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1. Technical results borrowed from other papers
Thoughout our proof, we use a few technical results from the literature, which we gather here for ease of reference.

1.1. The Jacobi identity

The following proposition is a direct consequence of the rank one-update for determinants, see e.g. (Marcus et al., 2015,
Theorem 3.11).

Proposition S1 (Jacobi identity). LetA,B ∈ RN×N . If DetA 6= 0, then

∂t Det(A+ tB)|t=0 = Det(A) Tr(A−1B). (1)

In particular, we have
∂t Det(A+ tB)|t=0+ = Det(A) Tr(A−1B). (2)

1.2. The Markov brothers’ inequality

The following proposition is known as the Markov brother’s inequality, see e.g. (Shadrin, 2004).

Proposition S2 (Markov brothers). Let P be a polynomial of degree smaller than N . Then

max
τ∈[−1,1]

|P ′(τ)| ≤ N2 max
τ∈[−1,1]

|P (τ)|. (3)

We shall actually use a straightforward corollary.

Corollary S3. Let P be a polynomial of degree smaller than N . Then

max
τ∈[0,1]

|P ′(τ)| ≤ 2N2 max
τ∈[0,1]

|P (τ)|. (4)

Proof. Define the polynomial Q(x) = P ((x+ 1)/2), so that

Q′(x) =
1

2
P ′((x+ 1)/2), x ∈ [−1, 1]. (5)

In particular,
max
τ∈[0,1]

|P (τ)| = max
τ∈[−1,1]

|Q(τ)|,
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so that

max
τ∈[0,1]

|P ′(τ)| = max
τ∈[−1,1]

2|Q′(τ)| ≤ 2N2 max
τ∈[−1,1]

|Q(τ)| ≤ 2N2 max
τ∈[0,1]

|P (τ)|. (6)

1.3. An inequality on the ratio of symmetric polynomials

Recall that, for d ∈ N*, Rd is naturally embedded in the set of sequences RN*

.

Now, let M ∈ N*, and let λ ∈ RN*

+ such that
∑
m∈N* λm < +∞. By MacLaurin’s inequality 1, see e.g. (Steele, 2004,

Chapter 12),

∀M ∈ N*,
∑
U∈UM

∏
u∈U

λu ≤
1

M !

 ∑
m∈N*

λm

M

< +∞. (7)

In the following, we denote by pM (λ) the elementary symmetric polynomial of order M on the sequence λ,

pM (λ) =
∑
U∈UM

∏
u∈U

λu. (8)

In particular, the following identity relates pM and pM+1.

∀M ≥ 2, ∀m ∈ N*, pM (λ) = λmpM−1(λ{m}) + pM (λ{m}), (9)

where we denote, for S ⊂ N*, λS = (λSm)m∈N* = (λm1m/∈S)m∈N* . Proposition S4 further relates two consecutive
elementary polynomials.

Proposition S4 (Theorem 3.1 of Guruswami & Sinop, 2012). LetM ∈ N* and L ≥M+1. Let λ ∈ RL+ be a nonincreasing
sequence

λ1 ≥ λ2 ≥ · · · ≥ λL. (10)

Assume that λL > 0, then

∀M ′ ≤M,
pM+1(λ)

pM (λ)
≤
∑
m≥M ′+1 λm

M + 1−M ′
. (11)

We will actually use an immediate consequence of Proposition S4.

Corollary S5. Let M ∈ N* and λ ∈ RN*

+ be a nonincreasing sequence such that
∑
λm < +∞ and λm > 0 for all

m ∈ N*. Then (11) still holds.

Proof. Define, for L ∈ N*,
λL = (λ`)`∈[L] ∈ RL+. (12)

By Proposition S4,

∀M ′ ≤M, ∀L ≥M + 1,
pM+1(λL)

pM (λL)
≤ 1

M + 1−M ′
L∑

m=M ′+1

λm (13)

≤ 1

M + 1−M ′
+∞∑

m=M ′+1

λm. (14)

Letting L→∞ allows us to conclude.

For the last result, recall the definition of the (cross-)leverage scores τm1,m2 in (32). We slightly adapt a result by (Belhadji
et al., 2019) .

1The inequality is usually stated for λ ∈ Rd
+ for some d ∈ N*. Taking limits immediatedly yields (7).
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Lemma S6. Let x ∈ XN satisfy DetK(x) > 0. For m,m1,m2 ∈ N* such that m1 6= m2,

τFm(x) = ‖ΠT (x)e
F
m‖2F = eFm(x)ᵀK(x)−1eFm(x), (15)

and
τFm1,m2

(x) = 〈ΠT (x)e
F
m1
,ΠT (x)e

F
m2
〉F = eFm1

(x)ᵀK(x)−1eFm2
(x). (16)

In particular,
τFm(x) and |τFm1,m2

(x)| are in [0, 1]. (17)

Proof. The proof of (15) is given in (Belhadji et al., 2019)[Lemma 4 of Appendix D]. The proof of (16) is straightforward
following the same lines. ΠT (x) is an orthogonal projection with respect to 〈., .〉F and

‖eFm‖F = ‖eFm1
‖F = ‖eFm2

‖F = 1, (18)

so that (17) follows from the Cauchy-Schwarz inequality.

2. Proofs
2.1. Proof of Proposition 2

Proposition 2 states that continuous volume sampling is a mixture of projection determinantal point processes. We adapt a
result in (Kulesza & Taskar, 2012, Chapter 5) for finite volume sampling to the infinite-dimensional case. The idea of the
proof is to apply the Cauchy-Binet identity to a sequence of kernels of finite rank that approximate k.

First, recall from Section 1 the Mercer decomposition of k,

k(x, y) = lim
M→∞

∑
m∈[M ]

σmem(x)em(y) = lim
M→∞

kM (x, y), ∀x, y ∈ X . (19)

where kernel kM has rank M .

