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A. Eigenfunctions of NTK for a two layer-network for data drawn from a piecewise constant
distribution

Lemma 1. Let p(x) be a piecewise constant density function on S'. Then the eigenfunctions in Eq. (9) in the paper satisfy
the following ordinary differential equation

ny_  b@)
f (T/)**ﬁf(fﬂ)- (D

Proof. Combining Eqgs. (9) and (10) in the paper we have

T+
/ (I14+cos(z —x))(m— |z — z|) f(2)p(z)dz = dn A f(z) (2)

—T

Below we take six derivatives of (2) with respect to . We use parenthesized superscripts (™) () to denote the n*® derivative
of f at x. First derivative

x

drrfB(z) = —/ (I14+cos(z—x) — (m+ 2z —a)sin(z — ) f(2)p(z)dz

Tr—T
x4
—|—/ (I1+cos(z—x)+ (m — z+ a)sin(z — ) f(2)p(z)dz
xT
Second derivative

4\ f2) () +4f(z)p(x) = - /T (2sin(z — x) + (7 + z — x) cos(z — x)) f(2)p(2)dz

—T

T+
+/ (2sin(z —x) — (7 — z + x) cos(z — x)) f(2)p(2)dz
Adding this to (2)

AnAfP (z) + Af (x)p(x) + A rf(z) = / i (m+ 2z —a —2sin(z — 2)) f(2)p(2)dz

T+
+/ (m— z+x+2sin(z — 2)) f(2)p(z)dz 3)
Third derivative

AmAf O (@) + 4mA f O (@) + 4f D (@)p(e) + 4f (2)p' (x) =
T+

/i (2cos(z —x) — 1) f(2)p(z)dz — / (2 cos(z—x) —1) f(2)p(z)dz
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Fourth derivative

AmAfW () + A f P (2) + 4F P (2)p(x) + 8F D (@)pM () + 4f (@)p® () — 2f (@)p(z) =
T+ x
3f(x —m)p(x —m) +3f(x + m)p(z +7) — / 2sin(z — z) f(2)p(z)dz + / 2sin(z — z) f(2)p(2)dz

T—T

Adding this to (3)

A S (@) + 8mAf P (@) + dmf(2) + 2f (2)p() + 4p(2) f @) (@) + 8F W (@)p™ (2) + 4f (2)p®) () =

4+ T
3f(a — m)ple — ) + 3f(z + m)p(a + ) / (r—2+a) [+ | (w42 —a)f(p(:)d

Fifth derivative
AnAf O () + 87Af D) (z) + dm A f D (2) + 4f O (2)p(2) + fP(2)pD (@) + 12f D (2) + pP(2)
+2f W (2)p(x) + 4f (2)p®) (z) = =2 (2)p® () + 3f D (x — m)p(x — 7) + 3f (& — m)p) (x — 7)
z+mT

+3f(1)(x +m)ple+7) +3f(x+ W)p(l)(x +7) — /i f2)p(z)dz + f(z)p(2)d=

x

Sixth derivative

A A f O (&) + 8eAf W (2) + A A f P (z) = 3f P (x + m)p (x + 1) + 3pP (z + 7) f(x + 7)
+6f(1)($+7f) W(a +m) = 2f(@)p(x) + f(z — m)p(a — m) — 4f(2)p™ (2) — dp(a) f? (2)
—2f(x)p? (x) — 2p(x) f@ (2) + f(z + )P(ff+7f)+6f(1 (z —m)p (1)(90—7T)+3f(2 (x —m)p(x — )
+3p® (@ — ) f(w = 7) = 16D (2)p® (2) = 16 P (2)p™) () — 24p' () fP) () — 4f D (2)p ()

Next, we simplify and rearrange. We omit dependence on x, note that f(x — 7) = f(x + 7) and p(x — 7) = p(z + 7) and
respectively denote them by f and p.

20A O 4 2(p + 27 0) @ 4+ 8pW O 4 (p 4+ 12p@ 4 270) P 4
20 + 4p) D + 0+ 92 + 290 f = (p+3pP) f + 6p FV + 3pf@

Assume next that p(x) is constant around x and x — T, so its derivatives at these points vanish. Then,
27O+ (2p + 47N fD + (p 4 200 f P + pf = 5f + 3pFP

We next make the assumption that p(z) has a period of 7 (so p = p) in which case f(z + 7) = —f(z) (i.e., f = —f).
These assumptions will be removed later. With these assumptions we have

2mAf© + (2p + 47N @ + (dp + 270N P 4 2pf =0

It can be readily verified that this equation is solved by (1).

