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Additional figures and results
Comparison between `2- and `1-norms

In Fig. 1, we illustrate the main difference in using an `2-
or alternatively a `1-norm in the fused penalty of our ob-
jective function. The figure illustrates well the problem
of `1-norm: by penalizing each dimension independently,
this norm easily leads to parameter vectors that have some
non-zero dimensions, making the piece-wise constant as-
sumption more difficult to recover. On the contrary, the
`2-norm avoids this problem and hence enforces the whole
consecutive parameter vectors to be equal.

Another real-world experiment

In this section, we evaluate the goodness of graph
learning with TVI-FL on the Sigfox IoT dataset
(Le Bars and Kalogeratos, 2019) (available at:
http://kalogeratos.com/the-sigfox-iot-dataset). The
dataset contains activity recorded on a telecommunication
network, where each observation corresponds to a message
that was locally broadcasted by one device and has been re-
ceived by a subset of the 34 monitored antennas. Each data
vector is binary and indicates which antennas has received
the message or not (received = 1, not received = 0). The
dataset contains all the messages received by the antennas,
on a daily basis over a period of five months, resulting
in n = 120 timestamps. According to the authors, one
antenna is working poorly after the 30-th timestamp. In the
following experiment, we select this antenna along with the
19 geographically closest others, and we select randomly
ni = 200 messages at each timestamp. The learned graphs
with TVI-FL at timestamps i = 0 (before the antenna’s
malfunction) and i = 60 (after the antenna’s malfunction)
are displayed in Fig. 2, where only the positive edges are
drawn.
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Figure 1: Comparison of the learned parameter vectors when
using either `2- or `1-norm in the fused penalty. White squares in-
dicates dimensions at which the two consecutive parameter vectors
are different. Black squares where they are equal. The presence of
at least one white square indicates a change-point.
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Figure 2: Learned graphs for Sigfox dataset before and after the
anomaly recorded at the red antenna.

The goodness-of-fit of our method can be corroborated by
the observations: 1) The learned graphs are in agreement
with the spatial distribution of the antennas: nearby antennas
are more likely to be connected as they have high chance
to receive the same messages; 2) The problematic antenna
lost edges after its malfunction. Again, this is as expected
since a poorly working antenna would receive less messages,
implying a decreased correlation with its neighbors.

A more complete table of results

For completeness, in Tab. 1 we complete the table of the
main text of the paper with an additional comparative
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method, namely the one that estimates a graph at each time-
stamp (λ1 = 0).

Technical proofs
Main results

In the following, we recall and prove the main results given
in the paper. The proofs uses in many situations the different
lemmas given next.

Lemma 1. (Optimality Conditions) A matrix β̂ is optimal
for our problem iff there exists a collection of subgradi-
ent vectors {ẑ(i)}ni=2 and {ŷ(i)}ni=1, with ẑ(i) ∈ ∂‖β̂(i) −
β̂(i−1)‖2 and ŷ(i) ∈ ∂‖β̂(i)‖1, such that ∀k = 1, ..., n we
have:
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where tanh is the hyperbolic tangent function, 0p−1 is the
zero vector of size p− 1, ẑ(1) = 0p−1, and

ẑ(i) =

{
β̂(i)−β̂(i−1)

‖β̂(i)−β̂(i−1)‖2
if β̂(i) − β̂(i−1) 6= 0,

∈ B2(0, 1) otherwise;

ŷ(i) =

{
sign(β̂(i)) if x 6= 0,
∈ B1(0, 1) otherwise.

Proof. Let us first introduce the following change of vari-
ables:

γ(i) =

{
β(i) if i = 1,
β(i) − β(i−1) otherwise.

Thus β(i) =
∑i
l=1 γ

(l), which leads to a change in the
objective function (4) of the main paper:

{γ̂(i)}ni=1 = argmin
γ∈Rp−1×n
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This problem is convex, thus a necessary and sufficient
condition for {γ̂(i)}ni=1 to be a solution is that for all k =

1, ..., n, the (p− 1)-dimensional zero-vector 0, belongs to
the subdifferential of (2), taken with respect to γ(k):
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Recall that

∂‖x‖2 =

{ {
x
‖x‖2

}
if x 6= 0

B2(0, 1) otherwise;

∂‖x‖1 =

{
{sign(x)} if x 6= 0
B1(0, 1) otherwise .

