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A. Eigenfunctions of NTK for a two layer-network for data drawn from a piecewise constant
distribution

Lemma 1. Let p(x) be a piecewise constant density function on S1. Then the eigenfunctions in Eq. (9) in the paper satisfy
the following ordinary differential equation

f ′′(x) = −p(x)

πλ
f(x). (1)

Proof. Combining Eqs. (9) and (10) in the paper we have∫ x+π

x−π
(1 + cos(z − x))(π − |z − x|)f(z)p(z)dz = 4πλf(x) (2)

Below we take six derivatives of (2) with respect to x. We use parenthesized superscripts f (n)(x) to denote the nth derivative
of f at x. First derivative

4πλf (1)(x) = −
∫ x

x−π
(1 + cos(z − x)− (π + z − x) sin(z − x)) f(z)p(z)dz

+

∫ x+π

x

(1 + cos(z − x) + (π − z + x) sin(z − x)) f(z)p(z)dz

Second derivative

4πλf (2)(x) + 4f(x)p(x) = −
∫ x

x−π
(2 sin(z − x) + (π + z − x) cos(z − x)) f(z)p(z)dz

+

∫ x+π

x

(2 sin(z − x)− (π − z + x) cos(z − x)) f(z)p(z)dz

Adding this to (2)

4πλf (2)(x) + 4f(x)p(x) + 4πλf(x) =

∫ x

x−π
(π + z − x− 2 sin(z − x)) f(z)p(z)dz

+

∫ x+π

x

(π − z + x+ 2 sin(z − x)) f(z)p(z)dz (3)

Third derivative

4πλf (3)(x) + 4πλf (1)(x) + 4f (1)(x)p(x) + 4f(x)p(1)(x) =∫ x

x−π
(2 cos(z − x)− 1) f(z)p(z)dz −

∫ x+π

x

(2 cos(z − x)− 1) f(z)p(z)dz
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Fourth derivative

4πλf (4)(x) + 4πλf (2)(x) + 4f (2)(x)p(x) + 8f (1)(x)p(1)(x) + 4f(x)p(2)(x)− 2f(x)p(x) =

3f(x− π)p(x− π) + 3f(x+ π)p(x+ π)−
∫ x+π

x

2 sin(z − x)f(z)p(z)dz +

∫ x

x−π
2 sin(z − x)f(z)p(z)dz

Adding this to (3)

4πλf (4)(x) + 8πλf (2)(x) + 4πλf(x) + 2f(x)p(x) + 4p(x)f (2)(x) + 8f (1)(x)p(1)(x) + 4f(x)p(2)(x) =

3f(x− π)p(x− π) + 3f(x+ π)p(x+ π) +

∫ x+π

x

(π − z + x)f(z)p(z)dz +

∫ x

x−π
(π + z − x)f(z)p(z)dz

Fifth derivative

4πλf (5)(x) + 8πλf (3) (x) + 4πλf (1)(x) + 4f (3)(x)p(x) + f (2)(x)p(1)(x) + 12f (1)(x) + p(2)(x)

+2f (1)(x)p(x) + 4f(x)p(3)(x) = −2f(x)p(2)(x) + 3f (1)(x− π)p(x− π) + 3f(x− π)p(1)(x− π)

+3f (1)(x+ π)p(x+ π) + 3f(x+ π)p(1)(x+ π)−
∫ x

x−π
f(z)p(z)dz +

∫ x+π

x

f(z)p(z)dz

Sixth derivative

4πλf (6)(x) + 8πλf (4)(x) + 4πλf (2)(x) = 3f (2)(x+ π)p (x+ π) + 3p(2)(x+ π)f(x+ π)

+6f (1)(x+ π)p(1)(x+ π)− 2f(x)p(x) + f(x− π)p(x− π)− 4f(x)p(4)(x)− 4p(x)f (4) (x)

−2f(x)p(2)(x)− 2 p(x) f (2)(x) + f(x+ π)p(x+ π) + 6f (1)(x− π)p(1)(x− π) + 3f (2)(x− π)p(x− π)

+3p(2)(x− π)f(x− π)− 16f (1)(x)p(3)(x)− 16f (3)(x)p(1)(x)− 24p(2)(x)f (2)(x)− 4f (1)(x)p(1)(x)

Next, we simplify and rearrange. We omit dependence on x, note that f(x− π) = f(x+ π) and p(x− π) = p(x+ π) and
respectively denote them by f̄ and p̄.

2πλf (6) + 2(p+ 2πλ)f (4) + 8p(1)f (3) + (p+ 12p(2) + 2πλ)f (2)+

2(p(1) + 4p(3))f (1) + (p+ p(2) + 2p(4))f = (p̄+ 3p̄(2))f̄ + 6p̄(1)f̄ (1) + 3p̄f̄ (2)

Assume next that p(x) is constant around x and x− π, so its derivatives at these points vanish. Then,

2πλf (6) + (2p+ 4πλ)f (4) + (p+ 2πλ)f (2) + pf = p̄f̄ + 3p̄f̄ (2)

We next make the assumption that p(x) has a period of π (so p = p̄) in which case f(x + π) = −f(x) (i.e., f̄ = −f ).
These assumptions will be removed later. With these assumptions we have

2πλf (6) + (2p+ 4πλ)f (4) + (4p+ 2πλ)f (2) + 2pf = 0

It can be readily verified that this equation is solved by (1).

Finally, if p(x) does not have a period of π we can preprocess the data in a straightforward way to make p have a period of
π (by mapping the interval [0, 4π) to [0, 2π)) without changing the function that needs to be learned.

B. The amplitudes of the eigenfunctions in different regions
In this section for the NTK of a 2-layer network for which only the first layer is trained we compute bounds on the amplitudes
of its eigenfunctions. We first bound the ratios between the amplitudes in two neighboring regions, and use this in the
following section to bound the amplitude in any one region.
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B.1. Ratios between the amplitudes of neighboring regions

If p(x) = pj is constant in each region Rj ⊆ S1, 1 ≤ j ≤ l, then the eigenfunction or order q fq(x) for x ∈ Rj can be
written as

fq(x) = aj cos

(
q
√
pjx

Z
+ bj

)
where aj ≥ 0. In this part we characterize the amplitudes the different regions aj for j = 1, ..., l.