Finally, if p(x) does not have a period of 7 we can preprocess the data in a straightforward way to make p have a period of
7 (by mapping the interval [0, 47) to [0, 27)) without changing the function that needs to be learned. O

B. The amplitudes of the eigenfunctions in different regions

In this section for the NTK of a 2-layer network for which only the first layer is trained we compute bounds on the amplitudes
of its eigenfunctions. We first bound the ratios between the amplitudes in two neighboring regions, and use this in the
following section to bound the amplitude in any one region.
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B.1. Ratios between the amplitudes of neighboring regions

If p(x) = p; is constant in each region R; C S!, 1 < j < [, then the eigenfunction or order g fq(z) for x € R; can be

written as
q./P;T
fq(z) = a; cos ( ZJ + bj>

where a; > 0. In this part we characterize the amplitudes the different regions a; for j =1, ..., 1.

We notice that the eigenfunctions appear to be continuous and differentiable. Without loss of generality, assume that the
boundary between region j to region j + 1 happens at x = 0. Then the eigenfunction in the vicinity of 0 is defined as
follows:

fola) = ajcos(q‘/?x%—bj) <0
I ajr1cos(q¥F w4+ b)) x>0

Continuity at z = 0 implies that

a; cos(b;+1)
. . = ¥ ] = 4
a; cos(bj) = aj41cos(bji1) = ajt1 cos(b;) ¥

Differentiability at z = 0 implies

a;  /Pirisin(bji1)

ajy1 pj sin(b;)

aj\/pj sin(bs) = aji1y/Pipasin(bji1) &

These allow us to bound the ratio a;/a;1. We have

a; _ Pirisin(iy) < a; )2 _ pirasin®(bj1) _ pjaa (L — cos? (1)) 5)
aji1 P; sin(b;) i1 p;jsin®(b)) p; (1 — cos?(by))
On the other hand, from (4) we know that
2 2 2
a; _ cos(bji1) ( a; ) cos”(bj+1) 2 2 ( a; )
= = = = cos“(b; =cos“(b;) | — (6)
aj+1 cos(bjr1) @jt1 cos?(b;) (bs0) (b3) ajt1
Substitute (6) in (5) we get
S\ 2 1 —cos?(by) (=) \2 . AN
( % ) = Pitt 32 SERREREY ( 4 > (1 —cos®(bj)) = Pit1 1 — cos?(b;) (a] )
ajy1 pj  1—cos*(b;) @js1 P @41
And we have )
aj 2 Dj+1 2 Dj+1
1 —cos®(b;) + =——cos“(b;)) = =——
(22 ) 0 oot + 225 ot = 22
implying that
2 Pi+1
()
aj+1 1 — cos?(b;) (1 - %)
J
WLOG assume that p,41/p; > 1 then
i 1
cos® (b)) (1 - pj“) <0 = <1
pj 1 — cos?(b;) (1 - %)
As aresult we get
a 2 Pi+1 D a D
i\ _ v P % [P
(aj+1> 1—cos?(bj)(1—BLEL) = p; ajy1 Py

Pj
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For a lower bound note that the denominator in (7) satisfies

1 — cos?(b;)(1 — 2Ly = sin2(b;) + 2L cos?(p;) < P2t
Dj Pj p;

where the inequality is due to the assumption that p;+1 > p;. Consequently, (aj+1/a;)? > 1. In summary, we have
bounded the ratios between the amplitudes of neighboring regions by

1< 4y < Pj+1 (8)
aj+1 pj

We next note that these bounds are tight and are obtained in the following setup. Assume we have an even number of regions
of constant density [ each with equal size. Suppose that in each region the eigenfunction includes an integer number of
cycles. For each ¢ we construct an eigenfunction, by choosing a phase b; = 0 for j = 1, ..., [, and it holds that the border
between region [/2 and [ /2 + 1 lies at x = 0. As a result, at this point we have

q,/pt 0 q,/Pr10
aécos< 22 ):aéﬂcos(;) = a

But since each region contains an integer number of cycles we get for j = 1,...,1

q,/pr0 /92
COS( Z2 ) = cos (q\éﬁ <l7rj7r>) =1 )
Continuity implies for j = 2, ...,1

v (BT (B0 V) (8 (0D Y)Y,

= Q.
3+l

|~

As aresult, for each ¢ we get one eigenfunction (up to a global scale)

fi(x) = cos (q\/?qj) ,for z € [27r(jl—1)_m271rj_ﬁ} (10)

We next construct a second eigenfunction for each ¢. Since there is an integer number of cycles in each region, to keep the
second eigenfunction of each ¢ orthogonal to the first one, we choose a phase of —7/2:

f;(x) = a;sin <q\/§7x> ,for z € [277(][_1) _7T72%j —w]