Now, let x = (x1, . . . , xN ) ∈ XN , and define KM (x) = (kM (xi, xj))i,j∈[N ]. By continuity of the determinant and by
(19), it comes

lim
M→∞

DetKM (x) = DetK(x). (20)

By construction,
KM (x) = FM (x)ᵀΣMFM (x), (21)

where FM (x) = (em(xi))(m,i)∈[M ]×[N ] and ΣM is a diagonal matrix containing the first M eigenvalues (σm)m∈[M ] on its
diagonal. The Cauchy-Binet identity yields

DetKM (x) =
∑

U⊂[M ]
|U |=N

Det2(eu(xi))(u,i)∈U×[N ]

∏
u∈U

σu. (22)

Let now λu =
∏
u∈U σu and EU (x) = (eu(xi))(u,i)∈U×[N ], we combine (20) and (22) to obtain

DetK(x) = lim
M→∞

∑
U⊂[M ]
|U |=N

λu Det2(eu(xi))(u,i)∈U×[N ] (23)

=
∑
U∈ UN

λu Det2(eu(xi))(u,i)∈U×[N ] (24)

=
∑
U∈ UN

λu Det (EU (x)ᵀEU (x)) (25)

=
∑
U∈ UN

λu Det(KU (xi, xj))i,j∈[N ], (26)
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where KU (x, y) ,
∑
u∈U eu(x)eu(y). Since KU is a projection kernel, writing the determinant as a sum over permutations

easily yields, for all U ∈ UN , ∫
XN

Det(KU (xi, xj))i,j∈[N ] ⊗i∈[N ] dω(xi) = N !, (27)

see e.g. Lemma 21 in (Hough et al., 2006). Finally, the monotone convergence theorem allows us to conclude∫
XN

DetK(x)⊗i∈[N ] dω(xi) = N !
∑
U⊂N*

|U |=N

∏
u∈U

σu. (28)

2.2. Proof of Lemma 3

Lemma 3 gives an upper bound on the biggest weight δN in the mixture of Proposition 2. The proof is straightforward, as

rN
∏
`∈[N ]

σ` = σN
∑

m≥N+1

σm
∏

`∈[N−1]

σ`

≤ σN
∑
U⊂N*

|U |=N

∏
u∈U

σu. (29)

This immediately yields δN ≤ σN/rN .

2.3. Proof of Lemma 8

Lemma 8 decomposes the interpolation error in terms of (cross-)leverage scores. Let g ∈ L2(dω) satisfy ‖g‖dω ≤ 1. Since
ΠT (x) is an orthogonal projection with respect to 〈., .〉F , we have

‖µg −ΠT (x)µg‖2F = ‖µg‖2F − ‖ΠT (x)µg‖2F (30)

Now, µg = Σg =
∑

m∈N∗

√
σmgme

F
m, so that (30) becomes

‖µg −ΠT (x)µg‖2F =
∑
m∈N∗

σmg
2
m −

∥∥∥∥∥∥
∑
m∈N*

ΠT (x)
√
σmgme

F
m

∥∥∥∥∥∥
2

F

=
∑
m∈N∗

σmg
2
m −

∑
m1,m2

gm1
gm2

√
σm1

√
σm2
〈ΠT (x)e

F
m1
,ΠT (x)e

F
m2
〉F . (31)

Lemma S6 allows us to recognize leverage scores in (31). Taking out of the second sum in (31) the terms for which
m1 = m2 to put them in the first sum concludes the proof of Lemma 8.

2.4. Proof of Theorem 4

The proof of (24) relies on the identity

EVS ‖µg −ΠT (x)µg‖2F =
∑
m∈N∗

g2mεm(N), (32)

and the fact that (εm(N)) is a non-increasing sequence. We prove these two results in turn, after what we prove (26).

2.4.1. PROOF OF (32)

Let x ∈ XN such that DetK(x) > 0. Lemma 8 yields

‖µg −ΠT (x)µg‖2F =
∑
m∈N∗

g2mσm

(
1− τFm(x)

)
−

∑
m1,m2∈N∗
m1 6=m2

gm1gm2

√
σm1

√
σm2τ

F
m1,m2

(x). (33)
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First, we prove that

EVS

∑
m∈N*

g2mσm

(
1− τFm(x)

)
=
∑
m∈N*

g2mσm

(
1− EVS τ

F
m(x)

)
. (34)

By Lemma S6,

∀m ∈ N*, g2mσm

(
1− τFm(x)

)
≥ 0, (35)

so that (34) follows from the Beppo Levi’s monotone convergence theorem.

Second, it remains to prove that

EVS

∑
m1,m2∈N*

m1 6=m2

gm1
gm2

√
σm1

√
σm2

τFm1,m2
(x) = 0. (36)

Again, Lemma S6 guarantees that, for m1,m2 ∈ N* such that m1 6= m2,

|gm1
gm2

√
σm1

√
σm2

τFm1,m2
(x)| ≤ |gm1

gm2
|√σm1

√
σm2

. (37)

Since

∑
m1 6=m2∈N*

|gm1
gm2
|√σm1

√
σm2
≤

 ∑
m∈N*

|gm|
√
σm

2

≤
∑
m∈N*

g2m
∑
m∈N*

σm

< +∞, (38)

the dominated convergence theorem yields

EVS

∑
m1,m2∈N*

m1 6=m2

gm1
gm2

√
σm1

√
σm2

τFm1,m2
(x) =

∑
m1,m2∈N∗
m1 6=m2

gm1
gm2

√
σm1

√
σm2

EVS τ
F
m1,m2

(x),

but this is equal to zero by Proposition 9.

2.4.2. PROOF THAT (εm(N)) IS NONINCREASING

Let m ∈ N*. By definition,

εm(N) = σm

∑
U∈Um

N

∏
u∈U σu∑

U∈UN
∏
u∈U σu

= σm
pN (σ{m})

pN (σ)
, (39)

where we use a notation introduced in Section 1.3. This leads to

εm(N) = σm
σm+1pN−1(σ{m,m+1}) + pN (σ{m,m+1})

pN (σ)
, (40)

and, similarly,

εm+1(N) = σm+1
σmpN−1(σ{m,m+1}) + pN (σ{m,m+1})

pN (σ)
. (41)

Taking the ratio, it comes

εm(N)

εm+1(N)
=

σm

(
σm+1pN−1

(
σ{m,m+1}

)
+ pN

(
σ{m,m+1}

))
σm+1

(
σmpN−1

(
σ{m,m+1}

)
+ pN

(
σ{m,m+1}

)) (42)

=
1 + 1

σm+1

pN
(
σ{m,m+1}

)
pN−1(σ{m,m+1})

1 + 1
σm

pN(σ{m,m+1})
pN−1(σ{m,m+1})

≥ 1, (43)
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because 1/σm+1 ≥ 1/σm.

