efficiently captures the geometry of the domain and demon-
strates important advantages over the Euclidean and even
the geodesic distances. See the SM for an illustrative exam-
ple. The averaging operation 〈·〉 incorporates the fact that
the options are not related to a specific task, and therefore,
the start state, the goal state, and the states at which the
options are invoked, are all unknown a-priori.

Empirically we will demonstrate that the diffusion distance
is related to the domain difficulty (see Section 4.4). The

larger the average pairwise diffusion distance is, the more
difficult the domain is. As a result, when the agent follows
options leading to distant states in terms of the diffusion dis-
tance, in effect, it reduces the domain difficulty. In addition,
we demonstrate that such goal states are typically “special”
states such as corners of rooms or bottleneck states such as
doors (see Fig. 1(h) and Section 4).

Proposition 2 offers an alternative perspective on ft(s), re-
lating it to the stationary distribution of the graph, denoted
by π0. The proof is in the SM.

Proposition 2. ft(s) can be recast as

ft(s) = ‖p(s)t − π0‖2,

where π0 is the stationary distribution of the lazy random
walkW on the graph G. In addition, ft(s) is bounded from
above by

ft (s) ≤ ω2t
2

(
1

π0 (s)
− 1

)
.

The first part of Proposition 2 relates ft(s) to the difference
between the transition probability from state s and the sta-
tionary distribution. As t grows to infinity, the transition
probability approaches the stationary distribution. For a
fixed t, the states at which ft(s) gets a maximum value are
the states that their transition probability differ the most
from the stationary distribution.

States s for which π0(s) is small are states that are least
visited by an agent following a standard random walk. Ar-
guably, these are exactly the states the agent should visit,
for example by following options, to improve exploration.
Indeed, we observe that the upper bound in Proposition 2
implies that these states allow for large ft(s) values. We
further discuss the relation between ft(s) and π0 in a multi-
dimensional grid domain in the SM.

Establishing the relation of ft(s) to the stationary distribu-
tion is important by itself because the stationary distribution
is a central component in many applications and algorithms.
Perhaps the most notable are PageRank (Page et al., 1999)
and its variants (Kleinberg, 1999), where the purpose is
to discover important web pages that are highly connected
and therefore can be considered as network hubs. In the
exploration-exploitation terminology, one could claim that
PageRank favors exploitation by identifying central pages.
Conversely, the diffusion options lead the agent toward
states that are least connected (with small stationary dis-
tribution values), and therefore, they encourage exploration.

We end this section with two remarks. First, the upper bound
in Proposition 2 generalizes a known bound on the conver-
gence of the transition probability, starting from node a in
a graph, to the stationary distribution at node b (Spielman,
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2018),

|pt (b)− π0 (b)| ≤

√
d (b)

d (a)
ωt2,

where d(a) and d(b) are the degrees of nodes a and b, re-
spectively.

Second, combining Proposition 1 and Proposition 2 relates
the diffusion distance to the distance from the stationary
distribution of a random walk. This relation may have con-
sequences in a broader context, when either the diffusion
distance or the stationary distribution are used.

3.4. Extension to Stochastic Domains

In the deterministic setting we considered thus far, we as-
sumed that an action definitively leads the agent to a partic-
ular state, i.e., given an action a and a state s the probability
p(s′|s, a) is concentrated at a single state.

Alternatively, one could consider a setting, where the do-
main is stochastic, and its stochasticity introduces uncer-
tainty and decouples the action from the transition, namely,
p(s′|s, a) can be supported on more than one state. As a
result, the agent following a random walk experiences a dif-
ferent number of transitions between states. The correspond-
ing transition probability matrix leads to a non-symmetric
normalized graph Laplacian N . This poses a challenge
since the eigenvalue decomposition ofN is not guaranteed
to be real, and therefore, the construction of ft(s) in (1)
needs a modification. Note that other settings could lead to
a non-symmetric Laplacian as well.