Next, to maintain differentiability, the derivative at the border between regions R; and R;;; must be equal. So at
x=2nj/l —mwwehaveforj=1,..,01—1

d (. (aypiE\\ _d ([  [4/Dj+1¥
% <(1j sm( 7 >) = % (a]+1 Sin (Z =

YW <q pjx) _ VP (q\/pm:v) N
Z z Z z

1V/P;*
Z

q\/pj+1$>
Z

Qaj+/Pj COS ( ) = Gj4+14/Pj+1 COS (

From (9) we have

aj _ Pit1

ajvpj:ajﬂ”pjﬂja‘ﬂ VD
J J

And we can choose for the second eigenfunction for each ¢ (up to a global scale)

f2(z) = Lsin (q@x) ,for z € {2#(]1—1) —ﬂ,? —7T':| (11)

In Figure 1 we show an example for this setup.
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q=6 q=9 q=12 q=15
-t 0 T -t 0 T -t 0 T -7 0 T
-t 0 T -t 0 T -t 0 T -7 0 T

Figure 1. For the NTK of a two-layer network with bias we plot in each of the four columns four of its eigenfunction pairs (each of the
same eigenvalue) under a non-uniform data distribution of p(x) € 1/7{4/5,1/5} in S*. For this distribution whenever mod(g, 3) = 0
there is an integer number of cycles in each region. As a result, for each ¢ we obtain two eigenfunctions of the form of (10) and (11).

B.2. Bounding a;

Assuming p(x) is constant in [ regions and that WLOG up to a global scale, the minimal amplitude is an;, = 1. Then

i ; ; . i , aj+1 [ Pi_ Pmax T A
for two neighboring regions I7; and R if p; > pj11 = jlj < pjil </ e andif p; 11 > p; = o >1=

% <1< ’;“#. As aresult in each transition between two regions we have
; min

Qj41 < Pmax
a; Pmin

Starting from a minimal amplitude of magnitude 1. For [ regions there are no more than [ transitions so each amplitude is

(loosely) bounded as follows
! s
Pmin Pmin

Next we bound the global scale factor. Let s = [ fﬂ (f(z))?dz. Then we have that after normalizing the global scale factor

W< L (:Dmax>é
= \[ Pmin

To simplify notation we denote the frequency of each region by g; = ‘/?q. Then for s we have:

T l l 1
s = / (f(z))dx = Za?/ cos®(gjz + bj)dx > Z ?mn/ cos?(g;x + bj) Z/ cos?(g;x + bj)dz
-7 =1 R; =1 R; j=1

R;

For each region we have

g2
/ cos®(gjx + b;)dx = / cos®(gjz + b;)dx =
RJ‘ _7"+2T7r(j_1)

L[ 1 (2. + 2b)\ T
7/ (14 cos (2gjx + 2b;))dx = — (x + Sm(q]M) _
2 77T+2T7r(j*1) 2 2(]] —71'-1—27‘"(_7'—1)



Frequency Bias in Neural Networks for Input of Non-Uniform Density: Supplementary Material

1 2 in(2q; (—m + 2Fj) + 2b; 2 in(2q;(—m + 2F(j — 1)) 4 2b;
1 —ﬂ'—i—lj—i- sin(2q; (=7 + J) i) —(—7T—|——7T(j—l))— sin(2g; (-7 + F( - 1)) i) _
2 l qu‘ l 2(]j
L(2r  sinQg(—m+3j) +2b;) sinQq(-m+FG-1))+2)) 7w 1
2\ 1 2q; 2qj T2
I = l 1
And we get:
l l
RO LR N
2 = 2q = N/
As aresult all the amplitudes in an eigenfunction of order q are bounded by
n
pmax 2 .
- ( ) foralll <</ (12)

- e Pmin
RV S

C. Convergence rate as a function of frequency

To derive the rate of convergence as a function of frequency and density we assume that p(z) forms a piecewise-constant
distribution (PCD) with a fixed number of pieces [ of equal sizes, p(z) = p; in R;, 1 < j <. Our proof will rely on
a lemma that states informally that not too many eigenfunctions need to be taken into account for convergence — more
precisely, only a number linear in k and inversely linear in 1/p*, where p* > 0 denotes the minimal density. Convergence
rate is then determined by the eigenfunction with highest eigenvalue included in the approximation for g(z).

Lemma 2. Let p(x) be PCD. For any € > 0, there exist ny, such that Y22 | g7 < €, where g; = 7 vi(z)g(z)p(z)dx
and ny, is bounded as in (15) below.