Reapplying the change of variable, we obtain:
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,
we obtain the final result.

Theorem 1. (Change-point consistency) Let {xi}ni=1 be a
sequence of observations drawn from the piece-wise con-
stant Ising model presented in Sec. 2. Suppose (A1-A3)
hold, and assume that λ1 � λ2 = O(

√
log(n)/n). Let

{δn}n≥1 be a non-increasing sequence that converges to
0, and such that ∀n > 0, ∆min ≥ nδn, with nδn → +∞.
Assume further that (i) λ1

nδnξmin
→ 0, (ii)

√
p−1λ2

ξmin
→ 0,

and (iii)

√
p log(n)

ξmin

√
nδn
→ 0. Then, if the correct number of

change-points are estimated, we have D̂ = D and:

P( max
j=1,...,D

|T̂j − Tj | ≤ nδn) −→
n→∞

1. (3)

Proof. The proof follows the steps given in (Harchaoui and
Lévy-Leduc, 2010; Kolar and Xing, 2012; Gibberd and Roy,
2017). First of all, thanks to the union bound,

P( max
j=1,...,D

|T̂j − Tj | > nδn) ≤
D∑
j=1

P(|T̂j − Tj | > nδn),

thus it suffices to show for each j = 1, ..., D, that
P(|T̂j − Tj | > nδn) → 0. We denote by An,j the event{
|T̂j − Tj | > nδn

}
.

Similarly to (Kolar and Xing, 2012), we first con-
sider the good case where we assume that the event
Cn =

{
|T̂j − Tj | < ∆min

2

}
occurs.



Learning the piece-wise constant graph structure of a varying Ising model: Appendix

Observations AIC AUC
Degree per timestamp Method h-score ↓ F1-score ↑ D̂ h-score ↓ F1-score ↑ D̂

d = 2 n(i) = 4
TVI-FL 0.046± (0.024) 0.694± (0.103) 7.400± (3.137) 0.221± (0.035) 0.876± (0.030) 26.100± (7.739)
Tesla 0.106± (0.087) 0.649± (0.190) 12.700± (7.682) 0.184± (0.051) 0.841± (0.041) 25.100± (4.784)
λ1 = 0 0.290± (0.000) 0.342± (0.007) 99.000± (0.000) 0.290± (0.000) 0.342± (0.000) 99.000± (0.000)

n(i) = 6
TVI-FL 0.129± (0.058) 0.816± (0.073) 9.700± (2.759) 0.147± (0.071) 0.875± (0.027) 15.300± (3.378)
Tesla 0.178± (0.130) 0.748± (0.167) 12.900± (5.540) 0.164± (0.062) 0.841± (0.048) 19.000± (2.530)
λ1 = 0 0.290± (0.000) 0.407± (0.010) 99.000± (0.000) 0.290± (0.000) 0.407± (0.000) 99.000± (0.000)

n(i) = 8
TVI-FL 0.082± (0.081) 0.833± (0.095) 7.400± (3.040) 0.099± (0.073) 0.891± (0.024) 11.000± (3.873)
Tesla 0.124± (0.071) 0.846± (0.047) 13.600± (2.010) 0.178± (0.066) 0.853± (0.039) 14.700± (3.348)
λ1 = 0 0.290± (0.000) 0.449± (0.009) 99.000± (0.000) 0.290± (0.000) 0.449± (0.000) 99.000± (0.000)

d = 3 n(i) = 4
TVI-FL 0.080± (0.069) 0.563± (0.089) 7.000± (2.683) 0.204± (0.035) 0.734± (0.024) 23.100± (6.715)
Tesla 0.278± (0.319) 0.353± (0.072) 3.200± (2.891) 0.208± (0.029) 0.611± (0.041) 29.200± (3.187)
λ1 = 0 0.290± (0.000) 0.366± (0.010) 99.000± (0.000) 0.290± (0.000) 0.366± (0.000) 99.000± (0.000)

n(i) = 6
TVI-FL 0.055± (0.064) 0.617± (0.161) 6.300± (3.494) 0.130± (0.051) 0.743± (0.034) 12.800± (2.821)
Tesla 0.302± (0.241) 0.346± (0.060) 2.000± (1.183) 0.173± (0.044) 0.616± (0.041) 22.600± (2.245)
λ1 = 0 0.290± (0.000) 0.391± (0.014) 99.000± (0.000) 0.290± (0.000) 0.391± (0.000) 99.000± (0.000)