We notice that the eigenfunctions appear to be continuous and differentiable. Without loss of generality, assume that the
boundary between region j to region j + 1 happens at x = 0. Then the eigenfunction in the vicinity of 0 is defined as
follows:

fq(x) =

{
aj cos(q

√
pj
Z x+ bj) x ≤ 0

aj+1 cos(q
√
pj+1

Z x+ bj+1) x ≥ 0

Continuity at x = 0 implies that

aj cos(bj) = aj+1 cos(bj+1) ⇒ aj
aj+1

=
cos(bj+1)

cos(bj)
(4)

Differentiability at x = 0 implies

aj
√
pj sin(bj) = aj+1

√
pj+1 sin(bj+1) ⇔ aj

aj+1
=

√
pj+1 sin(bj+1)
√
pj sin(bj)

These allow us to bound the ratio aj/aj+1. We have

aj
aj+1

=

√
pj+1 sin(bj+1)
√
pj sin(bj)

⇒
(

aj
aj+1

)2

=
pj+1 sin2(bj+1)

pj sin2(bj)
=
pj+1(1− cos2(bj+1))

pj(1− cos2(bj))
(5)

On the other hand, from (4) we know that

aj
aj+1

=
cos(bj+1)

cos(bj+1)
⇒
(

aj
aj+1

)2

=
cos2(bj+1)

cos2(bj)
⇒ cos2(bj+1) = cos2(bj)

(
aj
aj+1

)2

(6)

Substitute (6) in (5) we get(
aj
aj+1

)2

=
pj+1

pj

1− cos2(bj)(
aj
aj+1

)2

1− cos2(bj)
⇒
(

aj
aj+1

)2

(1− cos2(bj)) =
pj+1

pj

(
1− cos2(bj)

(
aj
aj+1

)2
)

And we have (
aj
aj+1

)2

(1− cos2(bj) +
pj+1

pj
cos2(bj)) =

pj+1

pj

implying that (
aj
aj+1

)2

=

pj+1

pj

1− cos2(bj)
(

1− pj+1

pj

) (7)

WLOG assume that pj+1/pj ≥ 1 then

cos2(bj)

(
1− pj+1

pj

)
≤ 0 ⇒ 1

1− cos2(bj)
(

1− pj+1

pj

) ≤ 1

As a result we get (
aj
aj+1

)2

=

pj+1

pj

1− cos2(bj)(1− pj+1

pj
)
≤ pj+1

pj
⇒ aj

aj+1
≤
√
pj+1

pj
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For a lower bound note that the denominator in (7) satisfies

1− cos2(bj)(1−
pj+1

pj
) = sin2(bj) +

pj+1

pj
cos2(bj) ≤

pj+1

pj

where the inequality is due to the assumption that pj+1 ≥ pj . Consequently, (aj+1/aj)
2 ≥ 1. In summary, we have

bounded the ratios between the amplitudes of neighboring regions by

1 ≤ aj
aj+1

≤
√
pj+1

pj
(8)

We next note that these bounds are tight and are obtained in the following setup. Assume we have an even number of regions
of constant density l each with equal size. Suppose that in each region the eigenfunction includes an integer number of
cycles. For each q we construct an eigenfunction, by choosing a phase bj = 0 for j = 1, ..., l, and it holds that the border
between region l/2 and l/2 + 1 lies at x = 0. As a result, at this point we have

a l
2

cos

(
q
√
p l

2
0

Z

)
= a l

2 +1 cos

(
q
√
p l

2 +1 0

Z

)
⇒ a l

2
= a l

2 +1

But since each region contains an integer number of cycles we get for j = 1, ..., l

cos

(
q
√
p l

2
0

Z

)
= cos

(
q
√
pj

Z

(
2π

l
j − π

))
= 1 (9)

Continuity implies for j = 2, ..., l

aj−1 cos

(
q
√
pj−1

Z

(
2π(j − 1)

l
− π

))
= aj cos

(
q
√
pj

Z

(
2π(j − 1)

l
− π

))
⇒ aj−1 = aj

As a result, for each q we get one eigenfunction (up to a global scale)

f1
q (x) = cos

(
q
√
pjx

Z

)
, for x ∈

[
2π(j − 1)

l
− π, 2πj

l
− π

]
(10)

We next construct a second eigenfunction for each q. Since there is an integer number of cycles in each region, to keep the
second eigenfunction of each q orthogonal to the first one, we choose a phase of −π/2:

f1
q (x) = aj sin

(
q
√
pjx

Z

)
, for x ∈

[
2π(j − 1)

l
− π, 2πj

l
− π

]
Next, to maintain differentiability, the derivative at the border between regions Rj and Rj+1 must be equal. So at
x = 2πj/l − π we have for j = 1, ..., l − 1

d

dx

(
aj sin

(
q
√
pjx

Z

))
=

d

dx

(
aj+1 sin

(
q
√
pj+1x

Z

))
⇒

−
ajq
√
pj

Z
cos

(
q
√
pjx

Z

)
= −

aj+1q
√
pj+1

Z
cos

(
q
√
pj+1x

Z

)
⇒

aj
√
pj cos

(
q
√
pjx

Z

)
= aj+1

√
pj+1 cos

(
q
√
pj+1x

Z

)
From (9) we have

aj
√
pj = aj+1

√
pj+1 ⇒

aj
aj+1

=

√
pj+1
√
pj

And we can choose for the second eigenfunction for each q (up to a global scale)

f2
q (x) =

1
√
pj

sin

(
q
√
pjx

Z

)
, for x ∈

[
2π(j − 1)

l
− π, 2πj

l
− π

]
(11)

In Figure 1 we show an example for this setup.
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Figure 1. For the NTK of a two-layer network with bias we plot in each of the four columns four of its eigenfunction pairs (each of the
same eigenvalue) under a non-uniform data distribution of p(x) ∈ 1/π{4/5, 1/5} in S1. For this distribution whenever mod(q, 3) = 0
there is an integer number of cycles in each region. As a result, for each q we obtain two eigenfunctions of the form of (10) and (11).