2.4.3. PROOF OF (26)

We have ε1(N) = εN (N)ε1(N)/εN (N) ≤ σN ε1(N)/εN (N) since a simple counting argument yields εN (N) ≤ σN .
Along the lines of Section 2.4.2,

ε1(N)

εN (N)
=

1 + 1
σN

pN
(
σ{1,N}

)
pN−1(σ{1,N})

1 + 1
σ1

pN(σ{1,N})
pN−1(σ{1,N})

≤ 1 +
1

σN

pN

(
σ{1,N}

)
pN−1

(
σ{1,N}

) . (44)

Now, σ{1,N} is a sequence of positive real numbers and the Σ is trace-class. Then, by Corollary S5, for M ∈ [N − 1],

pN

(
σ{1,N}

)
pN−1

(
σ{1,N}

) ≤ 1

N −M
∑
m≥M

σm+2 =
1

N + 1− (M + 1)

∑
m+1≥M+1

σm+2. (45)

Taking M ′ = M + 1 concludes the proof of (26).

2.5. Proof of Proposition 5

2.5.1. THE CASE OF A POLYNOMIALLY-DECREASING SPECTRUM

Assume that σm = m−2s with s > 1/2. Let N ∈ N* and MN = dN/ce ∈ {2, . . . , N}, with c ∈ [1, N [. We have

min
M∈[2:N ]

∑
m≥M σm+1

(N −M + 1)σN
≤

∑
m≥MN

σm+1

(N −MN + 1)σN
(46)

≤
∑
m≥dN/ce σm+1

(N − dN/ce+ 1)σN
(47)

≤
∑
m≥dN/ce σm+1

(N −N/c+ 1)σN
(48)

≤
∑
m≥dN/ce(m+ 1)−2s

(N −N/c+ 1)N−2s
. (49)

(50)

Now,

∀m ∈ N*, (m+ 1)−2s ≤
∫ m+1

m

t−2sdt =
1

2s− 1
(m1−2s − (m+ 1)1−2s), (51)

so that ∑
m≥dN/ce

(m+ 1)−2s ≤ 1

2s− 1
dN/ce1−2s. (52)

Recall that 2s > 1, so that
1

2s− 1
dN/ce1−2s ≤ 1

2s− 1
(N/c)1−2s, (53)

and

min
M∈[2:N ]

∑
m≥M σm+1

(N −M + 1)σN
≤ 1

2s− 1

(N/c)1−2s

(N −N/c+ 1)N−2s
(54)

≤ c2s

2s− 1

N

(cN −N + c)
. (55)
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Note that c is a free parameter that belongs to [1, N ] 2 that we can optimize in the upper bound: c2s

2s−1
N

(cN−N+c) . For this
purpose, denote

φN (c) =
c2s

2s− 1

N

(cN −N + c)
. (56)

For every N ∈ N*, φN is differentiable in ]0,+∞[ and

φ
′

N (c) =
N

2s− 1

c2s−1

(cN −N + c)2
((2s− 1)(N + 1)c− 2sN) , (57)

so that φ
′

N vanishes in c∗N = 2s
2s−1

N
N+1 ; it is negative in ]0, c∗N [ and positive in ]c∗N ,+∞[. We distinguish three cases:

If c∗N < 1, N < 2s− 1 and φ
′

N is positive on [1, N ] so that φN increases in [1, N ] and we take c = 1 in (55):

φN (1) =
N

2s− 1
< 1. (58)

If c∗N ∈ [1, N ], c∗N is the unique minimizer of φN in [1, N ] and we take c = c∗N in (55) so that:

φN (c∗N ) =

(
2s

2s− 1

)2s(
N

N + 1

)2s

(59)

≤
(

2s

2s− 1

)2s

(60)

≤
(

1 +
1

2s− 1

)(
1 +

1

2s− 1

)2s−1

. (61)

Finally, if c∗N > N , N < 1
2s−1 , φN is decreasing in [1, N ] and we take c = N in (55) so that:

φN (N) =
N2s−1

2s− 1
≤ 1

2s− 1

(
1

2s− 1

)2s−1

(62)

≤
(

1 +
1

2s− 1

)(
1 +

1

2s− 1

)2s−1

. (63)

In the three cases, βN is upper bounded by
(

1 + 1
2s−1

)(
1 + 1

2s−1

)2s−1
. The artificial two-factor form of (61) and (63) is

there to make limits clearer. In particular, the RHS goes to e as s→∞.

2.5.2. THE CASE OF AN EXPONENTIALLY DECREASING SPECTRUM

Assume that σm = αm with α ∈ [0, 1[. Let N ∈ N*, and MN = N ∈ {2, . . . , N}. We have

min
M∈[2:N ]

∑
m≥M σm+1

(N −M + 1)σN
≤

∑
m≥MN

σm+1

(N −MN + 1)σN
(64)

≤
∑
m≥N σm+1

σN
(65)

≤
∑
m≥N α

m+1

αN
(66)

≤ αN+1

∑
m≥0 α

m

αN
(67)

≤ α

1− α
. (68)

2The inequality in (55) is valid for c = N by continuity.
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2.6. Proof of Proposition 11

We start with deriving the spectrum3 of the trace-class, self-adjoint operator

Σt = Σ + teFm ⊗ eFm, (69)

where eFm ⊗ eFm is defined by

∀g ∈ L2(dω), eFm ⊗ eFm g(·) = eFm(·)
∫
X
g(y)eFm(y)dω(y). (70)

The two operators Σ and eFm⊗eFm are co-diagonalizable in the basis (em)m∈N* , thus their linear combination Σt diagonalizes
in this basis too. In other words, for u ∈ N*, eu is an eigenfunction of Σt and

Σteu = Σeu + teFm ⊗ eFm(eu) = (σu + tδu,mσu)eu. (71)

Therefore, the set {σu(1 + tδu,m), u ∈ N*} is included in the spectrum of Σt. Since (em)m∈N* is an orthonormal basis
of L2(dω) and correspond to the eigenfunctions of Σt associated to the elements of {σu(1 + tδu,m), u ∈ N*}, then the
spectrum of Σt is exactly the set {σu(1 + tδu,m), u ∈ N*}.4 We now turn to deriving the spectrum of the trace-class,
self-adjoint operator Σ+

t ; the case of Σ−t follows the same lines and will be omitted for brevity. We will prove that there
exists an orthonormal basis (fm)m∈N* of L2(dω) such that every fm is an eigenfunction of Σ+

t . If t = 0, Σ+
t = Σ and

(em)m∈N* is already an orthonormal basis of L2(dω). We assume in the following that t > 0.