n(i) = 8
TVI-FL 0.091± (0.073) 0.714± (0.130) 8.000± (2.530) 0.127± (0.073) 0.764± (0.032) 10.400± (2.154)
Tesla 0.311± (0.231) 0.361± (0.098) 2.600± (2.615) 0.162± (0.052) 0.633± (0.045) 18.700± (3.716)
λ1 = 0 0.290± (0.000) 0.410± (0.015) 99.000± (0.000) 0.290± (0.000) 0.410± (0.000) 99.000± (0.000)

d = 4 n(i) = 4
TVI-FL 0.101± (0.082) 0.453± (0.111) 6.500± (3.324) 0.232± (0.026) 0.644± (0.041) 29.400± (4.317)
Tesla 0.444± (0.273) 0.347± (0.044) 2.875± (1.900) 0.234± (0.017) 0.518± (0.046) 34.625± (1.654)
λ1 = 0 0.290± (0.000) 0.388± (0.005) 99.000± (0.000) 0.290± (0.000) 0.388± (0.000) 99.000± (0.000)

n(i) = 6
TVI-FL 0.099± (0.064) 0.501± (0.130) 5.667± (2.309) 0.183± (0.044) 0.664± (0.041) 16.778± (3.258)
Tesla 0.258± (0.236) 0.355± (0.035) 2.500± (1.118) 0.215± (0.032) 0.503± (0.040) 26.000± (4.472)
Static 0.290± (0.000) 0.390± (0.007) 99.000± (0.000) 0.290± (0.000) 0.390± (0.000) 99.000± (0.000)

n(i) = 8
TVI-FL 0.077± (0.076) 0.528± (0.158) 5.556± (3.624) 0.169± (0.064) 0.678± (0.049) 12.444± (4.524)
Tesla 0.251± (0.230) 0.357± (0.044) 2.625± (0.696) 0.219± (0.027) 0.518± (0.054) 24.000± (2.398)
λ1 = 0 0.290± (0.000) 0.385± (0.007) 99.000± (0.000) 0.290± (0.000) 0.385± (0.000) 99.000± (0.000)

Table 1: Results for the model with the lowest AIC, and that with the highest AUC. The average ± (std) of the metrics is reported.
Compared to the table provided in the main text, here an additional comparative method is mentioned, namely the one that estimates a
graph at each timestamp (λ1 = 0).

Bounding the good case

For each j = 1, ..., D, we show that P(An,j ∩ Cn) −→ 0.
In particular, we suppose that T̂j ≤ Tj as the proof for
T̂j ≥ Tj will be the same by symmetry.
Applying Lemma 1 with k = T̂j and k = Tj , subtracting
one with the other and applying the `2-norm, we obtain:
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− tanh
(

(θj+1
a )Tx

(i)
a )
)}

, (6)

R3 =

Tj−1∑
i=T̂j

x
(i)
a

{
x(i)
a − EΘ(j)

[
Xa|X a = x

(i)
a

]}
. (7)

The event (4) occurs with probability one and it can be
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Now, We are going to show that each one of the three events
has a probability that converges to 0 as n grows. Let’s focus
on An,j,1. Applying the mean-value theorem, we have for
all i = T̂j , ..., Tj − 1:
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Using Lemma 3 with vn = nδn and ε = φmin

2 , we can
bound the right-hand side of the upper equation. We also
re-write the first term so that we obtain:
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Thanks to (iii), we have nδn that goes to infinity faster
than log(n), thus the second term of the sum goes to 0 as n
grows. Furthermore, using (i) and (ii) we have:
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Which concludes that P(An,j,1)→ 0.

We now focus on the event An,j,2. Let T̄j , b2−1(Tj +

Tj+1)c and remark that between Tj and T̄j , β̂(i) = θ̂j+1.
Now, using Lemma 1 with k = T̄j and k = Tj and similar
operation used to show equation (4), we have:
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Lemma 3 with ε = φmin/2 and similar arguments that we
used for An,j,1, we can write that the first term in the right-
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(Tj − T̄j) ˜̃M
φmin

2
‖θ̂j+1
a − θj+1

a ‖2

with probability tending to one. Here, ˜̃M corresponds to a
positive constant derived the same way as M̃ in the previous
part of the proof. In consequence, we can write

‖θ̂j+1
a − θj+1

a ‖2 ≤

8λ1 + 4(T̄j − Tj)
√
p− 1λ2 + 4‖

∑T̄j−1
i=Tj

x
(i)
a ε

i
j+1‖2

˜̃Mφmin(Tj+1 − Tj)
,

(14)

which holds with probability tending to one.