Proof. Given a target function g(z) = cos(kx) and a basis function v;(z) = a(z) cos(LY22~ ”Z("L)"L + b(x)) where ¢; = [i/2].
Their inner product can be written as

Zajp]/ cos(kx) cos(gijx + bj)dx (13)

where ¢;; = g; VDj /Z denotes the local frequency of v;(x) at R;. Next, to derive a bound we will restrict our treatment to
¢i; = 2k (and by that bound n, from below). With this assumption we obtain

=
/ cos(kx) cos(gi;jx + b;)dx| < / cos(kx) cos(g;jx)dx| =
R; -T
sin (M) sin (2o ) 1 1 24,5 8
1k + k < k+~—k:-2-—k2§3~
qij + qij Qij + qij 4;; qij

Let p* = min; p; and let ¢f = ¢;+/p*/Z, g} denotes the frequency associated with the corresponding region (which is the
lowest within v;). Our requirement that ¢;; > 2k for all 1 < j <[ implies that g; > 2k, and therefore

27k (14)

Additionally, using (13)
8B  8BZ
3q7  3aiV/P*
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where we denote by B = 22:1 a;p; and the equality on the right is obtained by plugging in the definition of ¢;'. Note that

Zé’:l pj =1/(27) Gsince 1 = [7_p(z)dz = 22:1 27p; /1), implying that B < la*/(27), where a* = max; a; and a* is
bounded by (12).

Next, for a given € > 0 we wish to bound the sum Z;’ink g? by starting from a sufficiently high index ny, i.e.,

= 8BZ\? & 1 1 8BZ
E 2 E 2
9 = < vP > < < VP >
1=nr+1 ' 3 i=ng +1 3

By the definition of ¢;, ny > 2¢,,, so

2 /8BZ\?> 128 B272
n — e
3./p* 9e2p*

So in conclusion,

AZk 128B2*Z*
nj > max \/?, W (15)
O

Theorem 1. Let p(x) be a PCD, for any § > 0 the number of iterations t needed to achieve ||g(x) — u® ()| < dis
O(k?/p*), where O hides logarithmic terms.

Proof. Let ny, be chosen as in Lemma 2 with e = §/2, i.e.
47k 256B%Z2
nE = |max{ —, ————
* vp* o 96%p*
Let

ng
= _giv(i)
i=1
Then,

lo(z) — g(z) |12 = zgﬂgz ()

and due to triangle inequality

lg(z) —uD(@)]| < llg(x) — g(@)|| + |§(z) — ul (2)]|
it suffices to find ¢ such that 5
I§(z) — ul(2)|| < 5=19

Using (Arora et al., 2019b)’s Theorem 4.1 adapted to continuous operators

ng
A2:Hg_u(t)”2%2(1_n)\ 2t 2<7TZ 1_77)\ <7rnk(1_77)\nk)2t (16)

i=1
where the left inequality is due to |g;|?> < || cos?(kz)|| = 7 and the right inequality is because \; are arranged in a

descending order. Now for a fixed distribution p(x), and since we are interested in the asymptotic rate of convergence
(i.e., as k — o0), as soon as k > 64B2Z/(96%,/p*) it suffices to only consider the case ¢, = 2Zk/+/p*, as in (14). The
eigenvalue )\, is determined according to

ZQ p*
m2q2,  Am2k?
(Here we used the expression for A, assuming 7 is odd. A similar expression of the same order is obtained for even ny.)
Consequently, to bound A? < ¢ in (16) and substituting for n;, and A\, we have

N7
AZk (1w <6
N 4m2k?

)\nk =
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np* ov/p*
2tlog (1 — 1
tog( 47r2k2> ” Og<4Zk)

og (%07 )  anue e <5\/F> 5 <k2>

2log (1 - ;%) np* AZk »

Taking log

from which we obtain

t >

where O hides logarithmic terms.

D. Spectral convergence analysis for deep networks - proof of Theorem 2
D.1. The network model

The parameters of the network are W = (W71, ..., W) where W; € R™*™ and also A € R™*9 and B € R*™. The
network function over input x; € R% (i € [n]) is given by

u; = f(xi; W) = Bo(Wro(Wr_10(....(Wyo(Ax;))..))

where o stands for element wise RELU activation function. For a tuple W = (W7, ..., Wp,) of matrices, we let | W ||, =
L 2
maxe(r] [[Willy and W] = 321, ”VVl”F)l/Q'

The parameters are initialized randomly from a normal distribution according to

[Wilij ~ N0, )le[] (17)

2
Aij ~ N (0, E)

Bij ~ N(0,7%)
where similarly to (Allen-Zhu et al., 2019) the layers A and B are initialized and held fixed.
The network functionality is summarized as follows

h; o = 0(Ax;)

hz(‘fl) = U(Wz(t)hgl)—ﬁ

= B

where i € [n],l € [L] and t denotes iteration number. In addition, for each input vector ¢ € [n] and layer! € {0, 1, ..., L}, we
associate a diagonal matrix D;; such that for j € [m], (D;1);; = Liw,n, 1_1); >0, Where we use the convention h; 1 = x;.
The network is trained to minimize the /5 loss