Consider the operator ∆+
t defined on L2(dω) by

∆+
t g(·) = t

(
eFm1

(·) + eFm2
(·)
)∫
X
g(y)

(
eFm1

(y) + eFm2
(y)

)
dω(y). (72)

We can write Σ+
t = Σ+∆+

t , but this time, if t > 0, Σ and ∆+
t do not commute. In particular, they are not co-diagonalizable,

and a more detailed analysis is necessary. First, by construction of ∆+
t ,

∆+
t em = 0, m /∈ {m1,m2},

so that for any m /∈ {m1,m2}, Σ+
t and Σ have em for eigenfunction, with the same eigenvalue σm. Observe that

L2(dω) = Span(em1 , em2)⊕ Span(em)m/∈{m1,m2}. (73)

Therefore, the rest of the proof consists in completing (em)m/∈{m1,m2} into an orthonormal basis of L2(dω), by finding
two orthonormal eigenfunctions of Σ+

t in Span(em1
, em2

). Since we assumed in Section 1 that the eigenvalues of Σ are
nonzero, we note that Span(em1 , em2) = Span(eFm1

, eFm2
). Expressing the new eigenfunctions in terms of eFm1

and eFm2

will turn out to be more convenient.

First, note that

Σ+
t e
F
m1

(·) = ΣeFm1
(·) + t

∫
X

(
eFm1

(·) + eFm2
(·)
) (
eFm1

(y) + eFm2
(y)
)
eFm1

(y)dω(y) (74)

= σm1
eFm1

(·) + tσm1

(
eFm1

(·) + eFm2
(·)
)

(75)

= (1 + t)σm1e
F
m1

+ tσm1
eFm2

. (76)

Similarly,

Σ+
t e
F
m2

(.) = tσm2
eFm1

+ (1 + t)σm2
eFm2

. (77)

3 All the integration operators in this article, and specifically in this section, are self-adjoint and compact. The spectrum of such
operators is the union of {0} (the essential spectrum) and the set of eigenvalues (Brezis, 2010)[Theorem 6.8] . Yet, the proof of the Mercer
decomposition, only involves the set of eigenvalues (Steinwart & Scovel, 2012). For this reason, we use the term “spectrum” to refer to
the set of eigenvalues.

4Σt is self-adjoint, and has no zero eigenvalue by assumption. Thus, any new eigenfunction that is not in our basis needs to be
orthogonal to all basis elements, and is thus zero.
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Now, let v = λ1e
F
m1

+ λ2e
F
m2

, so that, by (76) and (77),

Σ+
t v = λ1

(
(1 + t)σm1

eFm1
+ tσm1

eFm2

)
+ λ2

(
(1 + t)σm2

eFm2
+ tσm2

eFm1

)
=

(
λ1(1 + t)σm1 + λ2tσm2

)
eFm1

+

(
λ2(1 + t)σm2 + λ1tσm1

)
eFm2

, (78)

Solving for eigenvalues, we look for µ ∈ R such that Σ+
t v = µv, or equivalently{

(1 + t)σm1
λ1 + tσm2

λ2 = µλ1,
tσm1λ1 + (1 + t)σm2λ2 = µλ2.

This is just saying that µ should be an eigenvalue of the matrix(
(1 + t)σm1

tσm2

tσm1
(1 + t)σm2

)
, (79)

which yields two solutions,

µ+
1 = (1 + t)

σm1 + σm2

2
+

1

2

√
(1 + t)2(σm1

− σm2
)2 + 4σm1

σm2
t2 , (80)

and
µ+
2 = (1 + t)

σm1
+ σm2

2
− 1

2

√
(1 + t)2(σm1

− σm2
)2 + 4σm1

σm2
t2 . (81)

These solutions are distinct since t > 0, and the corresponding normalized eigenfunctions v+1 and v+2 are orthogonal
with respect to 〈., .〉dω since Σ+

t is self-adjoint. Finally, we define the set of eigenfunctions of Σ+
t by the system

(em)m/∈{m1,m2} ∪ (v+1 , v
+
2 ) that is an orthonormal basis of L2(dω). Therefore, the spectrum of the compact operator Σ+

t is
exactly the set

{σm, m /∈ {m1,m2}} ∪ {µ+
1 , µ

+
2 }. (82)

Along the same lines, one can show that the eigenvalues of Σ−t restricted to Span(eFm1
, eFm2

) satisfy

λ2 − (1 + t)(σm1
+ σm2

)λ− σm1
σm2

t2 = 0. (83)

For t > 0, this equation again admits two distinct solutions

µ̂−1 = (1 + t)
σm1

+ σm2

2
+

1

2

√
(1 + t)2(σm1

− σm2
)2 + 4σm1

σm2
t2, (84)

and
µ̂−2 = (1 + t)

σm1
+ σm2

2
− 1

2

√
(1 + t)2(σm1

− σm2
)2 + 4σm1

σm2
t2. (85)

so that the spectrum of Σ−t is exactly the set

{σm, m /∈ {m1,m2}} ∪ {µ−1 , µ
−
2 } = {σm, m /∈ {m1,m2}} ∪ {µ+

1 , µ
+
2 }. (86)

In other words, the two operators Σ+
t and Σ−t share the same eigenvalues.

2.7. Proof of Proposition 10

2.7.1. THE EXPECTED VALUE OF THE m-TH LEVERAGE SCORE

Let m ∈ N*. On the one hand, recall that τFm(x) = eFm(x)ᵀK(x)−1eFm(x), so that, by Definition 1,

EVS τ
F
m(x) =

(
N !