Furthermore, with probability also tending to one it can be
shown using the same arguments used to prove equation
(12) that ‖R1‖2 ≥ (Tj − T̂j)M̃φminξmin/2 and ‖R2‖2 ≤
‖θ̂j+1
a − θj+1

a ‖2φmax(Tj − T̂j)/2. Combining that with
equation (19), we can write:

P(An,j,2)

≤ P(An,j ∩ Cn ∩ {
1

3
˜̃MM̃φ2

minφ
−1
maxξmin(Tj+1 − Tj) ≤

8λ1 + 4(T̄j − Tj)
√
p− 1λ2 + 4‖

T̄j−1∑
i=Tj

x
(i)
a ε

i
j+1‖2})

+ c1 exp (−c2nδn + 2 log(n))

≤ P(c3φ
2
minφ

−1
maxξmin∆min ≤ λ1)

+ P(c4φ
2
minφ

−1
maxξmin ≤

√
p− 1λ2)

+ P

c5φ2
minφ

−1
maxξmin ≤ (T̄j − Tj)−1‖

T̄j−1∑
i=Tj

x
(i)
a ε

i
j+1‖2


+ c1 exp (−c2nδn + 2 log(n)).

With c1, ..., c5 positive constants.

The first two terms tends to 0 as n goes to infinity thanks
to the hypothesis (i) and (ii) of the theorem. Indeed, since
∆min > nδn and (nδnξmin)−1λ1 → 0 (i), the first term
tends to P(c3φ

2
minφ

−1
max ≤ 0) = 0 and the second term

tends to 0 since ξ−1
min

√
p− 1λ2 → 0 (ii). The fourth term

directly tends to 0. Applying Lemma 4, we can upper bound
the third term by:

P
(
c5φ

2
minφ

−1
maxξmin ≤ (T̄j − Tj)−1/22

√
p log(n)

)
+ c6 exp(−2p log(n))

≤ P
(
c5φ

2
minφ

−1
maxξmin ≤ (nδn)−1/22

√
p log(n)

)
+ c6 exp(−2p log(n))

with c6 an other positive constant.

Since (ξmin

√
nδn)−1

√
p log(n) → 0 (iii), the previous

equation tends to 0, which make P(An,j,2) tends to 0 as
well.

Finally, we upper bound the probability on the event An,j,3.
As before, we know that ‖R1‖2 ≥ (Tj − T̂j)M̃φminξmin/2
with probability at least 1 − c1 exp(−c2nδn + 2 log(n)),
thus we have:

P(An,j,3) ≤ P

(
M̃φminξmin

6
≤ ‖R3‖2
Tj − T̂j

)
+ c1 exp(−c2nδn + 2 log(n)).

Using Lemma 5, we can upper bound the first term by:

P

(
M̃φminξmin

6
≤ 2

√
p log(n)

Tj − T̂j

)
+ c2 exp(−c3 log(n))

≤ P

M̃φminξmin

6
≤ 2

√
p log(n)

nδn

+ c2 exp(−c3 log(n)),
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which tends to 0 thanks to (iii). Since the symmetric
case follows exactly the same arguments, we have shown
that P(An,j ∩ Cn) → 0. We now need to prove that
P(An,j ∩ Ccn)→ 0.