1
= 5; Xza ))2

We will analyze the properties of the matrices H, H> € R™*", comprised of the following entries

8u§t) 8U§t)
Hi ) = Zw o

au(o) au§0)
H> =Ew L, .
J oW = oW

We write the eigen-decomposition of H*>® = Z 1AV v , where vy, ..., Vv, are the eigenvectors of H* and Ay,..., A,
are their corresponding eigenvalues. The minimal elgenvalue is denoted by A9 = min(A(H)).
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Theorem 2. Forany e € (0,1] and § € (0,0(1)], let T = @(%5), m > Q (%), n=0 (m) Then, with

probability of at least 1 — b over the random initialization after t iterations of GD we have that

n

Iy —u® = || S0 - mH(Ty)? te 18)

i=1

D.2. Proof strategy

The proof of Thm. 2 relies on a theorem, provided by (Allen-Zhu et al., 2019), stated in Thm. 3, and an observation, based
the on the derivation of the proof to that theorem, which we state in Lemma 4.

Thm. 3 assumes that the data is normalized, so that ||x;|| = 1, and there exists § € (0, O(7)] such that for every pair
i,7 € [n], we have ||x; — x;|| > J and also it holds that |y;| < O(1).

In addition, we prove Lemma 3, which is the basis for the proof of our Theorem.

Lemma 3. Suppose 6 € (0,0(1)], m > Q (%), N =0 (=rpt—) and also let w = O(";Th\)/gg). Then, with

probability at least 1 — e~ M *L) ouor the randomness of A, B and W) we have
u(t+1) -y = —nH(t))(at) —y) +€(t) (19)

with

Llog*?m 52 .

The proof of the Lemma is deferred, and will be given after the proof of the theorem.

D.3. Proof of Thm 2

Proof. By Lemma 3 we have the following relation
u(t) —y = —nH{-1)(ult -1) —y) +e(t - 1)
Adding and subtracting nH>° (u(t — 1) — y) we have
u(t)—y =T =nH*)(u(t 1) —y) +n(H* - H(t - 1))(u(t - 1) —y) +e(t - 1)
and this is equivalent to
u(t) —y = (I —nH=)(u(t ~ 1) —y) + &t —1). (20)
where we denote {(t) = n(H> — H(t))(u(t) —y) + €(t). Then, by applying (20) recursively, we obtain

t—1

u(t) —y = (I —nH>)"(u(0) —y) + > (I —nH®)'E(t -1~ 1) @21
i=0



Frequency Bias in Neural Networks for Input of Non-Uniform Density: Supplementary Material

We first bound the quantity ||{(¢ — 1 — 3)||,

1€t =1 =)l = [In(H(E =1 —1i) = H*)(y —u(t —1 =) +e(t =1 =),
<|ln(HE =1 =) = H®)[l5 I(y = u(t = 1 =), + [le(t =1 =9,

1,2 2mr3 L 52 t—1-i) Llog*? L
n<" 0 (TEE ) aaveoa) so (s e o (L) faqrie o)

§?mr3 W) Llog*?m
%mr3 52 L10g4/3 m
(770 (vn)o ( 6 ) +0 <7n6m0.5L1.5) O(n)+0 <71/3m1/6n1.5 O (V)

—1—1)
%mr3 52 L10g4/3 m
(770 ( nb5 > +0 <7’n5m0~5L1-5) +0 (Tl/Bml/Gn

where we make the following derivations

1. Using Lemma 14 which states that || H (t) — H*||, < 0(62’””673 ).
2. Using the bound in Lemma 3, for e(t — 1 — i)
3. Using bound over the loss by, Lemma 4 (b).

4. By Lemma 11 the loss at initialization is bounded by O(n).

Using the bound, derived above, (21) yields

Ju(t) —yll =

t—1
(I = nH>)"(a(0) —y) + > (I —nH™)'¢(t —1 - i))H

=0

t—1 2 s 2. 3 2 4/3
i T nom o°mT 0 Llog™"m
+ Z(l — 1o <1 —9 ( n2 )> (770 ( 755 > +0 (Tn5m°-5L1~5) +0 (Tl/Bml/Gn
2 - %mr3 52 Llog*3m
< (7 =nH>) (u(0) —y)|| +¢ (770 ( 755 > +0 (Tn5m0'5L1‘5) +0 <T1/3m1/6n

672 2,3 2 4/3
3 cont n°L 0“mT o Llog™"m
< |\ = nH>) (u(0) —y)|| + O ( 52 > (770 ( 055 ) +0 <7n5m0~5L1~5> +0 <7_1/3m1/6n

. cont nSL? §2mr3 52 Llog*3m
< = nary ot + o =iy 0 (51) (30 (THE) 0 (s osgrs ) 0 (S

where we make the following derivations

1. ||I —nH®||, is bounded by the maximal eigenvalue of the positive definite matrix (I —nH>), i.e, (1 — nAo).