∑
U∈ UN

∏
u∈U

σu

)−1 ∫
XN

eFm(x)ᵀK(x)−1eFm(x) DetK(x)⊗i∈[N ] dω(xi). (87)
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We have

DetK(x) eFm(x)ᵀK(x)−1eFm(x) = DetK(x) Tr
(
eFm(x)ᵀK(x)−1eFm(x)

)
= DetK(x) Tr

(
K(x)−1eFm(x)eFm(x)ᵀ

)
= ∂t Det(K(x) + teFm(x)eFm(x)ᵀ)|t=0+ , (88)

where the last line follows from the Jacobi identity of Theorem S1.

On the other hand, for t > 0 and with the notation of Section 5.2, let Kt(x) := (kt(xi, xj))i,j∈[N ] = K(x) +
teFm(x)eFm(x)ᵀ. Since∫

X
kt(x, x) dω(x) =

∫
X
k(x, x) dω(x) +t

∫
X
eFm(x)2 dω(x) =

∑
n∈N*

σn + tσm <∞, (89)

Hadamard’s inequality yields the integrability of ψ(., t) : x 7→ DetKt(x). Finally, observe that 5

φm(t) := ZN (kt) =

∫
XN

ψ(x, t)⊗i∈[N ] dω(xi). (90)

If we prove that φm is right differentiable in zero, and that we can justify the interchange of the derivation and the integration
operations, we will have equated the right derivative of φm in zero and (87) using (88); this will achieve proving the first
equation in Proposition 10. To this purpose, we need to prove that t 7→ ψ(x, t) is right differentiable at zero, it is locally
dominated by an integrable function and its derivative is locally dominated by an integrable function. Now, observe that
t 7→ ψ(x, t) is a polynomial of degree smaller than N , so that it is differentiable, and Corollary S3 yields

max
τ∈[0,1]

|∂tψ(x, τ)| ≤ 2N2 max
τ∈[0,1]

|ψ(x, τ)| . (91)

In other words, to dominate τ 7→ |∂tψ(x, τ)| uniformly on [0, 1], it is sufficient to dominate τ 7→ |ψ(x, τ)| uniformly there.
Now, let τ ∈ [0, 1], we have

K1(x)−Kτ (x) = K(x) + eFm(x)eFm(x)ᵀ −K(x)− τeFm(x)eFm(x)ᵀ (92)

= (1− τ)eFm(x)eFm(x)ᵀ ∈ S+N . (93)

Thus
0 �Kτ (x) �K1(x) (94)

in the Loewner order, so that for any τ ∈ [0, 1],

|ψ(x, τ)| = ψ(x, τ) = DetKτ (x) ≤ DetK1(x) = ψ(x, 1). (95)

We conclude by observing that x 7→ ψ(x, 1) is integrable on XN by Proposition 2, and the fact that∫
X
k1(x, x)dω(x) < +∞. (96)

2.7.2. THE EXPECTED VALUE OF CROSS-LEVERAGE SCORES

Let m1,m2 ∈ N* such that m1 6= m2. We have

τFm1,m2
(x) = eFm1

(x)ᵀK(x)−1eFm2
(x)

=
1

4

(
eFm1

(x) + eFm2
(x)
)ᵀ
K(x)−1

(
eFm1

(x) + eFm2
(x)
)ᵀ

− 1

4

(
eFm1

(x)− eFm2
(x)
)ᵀ
K(x)−1

(
eFm1

(x)− eFm2
(x)
)ᵀ
. (97)

5In the main paper, a mistake has crept into the definition of φm(t), φ+
m1,m2

(t) and φ−m1,m2
(t). The correct definition of these

quantities is the following: φm(t) = ZN (kt), φ
+
m1,m2

(t) = ZN (k+t ), and φ−m1,m2
(t) = ZN (k−t ).
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Thus
EVS τ

F
m1,m2

(x) =
1

4ZN (k)

∫
XN

(
Ψ+(x)−Ψ−(x)

)
⊗i∈[N ] dω(xi), (98)

where
Ψ+(x) =

(
eFm1

(x) + eFm2
(x)
)ᵀ
K(x)−1

(
eFm1

(x) + eFm2
(x)
)

DetK(x), (99)

and
Ψ−(x) =

(
eFm1

(x)− eFm2
(x)
)ᵀ
K(x)−1

(
eFm1

(x)− eFm2
(x)
)

DetK(x). (100)

We proceed as in Section 2.7.1 and we use Proposition S1 to prove that

Ψ+(x) = ∂t Det
(
K(x) + t

(
eFm1

(x) + eFm2
(x)
) (
eFm1

(x) + eFm2
(x)
)ᵀ) |t=0+

= ∂t Det
(
K+
t (x)

)
|t=0+ . (101)

and

Ψ−(x) = ∂t Det
(
K(x) + t

(
eFm1

(x)− eFm2
(x)
) (
eFm1

(x)− eFm2
(x)
)ᵀ) |t=0+

= ∂t Det
(
K−t (x)

)
|t=0+ . (102)

In order to prove that φ+m1,m2
and φ−m1,m2

are right differentiable in zero along with the second equation in Proposition 10,
one can follow the same steps as in the end of Section 2.7.1. In particular, the interchange of the derivation and the integration
operations follows from the same arguments, upon noting that both

∫
X k

+
t (x, x)dω(x) and

∫
X k
−
t (x, x)dω(x) are finite.

2.8. Proof of Proposition 9

The proof is a straightforward computation now that we have Proposition 10 and Proposition 11.

2.8.1. THE EXPECTED VALUE OF THE m-TH LEVERAGE SCORE

Let m ∈ N*. We have by Proposition 10 and Proposition 2,

EVS τ
F
m(x) =

1

N !
∑

U⊂N∗
|U |=N

∏
u∈U

σu

∂φm
∂t
|t=0+ , (103)

where

φm(t) =

∫
XN

Det

(
K(x) + teFm(x)eFm(x)ᵀ

)
⊗Ni=1 dω(xi). (104)

Now by Proposition 11 and Proposition 26,

φm(t) = N !
∑
U∈ UN

∏
u∈U

σ̃u(t), (105)

where for u ∈ N∗, σ̃u(t) = σu + tδm,uσu. Therefore,

φm(t) = N !
∑
U∈ UN
m∈U

∏
u∈U

σ̃u(t) +N !
∑
U∈ UN
m/∈U

∏
u∈U

σ̃u(t) (106)

= N !σm(t+ 1)
∑

U∈UN−1

m/∈U

∏
u∈U

σu +N !
∑
U∈ UN
m/∈U

∏
u∈U

σu. (107)

Thus,
∂φm
∂t
|t=0 = N !σm

∑
U∈UN−1

m/∈U

∏
u∈U

σu, (108)

6In the main paper, a mistake has crept into the definition of φm(t), φ+
m1,m2

(t) and φ−m1,m2
(t). The correct definition of these

quantities is the following: φm(t) = ZN (kt), φ
+
m1,m2

(t) = ZN (k+t ), and φ−m1,m2
(t) = ZN (k−t ).
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so that (103) becomes

EVS τ
F
m(x) =

(
��N !