Here, we propose a remedy to support such cases. Our solu-
tion follows the work presented by Mhaskar (2018), which
is based on the polar decomposition. Concretely, consider
the polar decomposition of N = RU , where R is a posi-
tive semi-definite matrix and U is a unitary matrix. Since
R is uniquely determined, the spectral analysis applied to
N in the deterministic case can be applied to R in a sim-
ilar manner. As observed by Mhaskar (2018), there exist
efficient algorithms for computing R (Nakatsukasa et al.,
2010). Accordingly, the required modification applied to the
option discovery in Algorithm 1 is minimal. After the com-
putation ofN , its polar decomposition is computed. Then,
the eigenvalue decomposition of the positive partR is used
for the construction of ft(s). See the SM for the modified
algorithm. In Section 4.3, we demonstrate its performance.

4. Experimental Results
We demonstrate empirically that the diffusion options are
generic and useful, allowing for improvement in both learn-
ing unknown tasks and in exploring domains efficiently.
Particularly, using Q learning (Watkins & Dayan, 1992),
we show that equipped with the diffusion options, which

are computed in a reward-free domain, the agent is able to
learn tasks that are unknown a-priori faster and to explore a
domain more effectively. In addition, we demonstrate the
relation between the diffusion options and the stationary
distribution.

We focus on three domains: a Ring domain, which is the 2D
manifold of the placement of a 2-joint robotic arm (Verma,
2008), a Maze domain (Wu et al., 2019), and a 4Rooms
domain (Sutton et al., 1999). The set of actions are: left,
right, up and down. In every domain, we pre-define a single
start state and a set of goal states.

The agent performs several trials, where each trial is asso-
ciated with a different goal state from the set of goal states.
In each trial, the agent starts at the same start state and is
assigned with the task of reaching the trial goal state. We im-
plement Q learning (Watkins & Dayan, 1992) with α = 0.1
and γ = 0.9 for 400 episodes, containing 100 steps each.
The agent follows the Q function at states for which it exists,
and otherwise chooses a primitive action or an option with
equal probability. In case the agent does not reach the goal
state after 100 steps, a default value of 101 is set for the
number of steps.

Since options typically consist of multiple steps, for a fair
comparison, we take them into account in the total steps
count at each episode. Note that this might lead to terminat-
ing an option without reaching its option goal state in case
the episode reaches 100 steps.

We compare the diffusion options with the eigenoptions
presented by Machado et al. (2017) and with the cover
options from Jinnai et al. (2019). As a baseline, we also
show results for a random walk consisting of only primitive
actions without options. In the SM, we include comparison
to random options as well.

We evaluate the performance using three objective measures.
The first measure is the standard learning convergence. We
compute the average number of steps to a goal over all
learning trials (goal states), where each trial consists of 30
Monte Carlo iterations. The average number of steps is
presented as a function of the learning episode. Second,
we present the average number of visitations at each state
during learning (over all episodes and goal states). Third, to
evaluate the exploration efficiency, we compute the number
of steps between every two states, following Machado et al.
(2017).

The main hyperparameter of the algorithm is t. In our
implementation, we set t = 4. Our empirical study shows
that different values of t lead to similar results. For results
using other t values and for a further discussion on the
choice of t, see the SM.
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Figure 1. The domains colored according to (a,d,g) the stationary
distribution π0, (b,e,h) the options generating function f4(s), and
(c,f,i) the options generating function f13(s).

4.1. Diffusion Options Generation

In Fig. 1, we plot the options generating function ft(s) for
two values of t as well as the stationary distribution. First,
we observe the low pass filter effect obtained by increasing
the scale parameter t. Particularly, we see that f13(s) is
smoother, containing fewer peaks, than f4(s). Based on our
empirical tests, using only the dominant 10-20 eigenvectors
leads to ft with the same local maxima, resulting in the
same options. As discussed in Section 3.2, this facilitates
the extension to large scale domains. We emphasize that
using fewer eigenvectors is insufficient and does not cap-
ture well the geometry of the domain. Second, we observe
that the minima of the stationary distribution coincide with
the local maxima of ft(s) for some cases, in accordance
with Proposition 2. For example, note the corners of the
rooms and the doors in the 4Rooms domain (Figs. 1(g) and
1(h)). Nevertheless, we observe that the local minima of the
stationary distribution might also capture irrelevant states
in evolved domains. For example, in the Maze domain, in
contrast to the stationary distribution, ft(s) captures the
end of the corridors only (see Figs. 1(d) and 1(f)), which
are important for efficient exploration and learning in this
domain.