(t—1—1i)

2. (1—n)\0)i(1—§2(722§m)) P <1

3. By Theorem 3, ¢ < O("ZQL

%)
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Next, it is straightforward to show that

n

[T =nH®)y|| = | > (1= nXi)?(vIy)? (22)
i=1

where \;, v; are the eigenvalues and eigenvectors of H>°, respectively.

For the first term we use lemma 11 which states that [[u(0)|| < @, and by our choice of 7 we obtain

(1 = nH>®)|| [u(0)[| < (1 —nXo)'O (@T> <e (23)

Finally, by our choice of n, m, 7 it holds that

n6L2 52m7_3 52 L10g4/3 m
O( 52 ><O<W>"+O(W)+O<Tlmmuen Se€ (24)

Combining (22), (23) and (24) yields

n

ly —u()] = | > (1 —nx)2(v]y)? £ e (25)

i=1

D.4. Supporting Lemmas
Proof. Proof of Lemma 3.

By construction

(t+1) —u(t +nZu3 VH;(t)

Ou;i(t) Ouy(t
(t+1) — u(t +7]Zu3 <8M(/), W(/)>
uit+1) — ) + <8§;§),' () yj>8§;$>>

We denote — V(W) by W’ = (W, ..., W), yielding
8ul(t) /

ilt t 1) - 7 )
€(t) = ui(t +1) —ui(t) — <aw W

- B it~ (G W)

L
t+1 t t t t t t t
:B(hE,L )~ () ZD() f% 1W() "'D§,2+1Wz(+)1Dzsz El)—l)

+1

L
:B<Z< DY+ DLW o WD + DLW — 3 DU D whG. )
=1 =1
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- . . (t+1)
where the last equality is obtained by replacing h;

- hit% by the term provided in Lemma 5, where Dy, € R™*™ are
diagonal matrices with entries in [—1, 1].

Now, we derive a bound for |e;(t)|. We start by subtracting and adding the same term, yielding
ei(8)] = |B<i<DEfz + DLWy W D+ DLWIRGT = DI WY W DI WA
=1
3w - D Wi
<3 [ (0L + DLW WD + DLW~ D DR

t ¢ ¢ 3 t+1 3 t t t t
S B (0w Wi DQWINGT) - DWW DEWIRL) )|
=1

To construct the bound for |e;(t)|, we separately bound each of the above two terms. For the first term

‘B( t) +D// )W() Wz(ﬂ( (t) +D//) z’hg,tztlf _ Dgt) W() VVI(Jtr)lD(t hgtlﬂl)‘

17

< [[p (08 + Lo WD + Dy - W w o) [k

<" |[B (08 + Drowi? . WD + D) fD§°£W£O).-.Wf°)D<S>)H (IW/1l,)
0 0 0
B (2w w0 - DWW D)|| 0wl

2 0 0 t (0 0 0 0 0
= |5 (P - D+ DY + DLW WD - DY + Df? 1)~ DWW D) 0w,
(0 0 0 0 0 0 0
+HB( o WD — (08 - O+ DWW () - DY + D) | o)
<" O(rw! L2 \frmTogm)O(| W)

where we apply the following derivations

B+

1. We subtract and add the same term, use triangle inequality and the result provided in Lemma 10, ’ i1 H =

2. Subtract and add Dgg) from each coefficient that multiply Wl(t).

3. Due to Lemma 4, it holds that ||[IW(*) — W (©)|| < w. This enables us to use Lemma 6, implying that ||D£tl) - Dﬁ) llo <

s = O(mw?/3L). Moreover, in conjunction with Lemma 5, this yields HDZ(? + D/, — DEOZ) H < s. Having that, we
; : o
can apply Lemma 7, to obtain a bound for the first term.
For the second term we have that:
) 7 ) () t+1) _ p® @ 0 ( ) (t)
‘B (D; Wy, W Dy VVl/hi,lq Dy Wi Wiy D VVlhz,lq)’
t t t+1 t

‘B W( ) Wl(-‘r)lD( )Wz (hf 1_1) - hz(' z)_1))’

(HB DOWO_ WD~ pOW® WD) H+HBD<0>W<0> WZ(O)D(O)H)”Wl”’
gl (O(Twl/Bsz/mlogm +HBD}£W<O) WD) wi
TO(/m + w3 L2 /mlogm) Wy | || — n{_ 1H< rO(Vm + w312 /mlogm) L |W'||?