∑
U∈ UN

∏
u∈U

σu

)−1
��N !σm

∑
U∈UN−1

m/∈U

∏
u∈U

σu, (109)

which concludes the proof.

2.8.2. THE EXPECTED VALUE OF CROSS-LEVERAGE SCORES

Let m1,m2 ∈ N* such that m1 6= m2. We have by Proposition 10 and Proposition 2,

EVS τ
F
m1,m2

(x) =
1

4N !
∑

U∈ UN

∏
u∈U

σu

(
∂φ+m1,m2

∂t
−
∂φ−m1,m2

∂t

) ∣∣∣∣
t=0+

, (110)

where

φ+m1,m2
(t) =

∫
XN

Det

(
K(x) + t

(
eFm1

(x) + eFm2
(x)
) (
eFm1

(x) + eFm2
(x)
)ᵀ)⊗Ni=1 dω(xi), (111)

and

φ−m1,m2
(t) =

∫
XN

Det

(
K(x) + t

(
eFm1

(x)− eFm2
(x)
) (
eFm1

(x)− eFm2
(x)
)ᵀ)⊗Ni=1 dω(xi). (112)

Now by Proposition 11, for t ≥ 0,

φ+m1,m2
(t) = N !

∑
U∈ UN

∏
u∈U

σ̃+
u (t) = N !

∑
U∈ UN

∏
u∈U

σ̃−u (t) = φ−m1,m2
(t). (113)

Plugging this back into (110) yields EVS τ
F
m1,m2

(x) = 0.

2.9. Proof of Theorem 6

2.9.1. A DECOMPOSITION RESULT FOR THE ERROR

We start with a lemma.
Lemma S7. Let µ ∈ F such that ‖µ‖F ≤ 1. Under Assumption B,

EVS E(µ;x)2 ≤ (1 +B)
∑
m∈[N ]

σN
σm
〈µ, eFm〉2F +

∑
m≥N+1

〈µ, eFm〉2F . (114)

Proof. Using the same arguments as in the proof of Lemma 8 in Section 2.3, it comes that, for x ∈ XN such that
DetK(x) > 0,

‖µ−ΠT (x)µ‖2F =
∑
m∈N∗

〈µ, eFm〉2F
(

1− τFm(x)

)
−

∑
m1,m2∈N∗
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉FτFm1,m2
(x). (115)

We want to take expectations in both sides of (115). For the first term in the RHS, we prove, using the same arguments as
for the proof of Theorem 4 in Section 2.4, that

EVS

∑
m∈N∗

〈µ, eFm〉2F
(

1− τFm(x)

)
=
∑
m∈N∗

〈µ, eFm〉2F
(

1− EVS τ
F
m(x)

)
. (116)

For the second term in the RHS of (115), we need to justify that

EVS

∑
m1,m2∈N∗
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

=
∑

m1,m2∈N∗
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F EVS τ
F
m1,m2

(x) = 0. (117)
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This can be done using dominated convergence. Indeed, let M ∈ N*. We have

EVS

∑
m1,m2∈[M ]
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

=
∑

m1,m2∈[M ]
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F EVS τ
F
m1,m2

(x) = 0. (118)

Moreover, ∣∣∣∣∣ ∑
m1,m2∈[M ]
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

m1,m2∈[M ]

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)−

∑
m∈[M ]

〈µ, eFm〉2F τFm(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

m1,m2∈[M ]

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

m∈[M ]

〈µ, eFm〉2F τFm(x)

∣∣∣∣∣∣
=

∥∥∥∥∥∥ΠT (x)

∑
m∈[M ]

〈µ, eFm〉FeFm

∥∥∥∥∥∥
2

F

+

∣∣∣∣∣∣
∑

m∈[M ]

〈µ, eFm〉2F τFm(x)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
∑

m∈[M ]

〈µ, eFm〉FeFm

∥∥∥∥∥∥
2

F

+
∑

m∈[M ]

〈µ, eFm〉2F

= 2‖µ‖2F < +∞. (119)

Combining (118) and (119), we deduce (117) by the dominated convergence theorem.

Finally, we combine (116) and (117) to get

EVS ‖µ−ΠT (x)µ‖2F =
∑
m∈N∗

〈µ, eFm〉2F
(

1− EVS τ
F
m(x)

)
=
∑
n∈[N ]

〈µ, eFn 〉2F
(

1− EVS τ
F
n (x)

)
+

∑
m≥N+1

〈µ, eFm〉2F
(

1− EVS τ
F
m(x)

)
. (120)

On the one hand,
∀m ≥ N + 1, 1− EVS τ

F
m(x) ≤ 1, (121)

and on the other hand, remember that by Theorem 4, the sequence εm(N) is non-increasing, so that

∀n ∈ [N ], σn(1− EVS τ
F
n (x)) = EVS ‖µen −ΠT (x)µen‖2F (122)

= εn(N) (123)
≤ ε1(N), (124)

and by (26) in the same theorem one gets

σn(1− EVS τ
F
n (x)) ≤ (1 + βN )σN , (125)

so that
(1− EVS τ

F
n (x)) ≤ (1 + βN )

σN
σn

. (126)

Assumption B yields
∀n ∈ [N ], 1− EVS τ

F
n (x) ≤ (1 +B)

σN
σn

. (127)

This concludes the proof of the lemma.
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2.9.2. THE EXPECTED VALUE OF THE INTERPOLATION ERROR