B.2. Bounding aj

Assuming p(x) is constant in l regions and that WLOG up to a global scale, the minimal amplitude is amin = 1. Then
for two neighboring regions Rj and Rj+1 if pj ≥ pj+1 ⇒ aj+1

aj
≤
√

pj
pj+1

≤
√

pmax

pmin
and if pj+1 ≥ pj ⇒ aj

aj+1
≥ 1 ⇒

aj+1

aj
≤ 1 ≤

√
pmax

pmin
. As a result in each transition between two regions we have

ai+1

ai
≤
√
pmax

pmin

Starting from a minimal amplitude of magnitude 1. For l regions there are no more than l transitions so each amplitude is
(loosely) bounded as follows

aj ≤ amin
(√

pmax

pmin

)l
=

(
pmax

pmin

) l
2

Next we bound the global scale factor. Let s =
∫ π
−π(f(x))2dx. Then we have that after normalizing the global scale factor

aj ≤
1√
s

(
pmax

pmin

) l
2

To simplify notation we denote the frequency of each region by qj =
√
pjq

Z . Then for s we have:

s =

∫ π

−π
(f(x))2dx =

l∑
j=1

a2
j

∫
Rj

cos2(qjx+ bj)dx ≥
l∑

j=1

a2
min

∫
Rj

cos2(qjx+ bj)dx =

l∑
j=1

∫
Rj

cos2(qjx+ bj)dx

For each region we have ∫
Rj

cos2(qjx+ bj)dx =

∫ −π+ 2π
l j

−π+ 2π
l (j−1)

cos2(qjx+ bj)dx =

1

2

∫ −π+ 2π
l j

−π+ 2π
l (j−1)

(1 + cos (2qjx+ 2bj))dx =
1

2

(
x+

sin(2qjx+ 2bj)

2qj

)−π+ 2π
l j

−π+ 2π
l (j−1)

=
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1

2

(
−π +

2π

l
j +

sin(2qj(−π + 2π
l j) + 2bj)

2qj
− (−π +

2π

l
(j − 1))−

sin(2qj(−π + 2π
l (j − 1)) + 2bj)

2qj

)
=

1

2

(
2π

l
+

sin(2qj(−π + 2π
l j) + 2bj)

2qj
−

sin(2qj(−π + 2π
l (j − 1)) + 2bj)

2qj

)
≥ π

l
− 1

2qj

So we get s ≥
∑l
j=1

π
l −

1
2qj

= π − 1
2

∑l
j=1

1
qj

= π − 1
2

∑l
j=1

Z√
pjq

.

And we get:

s ≥ π − 1

2

l∑
j=1

Z
√
pjq

= π − Z

2q

l∑
j=1

1
√
pj

As a result all the amplitudes in an eigenfunction of order q are bounded by

ai ≤
1√

π − Z
2q

∑l
j=1

1√
pj

(
pmax

pmin

) l
2

for all 1 ≤ i ≤ l (12)

C. Convergence rate as a function of frequency
To derive the rate of convergence as a function of frequency and density we assume that p(x) forms a piecewise-constant
distribution (PCD) with a fixed number of pieces l of equal sizes, p(x) = pj in Rj , 1 ≤ j ≤ l. Our proof will rely on
a lemma that states informally that not too many eigenfunctions need to be taken into account for convergence – more
precisely, only a number linear in k and inversely linear in

√
p∗, where p∗ > 0 denotes the minimal density. Convergence

rate is then determined by the eigenfunction with highest eigenvalue included in the approximation for g(x).

Lemma 2. Let p(x) be PCD. For any ε > 0, there exist nk such that
∑∞
i=nk+1 g

2
i < ε2, where gi =

∫ π
−π vi(x)g(x)p(x)dx

and nk is bounded as in (15) below.

Proof. Given a target function g(x) = cos(kx) and a basis function vi(x) = a(x) cos(
qi
√
p(x)x

Z + b(x)) where qi = bi/2c.
Their inner product can be written as

gi =

l∑
j=1

ajpj

∫
Rj

cos(kx) cos(qijx+ bj)dx (13)

where qij = qi
√
pj/Z denotes the local frequency of vi(x) at Rj . Next, to derive a bound we will restrict our treatment to

qij ≥ 2k (and by that bound nk from below). With this assumption we obtain∣∣∣∣∣
∫
Rj

cos(kx) cos(qijx+ bj)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ π

l

−πl
cos(kx) cos(qijx)dx

∣∣∣∣∣ =∣∣∣∣∣∣
sin
(
π(qij+k)

l

)
qij + k

+
sin
(
π(qij−k)

l

)
qij − k

∣∣∣∣∣∣ ≤ 1

qij + k
+

1

qij − k
=

2qij
q2
ij − k2

≤ 8

3qij

Let p∗ = minj pj and let q∗i = qi
√
p∗/Z, q∗i denotes the frequency associated with the corresponding region (which is the

lowest within vi). Our requirement that qij > 2k for all 1 ≤ j ≤ l implies that q∗i > 2k, and therefore

qi >
2Zk√
p∗

(14)

Additionally, using (13)

|gi| ≤
8

3

l∑
j=1

ajpj
qij
≤ 8

3q∗i

l∑
j=1

ajpj =
8B

3q∗i
=

8BZ

3qi
√
p∗
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where we denote by B =
∑l
j=1 ajpj and the equality on the right is obtained by plugging in the definition of q∗i . Note that∑l

j=1 pj = l/(2π) (since 1 =
∫ π
−π p(x)dx =

∑l
j=1 2πpj/l), implying that B ≤ la∗/(2π), where a∗ = maxj aj and a∗ is

bounded by (12).

Next, for a given ε > 0 we wish to bound the sum
∑∞
i=nk

g2
i by starting from a sufficiently high index nk, i.e.,

∞∑
i=nk+1

g2
i ≤

(
8BZ

3
√
p∗

)2 ∞∑
i=nk+1

1

q2
i

<
1

qnk

(
8BZ

3
√
p∗

)2

< ε2

By the definition of qi, nk ≥ 2qnk , so

nk >
2

ε2

(
8BZ

3
√
p∗

)2

=
128B2Z2

9ε2p∗

So in conclusion,

nk > max

{
4Zk√
p∗
,

128B2Z2

9ε2p∗

}
(15)

Theorem 1. Let p(x) be a PCD, for any δ > 0 the number of iterations t needed to achieve ‖g(x) − u(t)(x)‖ < δ is
Õ(k2/p∗), where Õ hides logarithmic terms.