Bounding the bad case

Let us define the following complementary events:

D(l)
n ,

{
∃j ∈ [D], T̂j ≤ Tj−1

}
∩ Ccn (15)

D(m)
n ,

{
∀j ∈ [D], Tj−1 < T̂j < Tj+1

}
∩ Ccn (16)

D(r)
n ,

{
∃j ∈ [D], T̂j ≥ Tj+1

}
∩ Ccn. (17)

We can write P(An,j ∩Ccn) = P(An,j ∩D(l)
n ) + P(An,j ∩

D
(m)
n ) + P(An,j ∩D(r)

n ). Again, the goal is to prove that
the three terms tends to 0. We will assume that T̂j ≤ Tj as
the other case can be done by symmetry. Let’s first focus
on the middle term, it has been shown in (Harchaoui and
Lévy-Leduc, 2010; Kolar and Xing, 2012; Gibberd and Roy,
2017) that it can be upper bounded in the following way:

P(An,j ∩D(m)
n )

≤ P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n )

+ P({(Tj+1 − T̂j+1) ≥ ∆min

2
} ∩D(m)

n )

≤ P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n )

+

D∑
k=j+1

P({(T̂k+1 − Tk) ≥ ∆min

2
}

∩ {(Tk − T̂k) ≥ ∆min

2
} ∩D(m)

n ). (18)

Let us bound the first term. Assuming the event An,j ∩
{(T̂j+1 − Tj) ≥ ∆min

2 } ∩ D
(m)
n and applying Lemma 1

with k = T̂j and k = Tj , we can prove similarly as Eq. 19
that:

‖θ̂j+1
a − θja‖2

≤
4λ1 + 2(Tj − T̂j)

√
p− 1λ2 + 2‖

∑Tj−1

i=T̂j
x

(i)
a ε

i
j‖2

˜̃Mφmin(Tj − T̂j)
≤ c1φ−1

min(nδn)−1λ1 + c2φ
−1
min

√
p− 1λ2

+ c3φ
−1
min(Tj − T̂j)−1‖

Tj−1∑
i=T̂j

x
(i)
a ε

i
j‖2

with probability tending to one. Using Lemma 5 we can
bound the third term and obtain:

‖θ̂j+1
a − θja‖2 ≤ c1φ−1

min(nδn)−1λ1 + c2φ
−1
min

√
p− 1λ2

+ c3φ
−1
min(

√
nδn)−1

√
p log(n)

with probability tending to one. Similarly, applying the same
lemmas with k = Tj and either k = T̂j+1, if T̂j+1 ≤ Tj+1

or k = Tj+1 otherwise, we have:

‖θ̂j+1
a − θj+1

a ‖2 ≤ c4φ−1
min(nδn)−1λ1 + c5φ

−1
min

√
p− 1λ2

+ c6φ
−1
min(

√
nδn)−1

√
p log(n)

with probability tending to one.
Since ξmin ≤ ‖θja − θj+1

a ‖2 ≤ ‖θ̂j+1
a − θja‖2 + ‖θ̂j+1

a −
θj+1
a ‖2, we finally upper bound the considered probability

by:

P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n )

≤ P(ξmin ≤ c7φ−1
min(nδn)−1λ1 + c8φ

−1
min

√
p− 1λ2

+ c9φ
−1
min(

√
nδn)−1

√
p log(n)).

this tends to 0 thanks to the hypothesis (i), (ii) and (iii).
The other probabilities in the upper bound on P(An,j ∩
D

(m)
n ) also tends to 0. The proof follows exactly the pre-

vious one. We proved that P(An,j ∩D(m)
n ) → 0, we will

now show the same for P(An,j ∩D(l)
n ).

Following (Gibberd and Roy, 2017), we have:

P(D(l)
n ) ≤

D∑
j=1

2j−1P(max{l ∈ [D] : T̂l ≤ Tl−1})

≤ 2D−1
D∑
j=1

∑
l>j

P({Tl − T̂l ≥
∆min

2
}

∩ {T̂l+1 − Tl ≥
∆min

2
}).

Now, combining arguments of (Gibberd and Roy, 2017)
and those used to bound the elements of (18), we have
P(D

(l)
n )→ 0. Similarly we can show P(D

(r)
n )→ 0 as n→

0. Finally we have P(An,j ∩ Ccn) → 0, which concludes
the proof.

Proposition 1. Let {xi}ni=1 be a sequence of observation
drawn from the model presented in Sec. 2. Assume the
condition of Theorem 1 are respected. Then, if for a fix
Dmax we have D ≤ D̂ ≤ Dmax then:

P(d(D̂‖D) ≤ nδn) −→
n→∞

1.

Proof. Let us show that:

P({d(D̂‖D) ≥ nδn} ∩ {D ≤ D̂ ≤ Dmax})
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≤
Dmax∑
K=D

P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K}) −→
n→∞

0.