< O(T\/E)Ll'5 |

where we apply the following derivations

t+1) t
B L

t+1) h(tl X
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1. As in the previous derivation, using Lemma 7.
2. Applying Lemma 8.
3. Using Lemma 5.

n® logm

4. Pluginw = TN

Since W' = —nV&(W®), we can get a bound for ||IW’||,, using Lemma 9, yielding ||[W’||, < nO(7y/nm+/®(W®)).

Taking into account the two bounds, and summing over the all layers and data points we obtain that
le(®)]| < nLO(rw'?L?\/mlogm)O(nrv/mmy\/ ®(W®)) + nLO(Tv/m) L O(n*r*nm®d(W®))

Using our choice of 7 and the value of w, we finally get

Llog*?m 52 ‘
le@®ll <O <71/3m1/6n1,5 eWM) +0 T18m0-5 1.5 e(W)

O

Theorem 3. ! Forany e € (0,1] and § € (0,0(1)], let m > € (%), n=0 (W) and W) A, B are at

. .. . . . . . .. . . . a7 — 2 .
random initialization (17). Then, starting from Gaussian initialization, with probability at least 1 — e=*(°9"™)  eradient
descent with learning rate 1 achieves

672
O(W)<einT=0 L logl
52 €

Lemma 4. Under the assumptions of Thm. 3, it holds that for everyt = 0,1,..,T — 1
w® _ ) - v’
< : 1
(CL) H HP “ 0 (5T\/TTL Ogm>
(t) 2ném ! (0)
) (W) < (1—9( 2 )) (W)

Lemma 5. (This Lemma follows Claim 11.2 from (Allen-Zhu et al., 2019)) Let w € [Q)( T3m3/2L3}2 5557 m)7 O( 1 ),

Ti51og% m
then under the following assumptions HW(t) —-Wwo H2 < wand |[W'||, < w it holds that there exist diagonal matrices
D;:l € R™*™ with entries in [-1,1] such that

l
vie )Wl e (L] hY — ) =308 + pryw . w ) (DY) + DY ywin )
a=1

<

0

< O(Lry/m) [IW'|l, and || D7,

Furthermore we have th’tlﬂ) — hgtl)
O(mw?/3L)

Lemma 6. (This Lemma follows Lemma 8.2 from (Allen-Zhu et al., 2019)) Suppose w < m
large constant C > 1. With probability at least 1 — e‘Q(’”“’z/BL)for every (WO — W) satisfying HW(t) -wo H2 <w,

< O(LY") [W'| and B — Bn{)

for some sufficiently

HD@I) — D((;)H < O(mw2/3L)
i, il o

'This theorem was proved in (Allen-Zhu et al., 2019), for 7 = 1. However, it is straightforward to generalize it for 7 € (0, 1] at the
price of modifying mm and 7 by a factor of 25
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Lemma 7. (This Lemma follows Lemma 8.7 from (Allen-Zhu et al., 2019)) For s = O(mwQ/BL), with probability at least
1 — e=¥s108m) oyer the randomness of W0, A, B

e foralli € [n],a € [L+1]
e for every diagonal matrices D}y, - -+, D}y € [=3,3]"™™ with at most s non-zero entries

e for every perturbation with respect to the initialization W' --- W] € R™ ™ with |[W"||, < w = O(1/L*®)

it holds || BIDS + D)WL + Wiy (Wi + W) (D) + D) = BDOGW - Wi Dl)|| - <
O(tw!/3L2/mTogm)

Lemma 8. (This Lemma follows Lemma 7.4b from (Allen-Zhu et al., 2019)) Suppose m > Q(nLlog(nL)). If
s = O(mw?PL) then with probability at least 1 — e~ s1°8™) for all i € [n],a € [L + 1] it holds that

| BDQW - DQW|| < Oy o).

Lemma 9. (This Lemma follows Theorem 3 from (Allen-Zhu et al., 2019)) Let w = O(%). With probability at

least 1 — e=Xm*"*L) oyer the randomness of WO, A, B, it satisfies for every | € [L] and W with ||W —-wO ||2 < w that
IVw, @(W)||% < O(T*®(W) - - m)

Lemma 10. (This Lemma is based on Lemma 7.1 and Lemma 8.2¢ from (Allen-Zhu et al., 2019)) With high probability over
the randomness of A, W we have

Vi € [n],l € {0,1,..,L} : ||hi ] = O(1)
Lemma 11. Let § > 0 and m > Q(Llog(nL/d) then with probability at least 1 — 0 it holds that ||u(0)|| < \/n7/d and as
a consequence by using the triangle inequality ®(W (0)) = 3 |ly —u(0)|* < O(n)

Proof. Conditioned on W, A it holds that u;(0) «~ N (0,72 ||hi7L||2) and since by Lemma 10 we have that ||h; || = O(1),
this yields E(||u(0)||*) = O (n7?). Then by Markov’s inequality, [lu(0) I* < n72/6% with probability 1 — §. O