Proof. Let nk be chosen as in Lemma 2 with ε = δ/2, i.e.

nk =

⌈
max

{
4Zk√
p∗
,

256B2Z2

9δ2p∗

}⌉
Let

ĝ(x) =

nk∑
i=1

giv(i)

Then,

‖g(x)− ĝ(x)‖2 =

∞∑
i=nk+1

g2
i <

(
δ

2

)2

and due to triangle inequality

‖g(x)− u(t)(x)‖ ≤ ‖g(x)− ĝ(x)‖+ ‖ĝ(x)− u(t)(x)‖

it suffices to find t such that
‖ĝ(x)− u(t)(x)‖ < δ

2
= δ̃

Using (Arora et al., 2019b)’s Theorem 4.1 adapted to continuous operators

∆2 = ‖ĝ − u(t)‖2 ≈
nk∑
i=1

(1− ηλi)2tg2
i ≤ π

nk∑
i=1

(1− ηλi)2t ≤ πnk(1− ηλnk)2t (16)

where the left inequality is due to |gi|2 ≤ ‖ cos2(kx)‖ = π and the right inequality is because λi are arranged in a
descending order. Now for a fixed distribution p(x), and since we are interested in the asymptotic rate of convergence
(i.e., as k →∞), as soon as k > 64B2Z/(9δ̃2

√
p∗) it suffices to only consider the case qnk = 2Zk/

√
p∗, as in (14). The

eigenvalue λnk is determined according to

λnk =
Z2

π2q2
nk

=
p∗

4π2k2

(Here we used the expression for λnk assuming nk is odd. A similar expression of the same order is obtained for even nk.)
Consequently, to bound ∆2 < δ̃ in (16) and substituting for nk and λnk we have

4Zk√
p∗

(
1− ηp∗

4π2k2

)2t

< δ̃



Frequency Bias in Neural Networks for Input of Non-Uniform Density: Supplementary Material

Taking log

2t log

(
1− ηp∗

4π2k2

)
> log

(
δ
√
p∗

4Zk

)
from which we obtain

t >
log
(
δ
√
p∗

4Zk

)
2 log

(
1− ηp∗

4π2k2

) ≈ −2π2k2

ηp∗
log

(
δ
√
p∗

4Zk

)
= Õ

(
k2

p∗

)
where Õ hides logarithmic terms.

D. Spectral convergence analysis for deep networks - proof of Theorem 2
D.1. The network model

The parameters of the network are W = (W1, ...,WL) where Wl ∈ Rm×m and also A ∈ Rm×d and B ∈ R1×m. The
network function over input xi ∈ Rd (i ∈ [n]) is given by

ui = f(xi;W ) = Bσ(WLσ(WL−1σ(....(W1σ(Axi))..))

where σ stands for element wise RELU activation function. For a tuple W = (W1, ...,WL) of matrices, we let ‖W‖2 =

maxl∈[L] ‖Wl‖2 and ‖W‖F = (
∑L
l=1 ‖Wl‖2F )1/2.

The parameters are initialized randomly from a normal distribution according to

[Wl]ij ∼ N (0,
2

m
), l ∈ [L] (17)

Aij ∼ N (0,
2

m
)

Bij ∼ N (0, τ2)

where similarly to (Allen-Zhu et al., 2019) the layers A and B are initialized and held fixed.

The network functionality is summarized as follows

hi,0 = σ(Axi)

h
(t)
i,l = σ(W

(t)
l h

(t)
i,l−1)

u
(t)
i = Bh

(t)
i,L

where i ∈ [n], l ∈ [L] and t denotes iteration number. In addition, for each input vector i ∈ [n] and layer l ∈ {0, 1, ..., L}, we
associate a diagonal matrix Di,l such that for j ∈ [m], (Di,l)j,j = I(Wlhi,l−1)j≥0, where we use the convention hi,−1 = xi.
The network is trained to minimize the `2 loss

Φ(W ) =
1

2

n∑
i=1

(yi − f(xi;W ))2

We will analyze the properties of the matrices H,H∞ ∈ Rn×n, comprised of the following entries

Hij(t) =

〈
∂u

(t)
i

∂W
,
∂u

(t)
j

∂W

〉

H∞ij = EW

〈
∂u

(0)
i

∂W
,
∂u

(0)
j

∂W

〉
.

We write the eigen-decomposition of H∞ =
∑n
i=1 λiviv

T
i , where v1, . . . ,vn are the eigenvectors of H∞ and λ1, . . . , λn

are their corresponding eigenvalues. The minimal eigenvalue is denoted by λ0 = min(λ(H∞)).
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Theorem 2. For any ε ∈ (0, 1] and δ ∈ (0, O( 1
L )], let τ = Θ( εδ̂n ), m ≥ Ω

(
n24L12 log5m

δ8τ6

)
, η = Θ

(
δ

n4L2mτ2

)
. Then, with

probability of at least 1− δ̂ over the random initialization after t iterations of GD we have that

‖y − u(t)‖ =

√√√√ n∑
i=1

(1− ηλi)2t(vTi y)2 ± ε. (18)

D.2. Proof strategy

The proof of Thm. 2 relies on a theorem, provided by (Allen-Zhu et al., 2019), stated in Thm. 3, and an observation, based
the on the derivation of the proof to that theorem, which we state in Lemma 4.

Thm. 3 assumes that the data is normalized, so that ‖xi‖ = 1, and there exists δ ∈ (0, O( 1
L )] such that for every pair

i, j ∈ [n], we have ‖xi − xj‖ ≥ δ and also it holds that |yi| ≤ O(1).

In addition, we prove Lemma 3, which is the basis for the proof of our Theorem.

Lemma 3. Suppose δ ∈ (0, O( 1
L )], m ≥ Ω

(
n24L12 log5m

δ8τ2

)
, η = Θ

(
δ

n4L2mτ2

)
and also let ω = O(n

3 logm
δτ
√
m

). Then, with

probability at least 1− e−Ω(mω2/3L) over the randomness of A,B and W (0) we have

u(t+ 1)− y = (I − ηH(t))(u(t)− y) + ε(t) (19)

with

‖ε(t)‖ ≤ O

(
L log4/3m

τ1/3m1/6n1.5

)√
Φ(W (t)) +O

(
δ2

τn6m0.5L1.5

)
Φ(W (t))

The proof of the Lemma is deferred, and will be given after the proof of the theorem.