First, we note that for K = D, we have
P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K}) −→

n→∞
0 thanks to Theo-

rem 1. Thus it suffices to show that:

Dmax∑
K=D+1

P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K})

≤
Dmax∑

K=D+1

D∑
k=1

P(∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn) −→
n→∞

0.

Like in (Harchaoui and Lévy-Leduc, 2010), we rewrite the
event {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn} as the disjoint union
of the events:

En,k,1 = {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn and T̂l < Tk}

En,k,2 = {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn and T̂l > Tk}

En,k,3 = {∃1 ≤ l ≤ K − 1, |T̂l − Tk| ≥ nδn,

|T̂l+1 − Tk| ≥ nδn and T̂l < Tk < T̂l+1}

and propose to show that the probability of each events tends
to 0 as n grows. Let’s begin with P(En,k,1) and note that it
is equal to:

P(En,k,1 ∩ {T̂K > Tk−1}) + P(En,k,1 ∩ {T̂K ≤ Tk−1})

First, we are going to upper bound the left-hand element of
the previous equation. Applying Lemma 1 with t = T̂K and
t = Tk, we can prove similarly to the equation (4) in the
good case scenario of the previous theorem that:

2λ1 + (Tk − T̂K)
√
p− 1λ2 ≥ ‖R′1‖2 − ‖R′2‖2 − ‖R′3‖2

with

R′1 =

Tk−1∑
i=T̂K

x
(i)
a

{
tanh

(
(θka)Tx

(i)
a )
)

− tanh
(

(θk+1
a )Tx

(i)
a )
)}

R′2 =

Tk−1∑
i=T̂K

x
(i)
a

{
tanh

(
(θ̂K+1
a )Tx

(i)
a )
)

− tanh
(

(θk+1
a )Tx

(i)
a )
)}

R′3 =

Tk−1∑
i=T̂K

x
(i)
a

{
x(i)
a − EΘ(k)

[
Xa|X a = x

(i)
a

]}
.

Like in the previous theorem, we can upperbound
P(En,k,1 ∩ {T̂k > Tk−1}) by:

P(E
(1)
n,k,1) + P(E

(2)
n,k,1) + P(E

(3)
n,k,1)

where

E
(1)
n,k,1 = {2λ1 + (Tk − T̂K)

√
p− 1λ2 ≥

1

3
‖R′1‖2}

E
(2)
n,k,1 = {‖R′2‖2 ≥

1

3
‖R′1‖2}

E
(3)
n,k,1 = {‖R′3‖2 ≥

1

3
‖R′1‖2}.

To show that P(E
(1)
n,k,1) tends to 0 it suffices to follow the

proof used to show that P(An,j,1) tends to 0 in the good
scenario of the previous theorem.

Similarly, to show that P(E
(2)
n,k,1) tends to 0 it suffices to

follow the proof used for P(An,j,2). Applying lemma 1 with
t = Tk ans t = Tk+1 we can show that with probability
tending to one:

‖θ̂K+1
a − θk+1

a ‖2 ≤

4λ1 + 2(Tk+1 − Tk)
√
p− 1λ2 + 2‖

∑Tk+1

i=Tk
x

(i)
a ε

i
j+1‖2

˜̃Mφmin(Tk+1 − Tk)
.

(19)

The rest follows exactly the arguments used to show the
limit of P(An,j,2).

Finally, P(E
(3)
n,k,1) tends to 0 the same way P(An,j,3) was

tending to 0 in the previous proof.

The proof to show that P(En,k,1 ∩ {T̂K ≤ Tk−1}) tends to
0 is the same. It suffices to apply lemma 1 with t = Tk−1

and t = Tk to split the event in 3 sub-events and follow the
proof. By symmetry, we also have P(En,k,2)→ 0.

Let’s now focus on En,k,3. Like in (Harchaoui and Lévy-
Leduc, 2010), the event is split is four independent events:

En,k,3 = E
(1)
n,k,3 ∪ E

(2)
n,k,3 ∪ E

(3)
n,k,3 ∪ E

(4)
n,k,3

with

E
(1)
n,k,3 = En,k,3 ∩ {Tk−1 < T̂l < T̂l+1 < Tk+1}

E
(2)
n,k,3 = En,k,3 ∩ {Tk−1 < T̂l < Tk+1, T̂l+1 > Tk+1}

E
(3)
n,k,3 = En,k,3 ∩ {T̂l < Tk−1, Tk−1 < T̂l+1 < Tk+1}

E
(4)
n,k,3 = En,k,3 ∩ {T̂l < Tk−1, T̂l+1 > Tk+1}.