Lemma 12. (Based on Theorem 3.1 (Arora et al., 2019))* Fix ¢ > 0 and § € (0,1) and assume m > Q(glog(%)). Then
for any pair of inputs x;,x; such that ||x;|| < 1,||x;|| < 1 with probability 1 — § we have

1

1 o0

Lemma 13. (Based on Theorem 5¢ (Allen-Zhu et al., 2019)) Let W9 | A, B be at random initialization. For any pair
of inputs x;,x; and parameter w < O( ) with probability at least 1 — e~ Qmw L) oer WO A B with

||W(O) —-w® H2 < w we have

1
L91log3/2m

|H,;(t) — Hi;(0)| < O(y/logm - w'/3L3)\/H,; ;(0)H; ;(0) (26)
Lemma 14. Let$ € 0,1] and W O A, B be at random initialization. Then, for m > §) % and parameter
08T

w=0 (% log m) with probability of at least 1 — § over WO A, B with ||W(O) —w® H2 < w it holds that

n3log® ®m
L |[H(t) = H(0)]|, < O(*oL—"1)m?/¢

2. ||H(0) = H®|, < O(*2)

3 |H® = H(t), < O(22eglmyms/6 L o(82mey < o(22me?)

’The formulation given in (Arora et al., 2019) considers training w.r.t all layers. The proof can be extended trivially to the case where
the first and last layers are held fixed.
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Proof. We prove the first claim. Then, the second claim is obtained by plugging m into Lemma 12. The third claim is a
direct consequence of the two claims using triangle inequality.

By the definition of H;;(0) we have that

= | (550
ou; (0) || L
_g(

15144
0 0 0 0 0 0
leh” | BDGWE DO w0, DO W
=1

0 0 0 0 0 0
a1 BDOW D Wi, -, Wi o |

~

D§S>H < O(Lv/mr)

where the last inequality is obtained by applying Lemma 8 and Lemma 10. Applying the obtained bound for H;;(0) and
H,;(0) yields a bound for [H;;(t) — Hi;(0)], using (26). Finally, | H () — H(0)| < O(22legm 5/, O

E. Experiment setup
Below we provide our experimental setup for all the figures in the paper.

Figure 1. Experiments are run with input data in S' drawn from a uniform (top plots) and non-uniform (bottom plots)
distributions, where the latter densities are of ratio 1 : 40. The target function is y(x) = 0.4 cos(16x) + cos(x). The
number of training points is n = 10000 and batch size is 100. The network includes L = 10 fully connected layers, each
with m = 256 hidden units. The weights are initialized with normal distribution with standard deviation 7 = 0.1, and the
learning rate is n = 0.001.

Figure 2. Eigenfunctions are computed with n = 2, 933 data points in S*.
Figure 3. Local frequencies are computed with n = 1,467 data points in S*.
Figure 4. Eigenvalues are computed with n = 50, 000 data points in S!.
Figure 5. Eigenvalues are computed with n = 12, 567 data points in S!.

Figure 6. Eigenvectors are computed numerically using n = 10,000 data points in S! drawn from a piecewise constant
distribution with densities proportional to (11,1, 3).

Figure 7. Convergence times are measured by training a two-layer network with bias. The weights of the second layer are
set randomly to —1 or 1 (with probability 0.5) and remain fixed throughout training. The bias is initialized to zero. The
network parameters are set to m = 4000, n = 0.004, n = 734, and 7 = 0.2. Convergence for region R; is declared when

2\11:zj| Z?GR]. (f(zi;w) — Ui)z < % with 6 = 0.05.
Figure 8. Eigenvectors are computed with n = 9,926 data points in S%.

Figure 9. We used the same setup as in Figure 7 with the parameters: m = 8000, tau = 0.2, and 7 = 0.004. Here n varies
between the three plots. We sampled 300 points from a uniform distribution on one hemisphere, and 300p2/p; points on the
other hemisphere, where ps /p1 € {2, 3,4}.

Figure 10. Eigenvectors are computed with n = 1257 data points in S!.

Figure 11. Here we compare the number of iterations needed for a deep FC network to converge the number of iterations
predicted by the eigenvalue of the corresponding NTK. We used m = 256, n = 0.05 and = 0.05. The corresponding NTK
was calculated in the S* with n = 630 points and in S? with n = 1,000 points, both drawn from a uniform distribution.
Note that the plot for S? appears on the left and the one for S' on the right.

Figure 12. Here, we calculate the eigenvalues of NTK for FC networks with 3 < L < 50 layers for data distributed
uniformly in S' (left) and S? (right). The NTK was calculated with n = 16, 383 and n = 20, 000 data points in S! and S?,
respectively.
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