4.2. Exploration and Learning

Figure 2 presents the results obtained by setting t = 4 for
all domains. We observe in the visitation count plots that the
diffusion options lead the agent to the goal states through
the shortest path, e.g., in the Ring domain, following the
inner ring. Importantly, these results are obtained by the
diffusion options that were built in advance without access
to the location of the start and goal states. Conversely, we
observe that the eigenoptions lead the agent less efficiently,
for example, in the Ring domain, through both the inner
and the outer rings. While both the diffusion options and
the eigenoptions result in informed trajectories to the goal,
we observe that the naı̈ve random walk tends to concentrate
near the start state.

Figure 2 also shows that the diffusion options demonstrate
the fastest learning convergence, followed by the eigenop-
tions and then the random walk. In addition, the diffusion
options lead to convergence to shorter paths to a goal com-
pared to the eigenoptions. These convergence results co-
incide with the visitation count. For example in the Ring
domain, by employing the eigenoptions, the agent travels
via states at the outer ring which are not on the shortest path
to the goal. The significant gap in performance between the
diffusion options and the eigenoptions in the Maze domain
may be explained by the fact that the option goal states of
the diffusion options are located at the end of the corridors
(see Fig. 1), leading to efficient exploration, and in turn,
to this fast learning convergence. We note that the zero
variance in the learning curves at the beginning of the learn-
ing implies that the agent did not reach its goal during the
episode, so the same default value was set.

For a fair comparison, we use the same number of options
in both algorithms with the same Q learning configuration
described above. In the SM, we present results, where the
number of eigenoptions is tuned to attain maximal perfor-
mance. Even after tuning, the diffusion options outperform
the eigenoptions.

Table 1 shows the number of steps between states. We
note that in contrast to eigenoptions and diffusion options,
cover options are point options; see further discussion in
Section 5. We observe that the diffusion options lead to
more efficient transitions between states compared to the
eigenoptions, cover options, and a random walk. This sug-
gests that diffusion options demonstrate better exploration
capabilities.

4.3. Stochastic Domains

We revisit the 4Rooms domain with the addition of a stochas-
tic wind blowing downwards. The presence of wind is trans-
lated to the probability of 1/3 that the agent moves down,
regardless of its chosen action. As a result, the agent is
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Figure 2. Learning results on the Ring domain (top row), the Maze domain (middle row), and 4Rooms domain (bottom row). (a,f,k) The
start state (green) and goal states (purple). (b-d,g-i,l-m) Normalized visitation count N0 obtained based on (b,g,l) the diffusion options,
(c,h,m) the eigenoptions, and (d,i,n) a random walk (d). For visualization purposes, the visitation number is normalized to the range of
[0, 1] by dividing by the maximum number of visitations. (e,j,o) The learning convergence depicting the average number of steps to goal
for each learning episode. The solid line represents the mean value and the light colors represent the standard deviation.

more likely to visit states at the bottom of the domain, so
in principle, the desired options should favor states at the
upper parts of the domain.

In Fig. 3(a), we observe that f4(s) now exhibits high val-
ues at the upper part of the rooms, rather than high values
at the corners and boundaries as in Fig. 1(h) without the
wind. To compare the learning convergence, we adapt the
eigenoptions to the stochastic domain by considering the
eigenvectors of the positive part of the polar decomposition
of the Laplacian as eigenoptions. Figure 3(b), presenting
the learning convergence, shows a clear advantage to the
use of the diffusion options compared to the eigenoptions in
this stochastic setting.