To prove that each one of the previous events have a proba-
bility that tends to 0 as n grows, we invite the reader to read
the proof of (Harchaoui and Lévy-Leduc, 2010). It consist
in multiple applications of the different Lemmas, the same
way we used them in the previous part. Only the time at
which lemma 1 is used changes and are given by (Harchaoui
and Lévy-Leduc, 2010). This concludes the proof.
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Supplementary Lemmas

Below, the different lemmas necessary to prove the main
results are given.

Lemma 2. Let {x(i)}ni=1 be a set of i.i.d observation sam-
pled from an Ising model with parameter Θ ∈ Rp×p and
assume that assumption (A1) is satisfied. Then, ∀r, l ∈ [n]
such that l < r and r − l > vn with vn a positive serie, we
have ∀ε > 0:

P

(
Λmin

(
1

r − l + 1

r∑
i=l

x
(i)
a x

(i)T
a

)
≤ φmin − ε

)

≤ 2(p− 1)2 exp

(
−ε

2vn
2

)
(20)

and

P

(
Λmax

(
1

r − l + 1

r∑
i=l

x
(i)
a x

(i)T
a

)
≥ φmax + ε

)

≤ 2(p− 1)2 exp

(
−ε

2vn
2

)
. (21)

Proof. Let Σ̂ = 1
r−l+1

∑r
i=l x

(i)
a x

(i)T
a and

Σ = E
[
X aX

T
a

]
.

We first proove the inequality (20). Recall that for a symmet-
ric matrix M , we have Λmax(M) ≤ ‖M‖F , the Frobenius
norm of M . We have

Λmin(Σ̂) = min
‖v‖2=1

vTΣ̂v (22)

≥ min
‖v‖2=1

vTΣv − max
‖v‖2=1

vT(Σ̂− Σ)v (23)

≥ Λmin(Σ)− Λmax(Σ̂− Σ) (24)

≥ φmin − ‖Σ̂− Σ‖F . (25)

Let s(i)
mq be the (m, q)-th coordinate of x(i)

a x
(i)T
a − Σ

and 1
r−l+1

∑r
i=l s

(i)
mq the one of Σ̂ − Σ. Note that

E
[
s

(i)
mq

]
= 0 and |s(i)

mq| ≤ 2. Let us analyze the quantity

P
(
‖Σ̂− Σ‖F > ε

)
with ε > 0:

P
(
‖Σ̂− Σ‖F > ε

)
= P

(
(
∑
m,q

s2
mq)

1/2 > ε

)
(26)

= P

(∑
m,q

s2
mq > ε2

)
(27)

≤
∑
m,q

P
(
s2
mq > ε2

)
(28)

≤
∑
m,q

P (|smq| > ε) . (29)

Thanks to Hoeffding’s inequality, we have P (|smq| > ε) ≤
2 exp

(
− ε

2(r−l+1)
2

)
. Since r − l > vn, we also have

P (|smq| > ε) ≤ 2 exp
(
− ε

2vn
2

)
. It follows from (29) that

P
(
‖Σ̂− Σ‖F > ε

)
≤ 2(p−1)2 exp

(
− ε

2vn
2

)
. We deduce

that:

P
(
Λmin(Σ̂) ≥ φmin − ε

)
≥ 1− 2(p− 1)2 exp

(
−ε

2vn
2

)
,

(30)
which concludes the proof for (20).

To prove (21) it suffices to note that Λmax(Σ̂) ≤ φmax +

‖Σ̂− Σ‖F and use the same arguments.

Lemma 3. Let {x(i)}ni=1 be a set of i.i.d observation sam-
pled from an Ising model with parameter Θ ∈ Rp×p and
assume that assumption (A1) is satisfied.
Let R and L be two random variable such that R,L ∈ [n],
L < R andR−L > vn almost surely, with vn a positive se-
rie. For a fixed node a and any ε > 0, there exist a constant
c1 > 0 such that:

P

(
Λmin

(
1

R− L+ 1

R∑
i=L

x
(i)
a x

(i)T
a

)
≤ φmin − ε

)

≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
(31)

and

P

(
Λmax

(
1

R− L+ 1

R∑
i=L

x
(i)
a x

(i)T
a

)
≥ φmax + ε

)

≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
.