If there exists r ∈ [0, 1/2] such that ‖Σ−rµ‖F < +∞, we have∑
m≥N+1

〈µ, eFm〉2F =
∑

m≥N+1

σ2r
m

〈µ, eFm〉2F
σ2r
m

(128)

≤ σ2r
N+1

∑
m≥N+1

〈µ, eFm〉2F
σ2r
m

(129)

≤ σ2r
N+1‖Σ−rµ‖2F , (130)

and

(1 +B)
∑
m∈[N ]

σN
σm
〈µ, eFm〉2F = (1 +B)

∑
m∈[N ]

σN

σ1−2r+2r
m

〈µ, eFm〉2F (131)

= (1 +B)
∑
m∈[N ]

σN

σ1−2r
m

〈µ, eFm〉2F
σ2r
m

(132)

≤ (1 +B)σ2r
N

∑
m∈[N ]

〈µ, eFm〉2F
σ2r
m

(133)

= (1 +B)σ2r
N ‖Σ−rµ‖2F . (134)

By Lemma S7, EVS ‖µ−ΠT (x)µ‖2F converges at the slow rate O(σ2r
N ).

On the other hand, if there exists r > 1/2 such that ‖Σ−rµ‖F < +∞, we have

(1 +B)
∑
m∈[N ]

σN
σm
〈µ, eFm〉2F = (1 +B)

∑
m∈[N ]

σN

σ1−2r+2r
m

〈µ, eFm〉2F (135)

≤ (1 +B)σNσ
2r−1
1

∑
m∈[N ]

〈µ, eFm〉2F
σ2r
m

(136)

≤ (1 +B)σNσ
2r−1
1 ‖Σ−rµ‖2F , (137)

and ∑
m≥N+1

〈µ, eFm〉2F =
∑

m≥N+1

σ2r
m

〈µ, eFm〉2F
σ2r
m

(138)

≤ σ2r
N+1

∑
m≥N+1

〈µ, eFm〉2F
σ2r
m

(139)

≤ σ2r
N+1‖Σ−rµ‖2F . (140)

This time, the bound in Lemma S7 is dominated by its first term, so that EVS ‖µ−ΠT (x)µ‖2F converges at the faster rate
O(σN ).

2.10. Proof of Theorem 7

2.10.1. PROOF OF THE BIAS IDENTITY

First, recall that, as f and g belong to L2(dω), we have∫
X
f(x)g(x) dω(x) =

∑
m∈N*

〈f, em〉dω〈g, em〉dω, (141)

thus, in order to prove the result, it is enough to prove that

EVS

∑
i∈[N ]

ŵif(xi) =
∑
m∈N*

〈f, em〉dω〈g, em〉dω EVS τ
F
m(x). (142)
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Let x ∈ XN such that DetK(x) > 0. The optimal kernel quadrature weights satisfy

ŵ = K(x)−1µg(x), (143)

so that ∑
i∈N

ŵif(xi) = ŵᵀf(x) (144)

= µg(x)ᵀK(x)−1f(x) (145)

=
∑

m1,m2∈N*

σm1〈g, em1〉dω〈f, eFm2
〉F em1(x)ᵀK(x)−1eFm2

(x) (146)

=
∑

m1,m2∈N*

√
σm1
〈g, em1

〉dω〈f, eFm2
〉F eFm1

(x)ᵀK(x)−1eFm2
(x). (147)

We want to use the dominated convergence theorem to take expectations in (147). Let M ∈ N*. By Lemma S6 and by the
fact that ΠT (x) is an 〈., .〉F -orthogonal projection, it comes

∣∣∣∣∣ ∑
m1,m2∈[M ]

√
σm1
〈g, em1

〉dω〈f, eFm2
〉F eFm1

(x)ᵀK(x)−1eFm2
(x)

∣∣∣∣∣ (148)

=

∣∣∣∣∣∣
∑

m1,m2∈[M ]

√
σm1
〈g, em1

〉dω〈f, eFm2
〉F 〈ΠT (x)e

F
m1
,ΠT (x)e

F
m2
〉F

∣∣∣∣∣∣ (149)

=

∣∣∣∣∣∣
〈

ΠT (x)

∑
m1∈[M ]

√
σm1
〈g, em1

〉dωem1
, ΠT (x)

∑
m2∈[M ]

〈f, eFm2
〉FeFm2

〉
F

∣∣∣∣∣∣ (150)

≤

∣∣∣∣∣∣
〈 ∑
m1∈[M ]

√
σm1
〈g, em1

〉dωem1
,
∑

m2∈[M ]

〈f, eFm2
〉FeFm2

〉
F

∣∣∣∣∣∣ (151)

≤

∥∥∥∥∥∥
∑

m1∈[M ]

√
σm1〈g, em1〉dωem1

∥∥∥∥∥∥
F

∥∥∥∥∥∥
∑

m2∈[M ]

〈f, eFm2
〉FeFm2

∥∥∥∥∥∥
F

. (152)

Now, ∥∥∥∥∥∥
∑

m1∈[M ]

√
σm1
〈g, em1

〉dωem1

∥∥∥∥∥∥
F

∥∥∥∥∥∥
∑

m2∈[M ]

〈f, eFm2
〉FeFm2

∥∥∥∥∥∥
F

(153)

=

∥∥∥∥∥∥
∑

m1∈[M ]

〈g, em1
〉dωeFm1

∥∥∥∥∥∥
F

∥∥∥∥∥∥
∑

m2∈[M ]

〈f, eFm2
〉FeFm2

∥∥∥∥∥∥
F

(154)

=

∥∥∥∥∥∥
∑

m1∈[M ]

〈g, em1
〉dωem1

∥∥∥∥∥∥
dω

∥∥∥∥∥∥
∑

m2∈[M ]

〈f, eFm2
〉FeFm2

∥∥∥∥∥∥
F

(155)

≤

∥∥∥∥∥∥
∑

m1∈N*

〈g, em1
〉dωem1

∥∥∥∥∥∥
dω

∥∥∥∥∥∥
∑

m2∈N*

〈f, eFm2
〉FeFm2

∥∥∥∥∥∥
F

(156)

< +∞, (157)
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since
∑
m∈N*

√
σm〈g, em〉dωem ∈ F . Dominated convergenve thus yields

EVS

∑
m1,m2∈N*

√
σm1
〈g, em1

〉dω〈f, eFm2
〉F eFm1

(x)ᵀK(x)−1eFm2
(x) (158)