D.3. Proof of Thm 2

Proof. By Lemma 3 we have the following relation

u(t)− y = (I − ηH(t− 1))(u(t− 1)− y) + ε(t− 1)

Adding and subtracting ηH∞(u(t− 1)− y) we have

u(t)− y = (I − ηH∞)(u(t− 1)− y) + η(H∞ −H(t− 1))(u(t− 1)− y) + ε(t− 1)

and this is equivalent to

u(t)− y = (I − ηH∞)(u(t− 1)− y) + ξ(t− 1). (20)

where we denote ξ(t) = η(H∞ −H(t))(u(t)− y) + ε(t). Then, by applying (20) recursively, we obtain

u(t)− y = (I − ηH∞)t(u(0)− y) +

t−1∑
i=0

(I − ηH∞)iξ(t− 1− i) (21)
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We first bound the quantity ‖ξ(t− 1− i)‖2

‖ξ(t− 1− i)‖2 = ‖η(H(t− 1− i)−H∞)(y − u(t− 1− i)) + ε(t− 1− i)‖2
≤ ‖η(H(t− 1− i)−H∞)‖2 ‖(y − u(t− 1− i))‖2 + ‖ε(t− 1− i)‖2

η ≤
1,2

O

(
δ2mτ3

n6

)√
Φ(W (t−1−i))) +O

(
δ2

τn6m0.5L1.5

)
Φ(W (t−1−i)) +O

(
L log4/3m

τ1/3m1/6n1.5

)√
Φ(W (t−1−i))

≤
3

(
1− Ω

(
τ2ηδm

n2

)) t−1−i
2

(
ηO

(
δ2mτ3

n6

)√
Φ(W (0)) +O

(
δ2

τn6m0.5L1.5

)
Φ(W (0)) +O

(
L log4/3m

τ1/3m1/6n1.5

)√
Φ(W (0))

)

≤
4

(
1− Ω

(
τ2ηδm

n2

)) t−1−i
2

(
ηO
(√
n
)
O

(
δ2mτ3

n6

)
+O

(
δ2

τn6m0.5L1.5

)
O (n) +O

(
L log4/3m

τ1/3m1/6n1.5

)
O
(√
n
))

=

(
1− Ω

(
τ2ηδm

n2

)) (t−1−i)
2

(
ηO

(
δ2mτ3

n5.5

)
+O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))

where we make the following derivations

1. Using Lemma 14 which states that ‖H(t)−H∞‖2 ≤ O( δ
2mτ3

n6 ).

2. Using the bound in Lemma 3, for ε(t− 1− i)

3. Using bound over the loss by, Lemma 4 (b).

4. By Lemma 11 the loss at initialization is bounded by O(n).

Using the bound, derived above, (21) yields

‖u(t)− y‖ =

∥∥∥∥∥(I − ηH∞)t(u(0)− y) +

t−1∑
i=0

((I − ηH∞)iξ(t− 1− i))

∥∥∥∥∥
≤

1 ∥∥(I − ηH∞)t(u(0)− y)
∥∥

+

t−1∑
i=0

(1− ηλ0)i
(

1− Ω

(
τ2ηδm

n2

)) (t−1−i)
2

(
ηO

(
δ2mτ3

n5.5

)
+O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))

≤
2 ∥∥(I − ηH∞)t(u(0)− y)

∥∥+ t

(
ηO

(
δ2mτ3

n5.5

)
+O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))

≤
3 ∥∥(I − ηH∞)t(u(0)− y)

∥∥+O

(
n6L2

δ2

)(
ηO

(
δ2mτ3

n5.5

)
+O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))

≤
∥∥(I − ηH∞)t

∥∥ ‖u(0)‖+
∥∥(I − ηH∞)ty

∥∥+O

(
n6L2

δ2

)(
ηO

(
δ2mτ3

n5.5

)
+O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))

where we make the following derivations

1. ‖I − ηH∞‖2 is bounded by the maximal eigenvalue of the positive definite matrix (I − ηH∞), i.e, (1− ηλ0).

2. (1− ηλ0)i
(

1− Ω
(
τ2ηδm
n2

)) (t−1−i)
2 ≤ 1

3. By Theorem 3, t ≤ O(n
6L2

δ2 )
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Next, it is straightforward to show that

∥∥(I − ηH∞)ty
∥∥ =

√√√√ n∑
i=1

(1− ηλi)2t(vTi y)2 (22)

where λi,vi are the eigenvalues and eigenvectors of H∞, respectively.

For the first term we use lemma 11 which states that ‖u(0)‖ ≤
√
nτ

δ̂
, and by our choice of τ we obtain

∥∥(I − ηH∞)t
∥∥ ‖u(0)‖ ≤ (1− ηλ0)tO

(√
nτ

δ̂

)
≤ ε (23)

Finally, by our choice of η,m, τ it holds that

O

(
n6L2

δ2

)(
O

(
δ2mτ3

n5.5

)
η +O

(
δ2

τn5m0.5L1.5

)
+O

(
L log4/3m

τ1/3m1/6n

))
≤ ε (24)

Combining (22), (23) and (24) yields

‖y − u(t)‖ =

√√√√ n∑
i=1

(1− ηλi)2k(vTi y)2 ± ε (25)

D.4. Supporting Lemmas

Proof. Proof of Lemma 3.

By construction

εi(t) = u
i
(t+ 1)− ui(t) + [ηH(t)(u(t)− y)]i

= ui(t+ 1)− ui(t) + η

n∑
j=1

(uj(t)− yj)Hij(t)

= ui(t+ 1)− ui(t) + η

n∑
j=1

(uj(t)− yj)
〈
∂ui(t)

∂W
,
∂uj(t)

∂W

〉

= ui(t+ 1)− ui(t) + η

〈
∂ui(t)

∂W
,

n∑
j=1

(uj(t)− yj)
∂uj(t)

∂W

〉

= ui(t+ 1)− ui(t) + η

〈
∂ui
∂W

,∇Φ(W (t))

〉
.