(32)

Proof. We note Σ̂(L,R) = 1
R−L+1

∑R
i=L x

(i)
a x

(i)T
a and

I ,
{

(l, r) ∈ [n]2 : r − l > vn
}

.
We first prove the inequality (31):

P
(

Λmax

(
Σ̂(L,R)

)
≥ φmax + ε

)
(33)

=
∑

(l,r)∈I

P
(

Λmax

(
Σ̂(L,R)

)
, L = l, R = r

)
(34)

≤
∑

(l,r)∈I

P
(

Λmax

(
Σ̂(L,R)

)∣∣∣L = l, R = r
)
. (35)

Using Lemma 2 we can bound (35):

(35) ≤
∑

(l,r)∈I

2(p− 1)2 exp

(
−ε

2vn
2

)
(36)
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≤ |I|c1 exp

(
−ε

2vn
2

)
(37)

≤ n2c1 exp

(
−ε

2vn
2

)
(38)

≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
(39)

with c1 = 2(p−1). This concludes the proof for (31). Same
arguments are used to prove (32).

Lemma 4. Let {x(i)}ni=1 be a set of independent observa-
tion sampled from the time-varying Ising model (Section 2).
Then, ∀j ∈ [D] and ∀r, l ∈ {Tj , ..., Tj+1 − 1} such that
l < r, we have:

P

(
1

r − l + 1
‖R3(l, r)‖2 ≤ 2

√
p log(n)

r − l + 1

)
(40)

≥ 1− 2(p− 1) exp (−2p log(n)) (41)

withR3(l, r) =
∑r
i=l x

(i)
a

{
x

(i)
a − EΘj

[
Xa|X a = x

(i)
a

]}
.

Proof. Let Zij be the the j-th element of the vector
1

r−l+1x
(i)
a

{
x

(i)
a − EΘ

[
Xa|X a = x

(i)
a

]}
. Note that

|Zij | ≤ 2
r−l+1 and E [Zij ] = 0. Let ε > 0, we have:

P
(

1

r − l + 1
‖R3(l, r)‖2 ≥ ε

)

= P

√√√√∑
j 6=a

(

r∑
i=l

Zij)2 ≥ ε


= P

∑
j 6=a

(

r∑
i=l

Zij)
2 ≥ ε2


≤
∑
j 6=a

P

(
|
r∑
i=l

Zij | ≥ ε

)

≤ 2(p− 1) exp

(
−ε

2(r − l + 1)

2

)
.

Now, if we fix ε = 2
√

p log(n)
r−l+1 , we obtain:

P

(
1

r − l + 1
‖R3(l, r)‖2 ≤ 2

√
p log(n)

r − l + 1

)
≥ 1− 2(p− 1) exp (−2p log(n)).

Lemma 5. Let {x(i)}ni=1 be a set of independent observa-
tion sampled from the time-varying Ising model (Section 2).
We have:

P

 ⋂
j∈[D]

⋂
l,r∈Ij

{
1

r − l + 1
‖Rj3(l, r)‖2 ≤ 2

√
p log(n)

r − l + 1

}

≥ 1− c2 exp (−c3 log(n))
(42)

withRj3(l, r) =
∑r
i=l x

(i)
a

{
x

(i)
a − EΘj

[
Xa|X a = x

(i)
a

]}
,

c2, c3 some positive constants and Ij ,{
(l, r) ∈ {Tj , ..., Tj+1 − 1}2 : r > l

}
.

Proof. The proof is a simple application of Lemma 4:

P

 ⋃
j∈[D]

⋃
l,r∈Ij

{
1

r − l + 1
‖Rj3(l, r)‖2 ≥ 2

√
p log(n)

r − l + 1

}
≤
∑
j∈[D]

∑
l,r∈Ij

P

(
1

r − l + 1
‖Rj3(l, r)‖2 ≥ 2

√
p log(n)

r − l + 1

)
≤ 2Dn2(p− 1) exp (−2p log(n))

≤ c2 exp (−2p log(n) + 2 log(n))

≤ c2 exp (−c3 log(n))

since p > 1. This concludes the proof.
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