4.4. Diffusion Distance and Domain Difficulty

We empirically show that the diffusion distance is related
to the “domain difficulty”. We propose to approximate the
difficulty by the average diffusion distance between every
pair of states, and compare it with two other measures of
difficulty: the average time duration required for learning a
task using primitive actions, i.e. the learning rate, and the
average number of steps between pairs of states. Note that
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Figure 3. 4Rooms domain with stochastic wind blowing down-
wards. (a) The domain is colored by f4(s), where we observe that
the local maxima are at the top rooms, compensating for the wind.
See Fig. 1 for comparison to the result without wind. (b) The
obtained learning convergence.

the computation of diffusion distances is intrinsic, i.e., it
takes into account only the geometry of the domain. Con-
sequently, it can be computed per domain a-priori without
any task assignment or access to rewards. Conversely, the
learning rate and the average number of steps are computed
in the context of learning particular tasks and rewards, and
as a result, convey their difficulties as well.



Option Discovery in the Absence of Rewards with Manifold Analysis

Table 1. Number of steps between any pair of states using options induced by t = 4 and by t = 13. We report the median value and the
interquartile range (IQR) over all pairs. See the SM, for mean and standard deviation.

Domain (#states) t #options Diffusion Options Eigenoptions Cover Options Random Walk
Median IQR Median IQR Median IQR Median IQR

Ring (192) 4 32 217 101 301 210 361 536 565 160
13 28 219 110 279 232 363 481 565 160

Maze (148) 4 19 282 194 446 573 525 812 1280 960
13 14 249 160 641 781 498 842 1280 960

4Rooms (104) 4 20 147 137 160 114 179 512 487 104
13 15 140 96 162 151 175 442 487 104

For each domain, the average diffusion distance between
all states is computed. To account for the domain size,
we multiply the average diffusion distance by the number
of accessible states. In addition, we compute the average
of diffusion distance over 100 different scales of t from a
regular grid between 1 and 1000.

The results are: 13.6, 20.5, and 8.6 for the Ring, the Maze,
and the 4Rooms domains, respectively. We observe that
the obtained value in the Maze is higher than the obtained
value in the Ring, despite having fewer states. Indeed, the
learning convergence in the Maze is slower (see Figs. 2(j)
and 2(e)) and the average number of steps between states is
higher as well (see Table 1).

The relation between the domain difficulty and the diffusion
distance gives another justification to the proposed algo-
rithm. By Proposition 1, acting according to a diffusion
option leads the agent to a distant state in terms of the dif-
fusion distance. As a result, it can be seen as a way to
effectively reduce the domain difficulty.

5. Relation to Existing Work
Option discovery has attracted much interest in recent years,
resulting in numerous methods from various perspectives
such as information theoretic (Mohamed & Rezende, 2015;
Florensa et al., 2017; Hausman et al., 2018), learning hi-
erarchy (Bacon et al., 2017; Vezhnevets et al., 2017), and
curiosity (Pathak et al., 2017), to name but a few. Discover-
ing options without reward has been a recent active research
subject. Combining information theory and skill discovery,
Eysenbach et al. (2019) proposed to view skills as mixtures
of policies, and to derive policies without a reward using an
information theoretic objective function. There, a two-stage
approach, similar to the present paper, was presented. In the
first stage, the domain is scanned with no reward and the
options are computed, and in the second stage, the options
are utilized for learning in the context of particular rewards.

The notion of “bottleneck” states has assumed a central role
in option discovery. For example, Menache et al. (2002);

Şimşek et al. (2005); Mannor et al. (2004) propose to define
and to identify bottleneck states using graph and spectral
clustering methods. Unfortunately, these approaches fail in
domains such as the Ring domain, for which clustering is not
well defined. An alternative approach presented by Stolle
& Precup (2002) defines bottleneck states as frequently
visited states. Recently, Goyal et al. (2019) showed that this
definition might lead to the discovery of redundant options
in domains such as a T-shaped domain.