=
∑

m1,m2∈N*

√
σm1〈g, em1〉dω〈f, eFm2

〉F EVS e
F
m1

(x)ᵀK(x)−1eFm2
(x). (159)

Using Proposition 9, we continue our derivation as

EVS

∑
m1,m2∈N*

√
σm1
〈g, em1

〉dω〈f, eFm2
〉F eFm1

(x)ᵀK(x)−1eFm2
(x) (160)

=
∑
m∈N*

√
σm〈g, em〉dω〈f, eFm〉F EVS e

F
m(x)ᵀK(x)−1eFm(x) (161)

=
∑
m∈N*

〈g, em〉dω
√
σm〈f, eFm〉F EVS τ

F
m(x). (162)

Finally, (142) is obtained upon noting that

∀m ∈ N*, 〈f, em〉dω =
√
σm〈f, eFm〉F . (163)

2.10.2. PROOF OF THE ASYMPTOTIC UNBIASEDNESS OF THE QUADRATURE

The expected value of the bias writes

EVS

∫
X
f(x)g(x)dω(x)−

∑
i∈[N ]

ŵif(xi)

 =
∑
m∈N*

〈f, em〉dω〈g, em〉dω
(
1− EVS τ

F
m(x)

)
. (164)

Now, by Theorem 4, for m ∈ N*,

EVS ‖µem −ΠT (x)µem‖2F ≤ ε1(N) ≤ σN (1 + βN ) ≤ σN +
∑
n≥N

σn. (165)

Thus
0 ≤ 1− EVS τ

F
m(x) = σm

−1 EVS ‖µem −ΠT (x)µem‖2F ≤ σm−1σN +
∑
n≥N

σn, (166)

so that

lim
N→∞

〈f, em〉dω〈g, em〉dω
(
1− EVS τ

F
m(x)

)
= 〈f, em〉dω〈g, em〉dω(1− lim

N→∞
EVS τ

F
m(x)) = 0. (167)

To conclude, it is thus enough to apply the dominated convergence theorem to (164). By Lemma S6, τFm(x) ∈ [0, 1], so that
1− EVS τ

F
m(x) ∈ [0, 1]. In particular, for all N ∈ N*,

|〈f, em〉dω〈g, em〉dω
(
1− EVS τ

F
m(x)

)
| ≤ |〈f, em〉dω〈g, em〉dω| (168)

≤ 1

2

(
〈f, em〉2dω + 〈g, em〉2dω

)
, (169)

which is the generic term of a convergent series as f, g ∈ L2(dω). This concludes the proof.

3. More concrete examples of RKHSs
In this section, we illustrate the bound of Theorem 4 and the constants of Proposition 5 on more examples.
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3.1. The uni-dimensional periodic Sobolev spaces

Consider the uni-dimensional periodic Sobolev space of smoothness parameter s ∈ {1, 2, 3, 4, 5}. The eigenvalues have a
polynomial decay; see (Wahba, 1990). We take for m ∈ N*, σm = m−2s 7. For different values of m, Figure 3.1 illustrates
the expected value of the m-th leverage score EVS τ

F
m(x) (left panels) and the expected interpolation error EVS E(µem ;x)2

(right panels), both as functions of N . Remember that by Theorem 4:

EVS E(µem ;x)2 = σm

( ∑
U∈ UN

∏
u∈U

σu

)−1 ∑
U∈ Um

N

∏
u∈U

σu. (170)

For numerical simulations, we make the following approximation

EVS E(µem ;x)2 ≈ σm

 ∑
U⊂ [M ]
|U |=N

∏
u∈U

σu


−1 ∑

U⊂[M ]
|U |=N, m/∈U

∏
u∈U

σu, (171)

for an M ≥ N sufficiently large. The numerator and denominator of the right hand side of (171) can be calculated using an
efficient algorithm for the calculation of the elementary symmetric polynomials (Kulesza & Taskar, 2012)[Algorithm 7].

We observe that for low values of s, EVS τ
F
m(x) depends smoothly on N . On the other hand, EVS τ

F
m(x) undergoes a sharp

transition at N = m for high values of s: the reconstruction of the m-th eigenfunction is almost perfect for N slightly larger
than m. Moreover, EVS E(µem ;x)2 respects the upper bound of Theorem 4; the constant B of Proposition 5 is small for
high values of s and converges to e when s→ +∞.

3.2. The uni-dimensional Gaussian spaces

Consider now the RKHS generated by Gaussian kernel and the Gaussian measure. We take for all m ∈ N*, σm = αN

(Zhu et al., 1997), for some α ∈ [0, 1[. Figure 3.2 illustrates the expected value of the m-th leverage score EVS τ
F
m(x) (left

panels) and the expected interpolation error EVS E(µem ;x)2 (right panels), both as functions of N , for different values of
m and α ∈ {0.7, 0.5, 0.2}. The numerical simulation of EVS E(µem ;x)2 uses again the approximation (171).

We make the same observations on the dependency of EVS τ
F
m(x) on N as in the Sobolev case. The rougher the kernel (i.e.,

the lower the value of α), the smoother the transition of EVS τ
F
m(x) as a function of N . Moreover, EVS E(µem ;x)2 respects

the upper bound of Theorem 4; the constant B of Proposition 5 is small for low values of α and converges to 0 when α→ 0.

7We drop the potential multiplicities of the eigenvalues by simplicity.
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Figure 1. The expected value of the m-th leverage score EVS τ
F
m(x) (left panels) and the expected interpolation error EVS E(µem ;x)2

(right panels), under the distribution of continuous volume sampling, for m ∈ {1, 2, 3, 4, 5} and the uni-variate periodic Sobolev kernel.
Rows correspond to increasing values of the smoothness parameter s = 1, 2, 3, 4, 5.
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Figure 2. The expected value of the m-th leverage score EVS τ
F
m(x) and the expected interpolation error EVS E(µem ;x)2 under the

distribution of continuous volume sampling for m ∈ {1, 2, 3, 4, 5}. Every row corresponds to a uni-dimensional Gaussian space
(σm = αm) with a parameter α ∈ {0.7, 0.5, 0.2}.
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