We denote −η∇Φ(W (t)) by W ′ = (W
′

1, ...,W
′

L), yielding

εi(t) = ui(t+ 1)− ui(t)−
〈
∂ui(t)

∂W
,W ′

〉
= B(h

(t+1)
i,L − h(t)

i,L)−
〈
∂ui(t)

∂W
,W ′

〉
= B(h

(t+1)
i,L − h(t)

i,L −
L∑
l=1

D
(t)
i,LW

(t)
L D

(t)
i,L−1W

(t)
L−1 · · ·D

(t)
i,L+1W

(t)
l+1D

(t)
i,lW

′
lh

(t)
i,l−1)

= B

(
L∑
l=1

(D
(t)
i,L +D′′i,L)W

(t)
L · · ·W

(t)
l+1(D

(t)
i,l +D′′i,l)W

′
lh

(t+1)
i,l−1 −

L∑
l=1

D
(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t)
i,l−1

)
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where the last equality is obtained by replacing h(t+1)
i,L − h(t)

i,L by the term provided in Lemma 5, where D′′i,l ∈ Rm×m are
diagonal matrices with entries in [−1, 1].

Now, we derive a bound for |εi(t)|. We start by subtracting and adding the same term, yielding

|εi(t)| = |B(

L∑
l=1

(D
(t)
i,L +D′′i,L)W

(t)
L · · ·W

(t)
l+1(D

(t)
i,l +D′′i,l)W

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1

+

L∑
l=1

D
(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t)
i,l−1)|

≤
L∑
l=1

∣∣∣B ((D
(t)
i,L +D′′i,L)W

(t)
L ...W

(t)
l+1(D

(t)
i,l +D′′i,l)W

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1

)∣∣∣
+

L∑
l=1

∣∣∣B (D(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L · · ·W

(t)
l+1D

(t)
i,lW

′
lh

(t)
i,l−1

)∣∣∣ .
To construct the bound for |εi(t)|, we separately bound each of the above two terms. For the first term∣∣∣B ((D

(t)
i,L +D′′i,L)W

(t)
L ...W

(t)
l+1(D

(t)
i,l +D′′i,l)W

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1

)∣∣∣
≤
∥∥∥B ((D

(t)
i,L +D′′i,L)W

(t)
L ...W

(t)
l+1(D

(t)
i,l +D′′i,l)−D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,l

)∥∥∥
2

∥∥∥W ′lh(t+1)
i,l−1

∥∥∥
2

≤
1
∥∥∥B ((D

(t)
i,L +D′′i,L)W

(t)
L ...W

(t)
l+1(D

(t)
i,l +D′′i,l)−D

(0)
i,LW

(0)
L ...W

(0)
l+1D

(0)
i,l

)∥∥∥
2
O(‖W ′l ‖2)

+
∥∥∥B (D(0)

i,LW
(0)
L ...W

(0)
l+1D

(0)
i,l −D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,l

)∥∥∥
2
O(‖W ′l ‖2))

=
2
∥∥∥B (D(0)

i,L −D
(0)
i,L +D

(t)
i,L +D′′i,L)W

(t)
L ...W

(t)
l+1(D

(0)
i,l −D

(0)
i,l +D

(t)
i,l +D′′i,l)−D

(0)
i,LW

(0)
L ...W

(0)
l+1D

(0)
i,l

)∥∥∥
2
O(‖W ′l ‖2)

+
∥∥∥B (D(0)

i,LW
(0)
L ...W

(0)
l+1D

(0)
i,l − (D

(0)
i,L −D

(0)
i,L +D

(t)
i,L)W

(t)
L ...W

(t)
l+1(D

(0)
i,l −D

(0)
i,l +D

(t)
i,l )
)∥∥∥

2
O(‖W ′l ‖2)

≤
3

O(τω1/3L2
√
m logm)O(‖W ′l ‖2)

where we apply the following derivations

1. We subtract and add the same term, use triangle inequality and the result provided in Lemma 10,
∥∥∥h(t+1)

i,l−1

∥∥∥ = O(1).

2. Subtract and add D(0)
i,l from each coefficient that multiply W (t)

l .

3. Due to Lemma 4, it holds that ||W (t)−W (0)|| ≤ ω. This enables us to use Lemma 6, implying that ‖D(t)
i,l −D

(0)
i,l ‖0 ≤

s = O(mω2/3L). Moreover, in conjunction with Lemma 5, this yields
∥∥∥D(t)

i,l +D′′i,l −D
(0)
i,l

∥∥∥
0
≤ s. Having that, we

can apply Lemma 7, to obtain a bound for the first term.

For the second term we have that:∣∣∣B(D
(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,lW

′
lh

(t+1)
i,l−1 −D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,lW

′
lh

(t)
i,l−1)

∣∣∣
=
∣∣∣B(D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,lW

′
l (h

(t+1)
i,l−1 − h

(t)
i,l−1))

∣∣∣
≤
(∥∥∥B(D

(t)
i,LW

(t)
L ...W

(t)
l+1D

(t)
i,l −D

(0)
i,LW

(0)
L ...W

(0)
l+1D

(0)
i,l )
∥∥∥+

∥∥∥BD(0)
i,LW

(0)
L ...W

(0)
l+1D

(0)
i,l

∥∥∥) ‖W ′l ‖ ∥∥∥h(t+1)
i,l−1 − h

(t)
i,l−1

∥∥∥
≤

1
(
O(τω1/3L2

√
m logm) +

∥∥∥BD(0)
i,LW

(0)
L ...W

(0)
l+1D

(0)
i,l

∥∥∥) ‖W ′l ‖∥∥∥h(t+1)
i,l−1 − h

(t)
i,l−1

∥∥∥
≤

2

τO(
√
m+ ω1/3L2

√
m logm) ‖W ′l ‖

∥∥∥h(t+1)
i,l−1 − h

(t)
i,l−1

∥∥∥ ≤3

τO(
√
m+ ω1/3L2

√
m logm)L1.5 ‖W ′‖2

≤
4

O(τ
√
m)L1.5 ‖W ′‖2

where we apply the following derivations
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1. As in the previous derivation, using Lemma 7.

2. Applying Lemma 8.

3. Using Lemma 5.

4. Plug in ω = n3 logm
δτ
√
m

.