Perhaps the closest algorithm to ours for option discovery
was presented by Machado et al. (2017). There, the agent
uses a subset of eigenvectors of the graph Laplacian of
the domain. Each eigenvector (up to a sign) prescribes a
value function assigned to each option (termed eigenoption).
The agent follows the eigenvector until it reaches a local
extremum, where the option terminates. A natural question
that arises is why the extrema of the eigenvectors are good
option goal states. Here we offer a plausible answer from a
diffusion distance perspective. Cheng et al. (2019) defined
the diffusion distance to a subset B ⊂ S, and derived a lower
bound. In the present paper notation, the formulation of the
bound is as follows. Let dBi

(s) be the smallest number
of steps, such that the random walk starting from state s
reaches the subset Bi with probability greater than 1

2 . Then
for Bi = {s ∈ S : −ε ≤ ψi (s) ≤ ε} the following holds:

dBi (s) log

(
1

|1− νi|

)
≥ log

(
|ψi (s) |
‖ψi‖L∞

)
−log

(
1

2
+ ε

)
,

where νi and ψi are a pair of eigenvalue and its associated
eigenvector of the normalized graph Laplacian N . For
small ε, the set Bi is the set of states for which ψi(s) is
close to zero. By following an eigenoption defined by the
eigenvectorψi, the agent moves toward states that are distant
from the states in Bi. For instance, consider a domain that
is comprised of 2 clusters. For such a domain, B2, derived
from ψ2, is the set of bottleneck states separating the 2
clusters. Thus, the eigenoption leads the agent away from
bottleneck states.

In contrast, by Proposition 1, the goal states of diffusion
options are states that are distant from all states (on average).
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Diffusion distance, which is closely related to the proposed
options via Proposition 1, takes into account the structure of
the domain, including bottlenecks. In addition, Proposition
2 also implies on the tight relation between diffusion options
and bottleneck states because bottlenecks often lie at the
minima of the stationary distribution.

Other graph-based options are cover options (Jinnai et al.,
2019), which are based on different principles than diffusion
options. Cover time is the number of steps it takes to reach
every state at least once by a random walk, and cover options
attempt to minimize the cover time. Diffusion distance is
based on the difference between transition probabilities,
and diffusion options attempt to reach states that are seldom
visited by a random walk. Perhaps the strongest evidence for
the difference between the two options is the fact that cover
options are derived only from the Fiedler vector (multiple
times), whereas diffusion options from the entire spectrum.
We claim that using multiple spectral components captures
better the structure of the domain. Another difference is that
cover options are point options with limited initiation sets.
This limitation does not apply to diffusion options.

Our options-generating function ft(s) in (1) is related to
recent work in data analysis as well. Similar functions to
ft(s), constructed from the eigenvectors of the graph Lapla-
cian, were proposed for anomaly detection and clustering
((Cheng et al., 2018; Cheng & Mishne, 2018), respectively).
Particularly, Cheng & Mishne (2018) introduced and ana-
lyzed a function called spectral norm, and showed that the
proliferation of eigenvectors is beneficial for clustering. In
this work, we show that the same approach of combining all
eigenvectors together, rather than using them separately (as
the common practice is, for instance in PCA), is beneficial
for option discovery.

6. Conclusions
We presented a method to derive options based on the full
spectrum of the graph Laplacian. The main ingredient in
the derivation and the subsequent analysis is the diffusion
distance, a notion that was introduced in the context of man-
ifold learning primarily for high-dimensional data analysis.
We tested our options using Q learning in three domains,
demonstrating improved exploration and learning compared
to competing options.

We believe that a similar approach with such geometric
considerations can be beneficial in other problems. Partic-
ularly, in future work we plan to explore its use for state
aggregation (Singh et al., 1995; Duan et al., 2019). States
that belong to the same partition have the same transition
probabilities, and as a consequence, the diffusion distance
between them is zero. Therefore, it seems only natural to
utilize this notion of distance for this problem. In addition,

we will study the possibility to combine model-based state
transition learning with the formation of an empirical graph
Laplacian.
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