Since W ′ = −η∇Φ(W (t)), we can get a bound for ‖W ′‖2 using Lemma 9, yielding ‖W ′‖2 ≤ ηO(τ
√
nm
√

Φ(W (t))).

Taking into account the two bounds, and summing over the all layers and data points we obtain that

‖ε(t)‖ ≤ nLO(τw1/3L2
√
m logm)O(ητ

√
nm
√

Φ(W (t))) + nLO(τ
√
m)L1.5O(η2τ2nmΦ(W (t)))

Using our choice of η and the value of ω, we finally get

‖ε(t)‖ ≤ O

(
L log4/3m

τ1/3m1/6n1.5

)√
Φ(W (t)) +O

(
δ2

τn6m0.5L1.5

)
Φ(W (t))

Theorem 3. 1 For any ε ∈ (0, 1] and δ ∈ (0, O( 1
L )], let m ≥ Ω

(
n24L12 log5m

δ8τ2

)
, η = Θ

(
δ

n4L2mτ2

)
and W (0), A,B are at

random initialization (17). Then, starting from Gaussian initialization, with probability at least 1− e−Ω(log2m), gradient
descent with learning rate η achieves

Φ(W ) ≤ ε in T = Θ

(
n6L2

δ2
log

1

ε

)
Lemma 4. Under the assumptions of Thm. 3, it holds that for every t = 0, 1, .., T − 1

(a)
∥∥∥W (t) −W (0)

∥∥∥
F
≤ ω := O

(
n3

δτ
√
m

logm

)
(b) Φ(W (t)) ≤

(
1− Ω

(
τ2ηδm

n2

))t
Φ(W (0))

Lemma 5. (This Lemma follows Claim 11.2 from (Allen-Zhu et al., 2019)) Let ω ∈ [Ω( 1
τ3m3/2L3/2 log3/2m

), O( 1
L4.5 log3m

)],

then under the following assumptions
∥∥W (t) −W (0)

∥∥
2
≤ ω and ‖W ′‖2 ≤ w it holds that there exist diagonal matrices

D′′i,l ∈ Rm×m with entries in [-1,1] such that

∀i ∈ [n],∀l ∈ [L] : h
(t+1)
i,l − h(t)

i,l =

l∑
a=1

(D
(t)
i,l +D′′i,l)W

(t)
l ...W

(t)
a+1(D

(t)
i,a +D′′i,a)W ′ah

(t+1)
i,a−1

Furthermore we have
∥∥∥h(t+1)

i,l − h(t)
i,l

∥∥∥ ≤ O(L1.5) ‖W ′‖2 and
∥∥∥Bh(t+1)

i,l −Bh(t)
i,l

∥∥∥ ≤ O(Lτ
√
m) ‖W ′‖2 and

∥∥∥D′′i,l∥∥∥
0
≤

O(mω2/3L)

Lemma 6. (This Lemma follows Lemma 8.2 from (Allen-Zhu et al., 2019)) Suppose ω ≤ 1
CL9/2log3m

for some sufficiently

large constant C > 1. With probability at least 1− e−Ω(mω2/3L) for every (W (t)−W (0)) satisfying
∥∥W (t) −W (0)

∥∥
2
≤ ω,∥∥∥D(t)

i,l −D
(0)
i,l

∥∥∥
0
≤ O(mω2/3L)

1This theorem was proved in (Allen-Zhu et al., 2019), for τ = 1. However, it is straightforward to generalize it for τ ∈ (0, 1] at the
price of modifying m and η by a factor of 1

τ2
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Lemma 7. (This Lemma follows Lemma 8.7 from (Allen-Zhu et al., 2019)) For s = O(mw2/3L), with probability at least
1− e−Ω(s logm) over the randomness of W (0), A,B

• for all i ∈ [n], a ∈ [L+ 1]

• for every diagonal matrices D′′′i,0, · · · , D′′′i,L ∈ [−3, 3]m×m with at most s non-zero entries

• for every perturbation with respect to the initialization W ′′1 · · ·W ′′L ∈ Rm×m with ‖W ′′‖2 ≤ ω = O(1/L1.5)

it holds
∥∥∥B(D

(0)
i,L +D′′′i,L)(W

(0)
L +W ′′L) · · · (W (0)

a+1 +W ′′a+1)(D
(0)
i,a +D′′′i,a)−BD(0)

i,LW
(0)
L · · ·W

(0)
a+1D

(0)
i,a

∥∥∥
2

≤
O(τω1/3L2

√
m logm)

Lemma 8. (This Lemma follows Lemma 7.4b from (Allen-Zhu et al., 2019)) Suppose m ≥ Ω(nL log(nL)). If
s = O(mω2/3L) then with probability at least 1 − e−Ω(s logm) for all i ∈ [n], a ∈ [L + 1] it holds that∥∥∥vTBD(0)

i,LW
(0)
L · · ·D

(0)
i,aW

(0)
a

∥∥∥ ≤ O(τ
√
m) ‖v‖.

Lemma 9. (This Lemma follows Theorem 3 from (Allen-Zhu et al., 2019)) Let ω = O( δ3/2

n9/2L6 log3m
). With probability at

least 1− e−Ω(mω2/3L) over the randomness of W 0, A,B, it satisfies for every l ∈ [L] and W with
∥∥W −W (0)

∥∥
2
≤ ω that

‖∇Wl
Φ(W )‖2F ≤ O(τ2Φ(W ) · n ·m)

Lemma 10. (This Lemma is based on Lemma 7.1 and Lemma 8.2c from (Allen-Zhu et al., 2019)) With high probability over
the randomness of A,W we have

∀i ∈ [n], l ∈ {0, 1, .., L} : ‖hi,l‖ = O(1)

Lemma 11. Let δ > 0 and m ≥ Ω(L log(nL/δ) then with probability at least 1− δ it holds that ||u(0)|| ≤
√
nτ/δ and as

a consequence by using the triangle inequality Φ(W (0)) = 1
2 ‖y − u(0)‖2 ≤ O(n)

Proof. Conditioned on W,A it holds that ui(0) v N(0, τ2 ‖hi,L‖2) and since by Lemma 10 we have that ‖hi,L‖ = O(1),
this yields E(‖u(0)‖2) = O

(
nτ2

)
. Then by Markov’s inequality, ‖u(0)‖2 ≤ nτ2/δ2 with probability 1− δ.

Lemma 12. (Based on Theorem 3.1 (Arora et al., 2019))2 Fix ε > 0 and δ ∈ (0, 1) and assume m ≥ Ω(L
6

ε4 log(Lδ )). Then
for any pair of inputs xi,xj such that ‖xi‖ ≤ 1, ‖xj‖ ≤ 1 with probability 1− δ we have∣∣∣∣ 1

m
Hij(0)− 1

m
H∞ij

∣∣∣∣ ≤ (L+ 1)ε

Lemma 13. (Based on Theorem 5c (Allen-Zhu et al., 2019)) Let W (0), A,B be at random initialization. For any pair
of inputs xi,xj and parameter ω ≤ O( 1

L9log3/2m
) with probability at least 1 − e−Ω(mω2/3L) over W (0), A,B with∥∥W (0) −W (t)

∥∥
2
≤ ω we have

|Hij(t)−Hij(0)| ≤ O(
√

logm · ω1/3L3)
√
Hi,i(0)Hj,j(0) (26)

Lemma 14. Let δ̂ ∈ (0, 1] and W (0), A,B be at random initialization. Then, for m ≥ Ω
(
n24L12 log5m

δ8τ6

)
and parameter

ω = O
(

n3

δτ
√
m

logm
)

with probability of at least 1− δ̂ over W (0), A,B with
∥∥W (0) −W (t)

∥∥
2
≤ ω it holds that

1. ‖H(t)−H(0)‖2 ≤ O(n
3log5/6m
δτ )m5/6

2. ‖H(0)−H∞‖2 ≤ O( δ
2mτ3

n6 )

3. ‖H∞ −H(t)‖2 ≤ O(n
3log5/6m
δτ )m5/6 +O( δ

2mτ3

n6 ) ≤ O( δ
2mτ3

n6 )

2The formulation given in (Arora et al., 2019) considers training w.r.t all layers. The proof can be extended trivially to the case where
the first and last layers are held fixed.
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Proof. We prove the first claim. Then, the second claim is obtained by plugging m into Lemma 12. The third claim is a
direct consequence of the two claims using triangle inequality.

By the definition of Hij(0) we have that

√
Hii(0) =

√〈
∂ui(0)

∂W
,
∂ui(0)

∂W

〉

≤
L∑
l=1

∥∥∥∥∂ui(0)

∂Wl

∥∥∥∥ =

L∑
l=1

∥∥∥hi,l−1BD
(0)
i,LW

(0)
L D

(0)
i,L−1W

(0)
L−1 · · ·D

(0)
i,L+1W

(0)
l+1D

(0)
i,l

∥∥∥
≤

L∑
l=1

‖hi,l−1‖
∥∥∥BD(0)

i,LW
(0)
L D

(0)
i,L−1W

(0)
L−1 · · ·D

(0)
i,L+1W

(0)
l+1D

(0)
i,l

∥∥∥ ≤ O(L
√
mτ)

where the last inequality is obtained by applying Lemma 8 and Lemma 10. Applying the obtained bound for Hii(0) and
Hjj(0) yields a bound for |Hij(t)−Hij(0)|, using (26). Finally, ‖H(t)−H(0)‖ ≤ O(n

3log5/6m
δτ )m5/6.

E. Experiment setup
Below we provide our experimental setup for all the figures in the paper.

Figure 1. Experiments are run with input data in S1 drawn from a uniform (top plots) and non-uniform (bottom plots)
distributions, where the latter densities are of ratio 1 : 40. The target function is y(x) = 0.4 cos(16x) + cos(x). The
number of training points is n = 10000 and batch size is 100. The network includes L = 10 fully connected layers, each
with m = 256 hidden units. The weights are initialized with normal distribution with standard deviation τ = 0.1, and the
learning rate is η = 0.001.

Figure 2. Eigenfunctions are computed with n = 2, 933 data points in S1.

Figure 3. Local frequencies are computed with n = 1, 467 data points in S1.

Figure 4. Eigenvalues are computed with n = 50, 000 data points in S1.

Figure 5. Eigenvalues are computed with n = 12, 567 data points in S1.

Figure 6. Eigenvectors are computed numerically using n = 10, 000 data points in S1 drawn from a piecewise constant
distribution with densities proportional to (11, 1, 3).

Figure 7. Convergence times are measured by training a two-layer network with bias. The weights of the second layer are
set randomly to −1 or 1 (with probability 0.5) and remain fixed throughout training. The bias is initialized to zero. The
network parameters are set to m = 4000, η = 0.004, n = 734, and τ = 0.2. Convergence for region Rj is declared when

1
2|Rj |

∑n
i∈Rj (f(xi;w)− ui)2

< δ
n with δ = 0.05.

Figure 8. Eigenvectors are computed with n = 9, 926 data points in S2.

Figure 9. We used the same setup as in Figure 7 with the parameters: m = 8000, tau = 0.2, and η = 0.004. Here n varies
between the three plots. We sampled 300 points from a uniform distribution on one hemisphere, and 300p2/p1 points on the
other hemisphere, where p2/p1 ∈ {2, 3, 4}.

Figure 10. Eigenvectors are computed with n = 1257 data points in S1.

Figure 11. Here we compare the number of iterations needed for a deep FC network to converge the number of iterations
predicted by the eigenvalue of the corresponding NTK. We used m = 256, η = 0.05 and δ = 0.05. The corresponding NTK
was calculated in the S1 with n = 630 points and in S2 with n = 1, 000 points, both drawn from a uniform distribution.
Note that the plot for S2 appears on the left and the one for S1 on the right.

Figure 12. Here, we calculate the eigenvalues of NTK for FC networks with 3 ≤ L ≤ 50 layers for data distributed
uniformly in S1 (left) and S2 (right). The NTK was calculated with n = 16, 383 and n = 20, 000 data points in S1 and S2,
respectively.



Frequency Bias in Neural Networks for Input of Non-Uniform Density: Supplementary Material

References
Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via over-parameterization. In Chaudhuri, K.

and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 242–252, 2019.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang, R. On exact computation with an infinitely wide neural
net. In NeurIPS, 2019.


